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AMENABILITY AND THE SPECTRUM 

OF THE LAPLACIAN 

BY ROBERT BROOKS1 

In this note, we announce some results [1, 2] relating the notion of ame­
nability of a group with spectral geometry. These results take their inspiration 
from the theorem of Milnor-Svarc [5], which relates the growth of the funda­
mental group in the sense of group theory with the growth of the universal cover 
in the sense of Riemannian geometry. Our first result interprets the amenability 
of the fundamental group of a compact manifold M in terms of a spectral condi­
tion on the universal cover M. 

THEOREM 1. rt^M) is an amenable group if and only if 0 is in the spec­
trum of the Laplacian on L2(M). 

/>̂  
We observe that although the spectrum of the Laplacian on M depends on 

a choice of metric onM, all such choices are quasi-isometrically equivalent; hence 
from the variational expression 

/ J lgrad/ | | 2 

X0(M) = inf — 

' V2 

M 

where ƒ runs over smooth functions with compact support, we see that the con­
dition XQ(M) — 0 is independent of the choice of metric on M. 

The proof of Theorem 1 revolves around the following characterization of 
amenable groups, due to F^lner [4]. For those unfamiliar with the notion of 
amenability, one may take this as a definition: 

THEOREM (F0LNER). Let G be a finitely generated group, with genera-
tors glf ..., gn. Then G is amenable if and only if for every e, there is a finite 
subset E of G such that 

#(EngrE)>(\-e)#(E) for all L 

The proof of Theorem 1 proceeds by interpreting the F^lner condition as 
an "isoperimetric condition" on the group G. In particular, we choose a funda-
mental domain F for the action of irt(M) on M. Then TÏX{M) is amenable if 
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and only if there is a sequence Et of unions of finitely many translates of F by 
7T1(Af), such that the isoperimetric ratio 

area^O/vol^.) 

tends to 0. 
If -nx(M) is amenable, then one uses the Ef to construct test functions ft 

such that grad ft is supported near dEit while ft = 1 inside Et. Since, by F^lner's 
condition, the area of dEt is small compared to vol(Z$V)5 this can be done so that 
the ratio ƒ Jlgrad ft\\

2IUff -* 0, showing \0(M) = 0. 
M M 

Conversely, if X0(M) = 0, an estimate of Cheeger [3] says that the iso­
perimetric ratio h = inf/v(area(37Vr)/vol(7V)) tends to zero, where the N are open 
submanifolds of M with compact closure. The idea of the remainder of the 
proof is to show that area(diV)/vol(7V) is estimated, up to a multiplicative con­
stant, by replacing TV by a finite union of fundamental domains, establishing the 
amenability of n^M). See [1] for details. 

Theorem 1 can be generalized to the study of the spectral geometry of 
leaves in a foliation of a compact manifold. To state this generalization, let F 
be a codimension q foliation of a compact manifold M, and let { Ut] be a finite 
covering of M by flow boxes: Ui is diffeomorphic to Dq x Dn~q, in such a way 
that the leaves of the foliation are of the form x x Dn~q', x EDq. Let Tt = 
Dq x 0 C Uf9 and let T = UTt\ T is a transversal to the foliation F. 

There is then a natural pseudogroup T of partial diffeomorphisms of T, 
generated by the finite set {T^: Ui n Uj & 0} where IV maps {x € Tt: 
x x Dn~q intersects Uj\ to Tf by transporting along the leaves. 

THEOREM 2. Let x € T, and denote by Lx the leaf through x. Then 
\(LX) — 0 if and only if for all e, there is a finite set E contained in the orbit 
of x under r, such that 

#{y ^ E: r/yO0 £ E for some i, /} < e • #{E). 

We call x E T a F^lner point, and Lx a F^lner leaf, if x satisfies the condi­
tion given in Theorem 2. As in Theorem 1, the above condition is equivalent to 
an isoperimetric condition on Lx. Clearly the set of F01ner points is a Borel sub­
set of T. Thus 

COROLLARY 1. Suppose F is an ergodic foliation of M (with respect to 
the Riemannian measure on M). Then either almost all leaves Lx satisfy \Q(LX) 
= 0 or almost all leaves satisfy \(LX) > 0. 
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It follows from the proof of Theorem 2 that 

COROLLARY 2. Let L be a complete, noncompact Riemannian manifold 
such that the isoperimetric constant h(L) = 0, but \0(L) > 0. Then L is not 
the leaf of a foliation of a compact manifold. 

The proof of Theorem 2 follows closely the proof of Theorem 1, and is 
given in [2]. 

We remark also that many theorems about foliations with polynomial 
growth (e.g. [6, 7] ) generalize easily to foliations all of whose leaves are F01ner. 
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