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RESEARCH ANNOUNCEMENTS

ARTIN’S CONJECTURE FOR REPRESENTATIONS
OF OCTAHEDRAL TYPE
BY JERROLD TUNNELL

Let L/F be a finite Galois extension of number fields. E. Artin conjectured
that the L-series of a nontrivial irreducible complex representation of Gal(L/F) is
entire, and proved this for monomial representations. The nonmonomial two-di-
mensional representations are those with image in PGL(2, C) isomorphic to the
group of rigid motions of the tetrahedron, octahedron or icosahedron. In [5]
Langlands proved Artin’s conjecture for all two-dimensional representations of
tetrahedral type and certain octahedral representations when F = Q. The pur-
pose of this note is to prove the conjecture for all octahedral representations by
using the methods of Langlands and an analytic result of Jacquet, Piatetskii-Shapiro
and Shalika.

Let p be an irreducible two-dimensional complex representation of Gal(L/F).
We say that a cuspidal automorphic representation m of GL(2, Ag) equals (o)
ifw =®1rv with @, = m(p,) in the sense of [2, §12] for almost all places
v of F. When 7 = n(p) the L-series of m and p agree, and since cuspidal represen-
tations have entire L-series, Artin’s conjecture follows. In [5, §3] Langlands used
base change for GL(2) to produce candidates for m(p). When p is octahedral
we will use the following result to show that one of Langlands’ candidates is in
fact m(p).

THEOREM [4]. Let K be a cubic extension of F (not necessarily Galois).
For each automorphic cuspidal representation w of GL(2, Ap) there exists an
automorphic representation I1 = BCy, / w(m) of GL(2, Ay) such that for almost all
places v of F, and each place w of K dividing v, m, = n(0,) implies that 11, =
n(Reswil‘)v 0,)-

This theorem is proved using the theory of automorphic forms on GL(3)
and GL(2) x GL(3). The basic concept is similar to that of the example of
quadratic base change given in [3, §20]. We recall that the theory of base change
developed in [5] treats the case of Galois cyclic change of base of prime degree,
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together with a characterization of the image and descent properties. We will
denote by the symbol BC the base change lifting.

Let p be a two-dimensional representation of Gal(L/F) of octahedral type.
Let E/F be the quadratic subextension of L/F fixed by all elements of Gal(L/F)
mapping to the unique index two subgroup of the octahedral group S,. Choose
a 2-Sylow subgroup of the octahedral group and let K/F be the cubic subexten-
sion fixed by all elements of Gal(L/F) mapping to this chosen Sylow subgroup.
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Let M be the compositium of £ and K in L, so that we have the diagram of fields
and Galois groups above. For any subextension T/F of L/F, let p. be the restric-
tion of p to Gal(L/T).

In [S, §3] Langlands showed, using base change and results of Gelbart,
Jacquet, Piatetskii-Shapiro and Shalika, that m(py) exists. There are exactly two
cuspidal representations 7, and m, of GL(2, Ay) such that BCy, e (m) = (og).
They are related by m ~ m, ® wg,p, Where wg - is the idele class character
corresponding to the quadratic extension E/F. Notice that p, is monomial, so
(g ) exists.

LEMMA. There exists a unique index i such that BCy p(m)) = m(pg).

ProoF. The theorem quoted above shows that BCy p(;) exists for i =
1, 2. By transitivity of base change, BCy/, kBCx p() = m(p,,) for i =1, 2.
Notice that BCy /F("’z) ~ BCy /F(Ty) ® wyy k- The representations BCy /F(vri)
are distinct for i = 1, 2, for if BCy p(m;) ~ BCy jp(m;) ® wyy e then (o)
would not be cuspidal. But p,, is irreducible, so this does not occur. By the
descent theory for base change, BCy /F(nl) and BCy, r(m,) are the two auto-
morphic representations of GL(2, Ag) which yield n(o,,) after base change. Since
m(pg ) also has this property, it must be BCy /F(1r,.) for a unique choice of i.

Let 7 be the automorphic representation m; of the lemma which satisfies
BCy p(m) = m(pg ) and BCy p(m) = n(pg).

THEOREM. Let p be an octahedral representation of Gal(L/F). Then n(p)
exists, and hence L(p, s) is entire.

ProoF. The proof is similar to [5, §3]. We show that the automorphic
representation 7 constructed by Langlands is equal to m(p). For each place v of
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F such that p, is unramified we obtain a diagonal conjugacy class diag(a,, b,) in
GL(2, C). For each place v of F such that m, is an unramified principal series
we obtain a conjugacy class diag(a,, b,). Let v be such that both p, and =, are
unramified. Since BCy p(T) = m(pz) we see that diag(a,, b,) is conjugate to
diag(a,w, b,w) with w? = 1. We must show that diag(a,, b,) and diag(a,w, b,w)
are conjugate.

Let w be a place of K dividing v, with [K,: F,] = d(w). Since BCy /()
= m(pg), diag(@? ™), p3(")) and diag((a,w)? ™, (b,w)* ™)) are conjugate. If
d(w) = 1, the desired conjugacy results. If d(w) = 3, either a3 = a3w or a3 =
bgw. In the first case w = 1, while in the second @, = b nw with P =1 If
n = 1, diag(a,, b,) is conjugate to diag(a,w, b,w). When 7 is nontrivial,
diag(a,, b,) = diag(b,nw, b,) gives an element of order 6 in the projective image
of p. But the octahedral group contains no elements of order 6, so this is im-
possible.

Therefore, in all cases diag(a,, b,) is conjugate to diag(a,w, b,w). Since
this holds for almost all places of F, we have 7 = m(p), proving the theorem.

The icosahedral representations are not susceptible to these base change
methods. Examples of icosahedral representations for F = Q which have entire
L-series are given in [1].
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