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RESEARCH ANNOUNCEMENTS 

ARTIN'S CONJECTURE FOR REPRESENTATIONS 
OF OCTAHEDRAL TYPE 

BY JERROLD TUNNELL 

Let L/F be a finite Galois extension of number fields. E. Artin conjectured 
that the Z-series of a nontrivial irreducible complex representation of Gal(L/F) is 
entire, and proved this for monomial representations. The nonmonomial two-di­
mensional representations are those with image in PGL(2, C) isomorphic to the 
group of rigid motions of the tetrahedron, octahedron or icosahedron. In [5] 
Langlands proved Artin's conjecture for all two-dimensional representations of 
tetrahedral type and certain octahedral representations when F = Q. The pur­
pose of this note is to prove the conjecture for all octahedral representations by 
using the methods of Langlands and an analytic result of Jacquet, Piatetskii-Shapiro 
and Shalika. 

Let p be an irreducible two-dimensional complex representation of Gal(Z,/F). 
We say that a cuspidal automorphic representation TT of GL(2, AF) equals 7r(p) 
if n =®TTV with irv = ir(pv) in the sense of [2, §12] for almost all places 
v of F. When n = 7r(p) the Z-series of TT and p agree, and since cuspidal represen­
tations have entire //-series, Artin's conjecture follows. In [5, §3] Langlands used 
base change for GL(2) to produce candidates for 7r(p). When p is octahedral 
we will use the following result to show that one of Langlands' candidates is in 
fact 7r(p). 

THEOREM [4]. Let K be a cubic extension of F (not necessarily Galois). 
For each automorphic cuspidal representation n of GL(29 AF) there exists an 
automorphic representation U = BCK,F(TT) ofGL(2, AK) such that for almost all 
places v of F, and each place w of K dividing v, nv = n(pv) implies that U w = 

n(ResK»w <V>-

This theorem is proved using the theory of automorphic forms on GL(3) 
and GL(2) x GL(3). The basic concept is similar to that of the example of 
quadratic base change given in [3, §20]. We recall that the theory of base change 
developed in [5] treats the case of Galois cyclic change of base of prime degree, 
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together with a characterization of the image and descent properties. We will 
denote by the symbol BC the base change lifting. 

Let p be a two-dimensional representation of Gal(L/F) of octahedral type. 
Let E/F be the quadratic subextension of L/F fixed by all elements of Gdl(L/F) 
mapping to the unique index two subgroup of the octahedral group S4. Choose 
a 2-Sylow subgroup of the octahedral group and let K/F be the cubic subexten­
sion fixed by all elements of Gû(L/F) mapping to this chosen Sylow subgroup. 

N 

i 
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\i Let M be the compositium of E and K in L, so that we have the diagram of fields 
and Galois groups above. For any subextension T/F of L/F, let pT be the restric­
tion of p to Gal(Z/7). 

In [5, §3] Langlands showed, using base change and results of Gelbart, 
Jacquet, Piatetskii-Shapiro and Shalika, that ir(pE) exists. There are exactly two 
cuspidal representations 7rx and n2 of GX(2, AF) such that BCE^F(7rt) = n(pE). 
They are related by n « n2 ® ooE,F, where coE,F is the idele class character 
corresponding to the quadratic extension E/F. Notice that pK is monomial, so 
TT(PK) exists. 

LEMMA. There exists a unique index i such that BCK,F{TÏJ) = îr(p^-). 

PROOF. The theorem quoted above shows that BCK,F(jt?) exists for i = 
1, 2. By transitivity of base change, BCM/K(BCK/F(TT;)) = ^(PM) f°r *== *> 2 . 
Notice that BCK,F(IT2) « B C K / F ^ O ® œM/K- The representationsBCKiF{-n^) 
are distinct for / = 1,2, for if BCK,F(n1) «BCJÇ/F^I) ® °°M/A:

 t^ien
 ^ M ) 

would not be cuspidal. But pM is irreducible, so this does not occur. By the 
descent theory for base change,BCKiF(7rx) andBCK,F(ir2) are the two auto-
morphic representations of GL(2, AK) which yield 7r(pM) after base change. Since 
7T(pK) also has this property, it must be BCKiF(jt?) for a unique choice of i 

Let IT be the automorphic representation 7rf of the lemma which satisfies 
BCK/F(IT) = n(pK) and BCE/F(n) = n(pE). 

THEOREM. Let p be an octahedral representation ofGdXQL/F). Then 7r(p) 
exists, and hence L(p, s) is entire. 

PROOF. The proof is similar to [5, §3]. We show that the automorphic 
representation ir constructed by Langlands is equal to 7r(p). For each place v of 
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F such that pv is unramified we obtain a diagonal conjugacy class diag(fly, bv) in 
GL(2, C). For each place v of F such that irv is an unramified principal series 
we obtain a conjugacy class diag(tf(,, b'v). Let u be such that both pv and nv are 
unramified. Since BCE/F(TT) = ^(p^.) we see that diag(«y, Z>y) is conjugate to 
diag^co, bvoj) with co2 = 1. We must show that diag(fly, bv) and diag^co, &„<*;) 
are conjugate. 

Let w be a place of K dividing v, with [Kw\ Fv] = d(w). Since BCK,F(n) 
= ir(pK), diag(«^w>, Z>^w>) and diag((^co)d<w>, (^co/ ( w>) are conjugate. If 
d(w) = 1, the desired conjugacy results. If d(w) = 3, either a\ = ûyCO or Û^ = 
&yCO. In the first case co = 1, while in the second av = ô^co with T?3 = 1. If 
1? = 1, diagfay, ôy) is conjugate to diag(oyco, bvco). When 17 is nontrivial, 
diag(av, Z?y) = diag(Z?yT?o;, bv) gives an element of order 6 in the projective image 
of p. But the octahedral group contains no elements of order 6, so this is im­
possible. 

Therefore, in all cases diag(fly, bv) is conjugate to diag^yCo, bvco)-. Since 
this holds for almost all places of F, we have n = 7r(p), proving the theorem. 

The icosahedral representations are not susceptible to these base change 
methods. Examples of icosahedral representations for F = Q which have entire 
L-series are given in [1]. 
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