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BOOK REVIEWS 

Elliptic pseudo-differential operators-an abstract theory, by H. O. Cordes, 
Lecture Notes in Math., vol. 756, Springer-Verlag, Berlin and New York, 
1979, 331 pp., $18.00. 

Pseudodifferential operators (often called *//DOs) are generalizations of 
differential operators, and they arose to treat problems in partial differential 
equations. One common characterization of a ^/DO is as an operator of the 
form 

Pu(x) = fp(x, ®eixM® dè (*,1 G R") (1) 

where w(£) = CLir)~nj e~lx'hi(x) dx is the Fourier transform of u. Formula (1) 
defines a differential operator in case p(x, £) is a polynomial in £. More 
generally, p(x, Q can belong to a symbol class, such as the symbol class of 
Hörmander 

/>(*, è) e % <*\D£D§P{X, | ) | < Ca/8(1 + lÉD-rf-l"!/»!, (2) 

or other classes, e.g., due to Beals and Fefferman [1], [2], or Hörmander [11]. 
Such operators captured the attention of many mathematicians, not neces­
sarily primarily interested in partial differential equations, in the mid '60s, 
because of the role they played in the proof of the Atiyah-Singer index 
theorem, particularly in the production of families of operators known to be 
Fredholm, connecting together two elliptic differential operators with homo-
topic principal symbol, to prove the index of such an operator depends only 
on the homotopy class of its principal symbol. 

An operator on a Hubert space H is Fredholm if and only if it is invertible 
modulo the algebra % of compact operators. Thus, given a *-algebra 3l0 of 
t//DOs, say of the form (1) with p(x9 £) perhaps belonging to a subclass of 
symbols of the form (2), to study Fredholm properties of elements of %Q it is 
natural to look at the quotient algebra %/9C, where % is the L2-operator 
norm closure of 5t0, perhaps with % thrown in. If % acts irreducibly on H 
and contains one compact operator, as is often the case, it is not hard to show 
% contains % (see [15, p. 192]). If 9l0 consists of operators of the form (1), (2), 
with m = 0, p = 1,5 = 0, and/?(x, £) well behaved at infinity, then commu­
tators [P, Q] = PQ — QP of elements of 3l0 are compact and hence 2Ï/9C is 
a commutative C* algebra. The same holds if %Q is the algebra of "classical" 
pseudodifferential operators of order zero on a compact manifold X, without 
boundary. Thus, %/ % is isomorphic to C(M)9 the algebra of continuous 
complex valued functions on a compact Hausdorff space M, which in the 
case of the last mentioned example turns out to be 5*(Ar), the cosphere 
bundle of X. An element A of 3l0 thus gives rise to a function o(A) on M, and 
A is Fredholm if and only if o(A) is nowhere vanishing on M. (To see this, 
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one needs to remark that A E % is invertible in 21/9C if and only if it is 
invertible in £/9C, where £ is the algebra of bounded operators on H.) The 
book under review is concerned with the C* algebra approach to Fredholm 
properties of elliptic operators. 

For the purpose of studying elliptic operators, it is convenient to define 
classes of \pDOs 2l0 by specifying some generating subalgebras. For example, 
let 3T0 be the algebra generated by the algebras 

9tl! = { Tu(x) = p(x)u(x): p(x) satisfies (5)} (3) 

and 

9112 - { Tu(x) - p(D)u(x) = ƒ eix*p{ï)û{Ç) d£.p(£) satisfies (5) j (4) 

where, in either case, p(X) is smooth and 

/ > ( * ) - 2/>y(X) as|X|^oo, (5) 
J<o 

where Pj(X) is homogeneous of degree y in X 6 Rw. Clearly the norm closures 
(D\il and ^ttj are both commutative C* algebras, with 

9 ^ « C(B") « 9 ^ (6) 

where Bn is a compactification of Rw, homeomorphic to the unit ball. Indeed, 
the dominant term in (5), for large |X|, is 

Poft) = Po(°>)> \= ru, co G Sn~\ 

so we see that Sn~x is naturally attached to Rn as the set of "points at 
infinity" to give (6). Given (3)-(5), one can show that commutators of 
elements of ^ltj with elements of ÇHï̂  are compact, and hence 3t/3C is 
commutative in this case. Generally, if 21 is generated by two commutative C* 
algebras ^ with maximal ideal spaces Mp and if © denotes the commutator 
ideal of % the natural maps 91^ -» 2l/(£ induce a homeomorphism of the 
maximal ideal space M of %/& (2ï/(S « C(Af )) onto a closed subspace of 
M ! X Af 2, 

M C Af ! X Af2. (7) 

In the case of the algebra 21 arising from (3)-(5), we wish to determine the 
maximal ideal space of Af of %/% explicitly as a subset of B" X B£, which is 
a compactification of R" X R£. Indeed, it is easy to produce lots of compact 
operators p(x)q(D) with p and q compactly supported, and deduce that 
M n (R; X RJf) = 0, i.e., 

Af c a(Bj xB£) = B ; X B J \ R ; X R £ . (8) 

One identifies Af by proving equality in (8). In fact, consider the part of Af 
lying over R" cBJ . Because translations and rotations on Rn give isometries 
on L2(Rn) which yield automorphisms of ^ and <DfR2, and hence of St, we 
can deduce from the existence of one point lying over R" (which follows 
because no nonzero element of ^ is compact) that we have everything in (8) 
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which lies over R" belonging to M. Consequently one obtains R" X 3B£ c 
M. Since the Fourier transform induces an automorphism of M that inter­
changes the roles of x and £, we have 8B" X R£ c M, which gives equality in 
(8). 

Thus one has a particularly painless way to determine which elements of 31, 
generated by (3)-(5) above, are Fredholm on L2(RW). The book of Cordes 
examines larger classes of i//DOs, where such simple symmetry considerations 
need to be replaced, and also considers algebras acting on Sobolev spaces. 
The book proceeds to a second major topic: the study of Fredholm properties 
of elliptic operators on manifolds with boundary, where the set-up is a bit 
more elaborate than above. In fact, let Q be a smooth compact manifold with 
boundary X. Define (1 - Ad)~

l: L2(Q)-+H2(Q) and (1 - AJ"1: L2(S2)-» 
H2(Q,) to be the solution operators to 

(1 - A)w = ƒ on ti 

with, respectively, Dirichlet boundary conditions u\x = 0, or Neumann 
boundary conditions (d/dv)u\x = 0. Let Ad = (1 - Ad)~

l/2, An = 
(1 - A„)-1/2, so Ad, An: L2(ti) ->Hl(Q)9 where Hk(Q) is the Sobolev space of 
u G L2(Q) such that Dau G L2(Œ) for \a\ < k. Define the algebra 3f on L\ü) 
to be the norm closure of the algebra generated by 

ZAd,ZAn,p(x) ^ (9) 

where Z runs over the set of smooth vector fields on Ü9p(x) G C°°(Ö). This 
time, commutators of elements of 31 are not compact. However, if © denotes 
the commutator ideal, one still has 

%/& « C(MX) (10) 

where Mx is the boundary of an appropriate compactification of !T*(Q). 
Furthermore, one has 

&/% « C(M2, %) (11) 

where M2 = S*(X) and % is the algebra of compact operators on an 
auxiliary Hubert space H'. Thus the problem of determining if an element 
A G 31 is Fredholm is attacked in two stages. First, its image ox(A) G 31/© « 
C(Mj) must be invertible for A to be Fredholm, i.e., ox(A) must be nowhere 
vanishing on Mx. If this is true, pick an element B which is an inverse mod (£, 
so AB = I + C, C G (S. To check invertibility mod % of I + C, consider the 
image of C in (£/9C, o2(C) G &/% « C(M2, %). We demand that, for each 
f G M2, 1 + a2(C)(f ) be an invertible operator on H'. From the composition 
series (10), (11), it follows that p = 31/5C is a separable, type ƒ, C* algebra. 

One can regard the algebra of \//DOs as a particular case of a C* algebra 31 
in Ê, containing the algebra % of compact operators, such that 31/ % is 
isomorphic to a particular commutative C* algebra C(M), or more generally 
such that 31/ 9C is isomorphic to some given separable C* algebra $ . If one 
identifies such algebras when they are conjugate, one obtains a set denoted 
Ext(M) in the former case, or more generally, Ext(®), as described in [7]. 
One has a natural addition defined, and it is a deep result that Ext(Af ) is a 
group. The monograph [7] sketches some important topological properties of 
Ext(Af ) and connections with the index theorem. In the case M •» S*(X) for 
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a compact boundaryless manifold X, there is an additional structure on M, a 
contact structure. This also appears in more general contexts, such as the 
study of Toeplitz operators on a strictly pseudoconvex domain; see Boutet de 
Monvel [3]. An abstract study of this situation, suggested by Singer [16], has 
been developed less fully than the general study of Ext(Af). Also there are 
results for Ext(®) for a separable type I C* algebra $ , not necessarily 
commutative; see [7] for references. As indicated above, natural algebras of 
pseudodifferential operators on manifolds with boundary give rise to exam­
ples of elements of Ext(<&), f or % = p = 21/9C. 

Various techniques have been developed for the theory of pseudodifferen­
tial operators, and there have been several monographs giving special empha­
sis to specific techniques. Let us particularly mention methods from harmonic 
analysis, different aspects of which are presented in Coifman and Meyer [4] 
and in Nagel and Stein [14], and methods from symplectic geometry, which 
are particularly incisive in the generalization from pseudodifferential opera­
tors to Fourier integral operators, exposed in Duistermaat [8] and in Guille-
min and Sternberg [9]. 

Furthermore, it is worth mentioning that the use of elementary operator 
theory has played a striking role in proving some important inequalities for 
pseudodifferential operators, the Calderón-Vaillancourt theorems. The use of 
the Cotlar-Stein lemma on sums of almost orthogonal operators is well 
known. Cordes [5] and Kato [13] have proved these theorems by observing 
that if U(y), y E Y, is a square integrable family of unitary operators in the 
sense that 

f\(u(y)f,g)\2dy<c\\f\\2\\g\\\ 
and if 

B= f b{y)U{y)*GU{y)dy 
JY 

with b e L°°(7), G trace class, then 

\\B\\ <C / | |*||L-||G|| tr 

One exploits this with y = (z, £) e T*ÇBLn), U(y) » eu'De*x, where z • D « 
zxDx + • • • + znD„ Dj - (1/0(3/9*,), t X = ZlXl + • • • +£„*„. Thus 
estimates on the operator norm of B result from the square integrability of 
the Stone-von Neumann representation of the Heisenberg group, a fact also 
emphasized by Howe [12]. 

As mentioned, the book of Cordes emphasizes a C* algebra viewpoint. The 
book is written to be accessible to beginners. Appendices giving an efficient 
sketch of some basic C* algebra theory are included, and a couple of 
introductory chapters sketch basic distribution theory and discuss some of the 
singular distributions which arise as kernels of classical pseudodifferential 
operators. 
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Dimension theory, by Ryszard Engelking, North-Holland Mathematical 
Library, Vol. 19, North-Holland Publishing Company, Amsterdam and 
New York; Polish Scientific Publishers, Warsaw, 1978, x + 314 pp., $44.50. 

Geometry lays claim to being the oldest mathematical discipline. The 
notion of dimension is fundamental to geometry, but was without adequate 
rigorous underpinnings until the twentieth century. The early work of dimen­
sion theorists culminated in Dimension theory by W. Hurewicz and H. 
Wallman in 1941. Here the intuitive concepts of dimension were given precise 
definition and a complete theory for finite-dimensional separable metric 
spaces was given in an elegant and succinct form. There were many areas 
which remained to be investigated. One could argue that there should exist a 
comparable theory for general metric spaces. Within a few years such a 
theory was mapped out. J. Nagata's book, Modern dimension theory, relates 
the essential features of this theory. The intervening years have given us only 
minor embellishments. Dimension theory for nonmetrizable spaces is at the 
present time in a very unsatisfactory state, but for a different reason than in 
the past. Today we know that a satisfactory theory does not exist. Even 
compact spaces have proven perverse. Only Lebesgue covering dimension has 


