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ABSTRACT. An algorithm is a procedure, given by a finite set of instructions, 
to serve as follows in relation to a given infinite class of questions, (a) If we 
select any question from the class, the instructions will tell us how to 
perform a step, (b) After any step, if we do not receive the answer then, the 
instructions together with the existing situation will tell us what step to take 
next, (c) The instructions will enable us to recognize when a situation is 
reached in which the answer is before us, and to read it off then; and this 
will eventually happen if the question has an answer. In "steps" and 
"situations'*, what are we handling? Since there must be no ambiguity, 
surely some kind of regular complexes of occurrences of symbols from a 
given finite list. Such complexes can be coded by positive integers. Consider 
specifically an algorithm for computing a functional <p(B; 8T) where 0 are 
number-theoretic function variables and 31 are natural number variables. A 
question is selected from the infinite class "What is the value of ^(9; 31)?" 
by specifying (0; 21). I gain some space for maneuver by using instead 
(0; % 0). After any step, the situation will be represented by (0; 8, b) 
where b is the code for the complex of symbols in it. By (c), there must be a 
functional x(0; % b)> for which we already know how to get the values, 
such that, in the situation represented by (0; ft, b), x(6; ft, £) *• 0 if the 
answer is not before us, and otherwise x(0; % b) — <K0; % b) + 1 where 
<K0; ft, b) is the answer; and x(0; ft, 0) - 0. By (b) and (a), there must 
likewise be a functional p(0; ft, b) such that in the situation represented by 
(0; ft, b), if x(0; ft, b) - 0 then (0; ft, p(0; ft, b)) represents the situation 
after the next step; and (0; 21, p(0; ft, 0» represents the situation after the 
first step. Now, putting <K@î ft, b) « <f<0; ft, p(0; ft, b)) if x(6; % &) - 0, 
« x(0; ft, b) - 1 if x(0; % b) > 0, we have a definition of <K0; ft, b) of 
the form # 0 ; % b) « ^(mb^è\ ft, b), 0 ; 2t, b) as in Kleene's first recur­
sion theorem [15>52, p. 348]; and « 0 ; 3Q « <J<0; % 0). Thence it is argued 
that the first recursion theorem, in a proper setting, enables all functionals 
<K0; 21) to be defined for which there are algorithms; and consequences are 
deduced therefrom. 

The theory of recursive functions is nearly one hundred years old. For 
nearly the first fifty years it was the theory of what are now called "primitive 

This paper was presented as an address to the Society at its meeting in Kenosha, Wisconsin 
(The University of Wisconsin, Parkside) in 1980; received by the editors November 15,1980. 

1980 Mathematics Subject Classification, Primary 03D20; Secondary 03D10, 03A05. 
Key words and phrases. The first recursion theorem, schemata for recursive definitions, 

primitive recursion, algorithms, Herbrand-Gödel general recursiveness, ^-definability, Turing 
computability, partial recursiveness, Church's thesis, Church's theorem, Gödel's theorem. 

'I prepared this paper for a general audience. Then I was amazed to find on the program 
twenty-three other papers (including four special sessions organized by Richard A. Shore) on 
recursion theory, which illustrates the health of the nonagenarian. 

2Kleene is a North German form of Klein. 
© 1981 American Mathematical Society 
0002-9904/81/0000-0303/$05.75 

43 



44 STEPHEN C. KLEENE 

recursive functions" and some extensions thereof. A little under fifty years 
ago general recursive functions and equivalents came on the stage. 

The simplest infinite mathematical system is that of the natural numbers, 
i.e. the nonnegative integers 

0, 1, 2 , . . . . 

I choose to deal with these rather than with the positive integers 

1, 2, 3 , . . . , 

and I shall transpose to the natural numbers the part of the work I review 
that was phrased in terms of the positive integers.3 

On Tuesday, September 21, 1886, Kronecker declared, "Die ganzen Zahlen 
hat der Hebe Gott gemacht, alles andere ist Menschenwerk (God made the 
integers, all the rest is work of man)." We know so well the natural number 
system from Peano's five axioms, published by him in [1889] and [1891]. In 
fact, as Peano acknowledged in [1891, p. 93], these axioms come from the 
definition of a simply infinite system in Dedekind, "Was sind und was sollen 
die Zahlen?" [1888]. I think we can say that recursive function theory was 
born there ninety-two years ago with Dedekind's Theorem 126 ("Satz der 
Definition durch Induktion") that functions can be defined by primitive 
recursion, as I shall presently illustrate.4 

Under Dedekind and Peano's treatment, the natural numbers constitute the 
system of objects obtained by starting with an object 0 ("zero"), and re­
peatedly generating a next object by an operation ' ("successor" or "+1").5 

That one thus generates only natural numbers is stated in the first two Peano 
axioms. That objects thus differently generated are distinct is stated in the 
third and fourth Peano axioms. That all the natural numbers are so generated 
is given by the fifth Peano axiom, which says that we can parallel the 
generation of the natural numbers using 0 and ' by proofs that all the natural 
numbers have a mathematical property, i.e. proofs by mathematical induc­
tion. Indeed, in the set-theoretic terminology which was appearing about the 
same time, a subset of the natural numbers containing 0 and closed under the 
operation ' is the set of all the natural numbers. 

Recursion, or definition by induction, is the principle of definition corre­
sponding to proof by induction. The example that comes to mind first is the 
definition of the sum function a + b, by the two equations 

\ a + b' = (a + b)'. K ' 

3Of course the two systems by themselves are isomorphic. They differ in their application as 
cardinal numbers, and in the definitions (suited to that application) adopted for the functions 
a + b,a-b and ab. 

4Peter [1534] introduced the name "primitive recursion**, and the name "primitive recursive 
functions'* came in with my [1936] for what had been called simply "recursive functions** by 
Gödel [1991], [1934] and Péter [1934], [1935], [1936]. "Recursion** (but not "recursive function**) 
appeared in Skolem [1923, p. 11] and Hubert [1926]. 

5Dedekind and Peano dealt with the positive integers 1, 2, 3 , . . . ; but as stated I am 
transposing to the natural numbers 0, 1, 2 , . . . . Other work cited below which was phrased in 
terms of the positive integers is that of Skolem, Church, Kleene before [1936], Post and Smullyan. 
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You may wonder why in 1980 I am dwelling on this. There is a point of 
view (developed by me since 1977) from which the quantum jump at midlife 
of recursion theory from dealing only with primitive and other special 
recursive functions to general recursive functions can be based on thinking 
through the form of a recursion as exemplified by this definition of a + b. 

However, let me first deal with this less boldly. The definition of a + b 
comes under the general form of a primitive recursion on b with n — 1 ( > 0) 
parameters al9 . . . , an,4 

<J>(0, a2, . . . , an) = \p(a2, . . . , an)9 

<j>(b\ a2, . . . , an) = x(b> <K&> <*2> • • • > <*n)> <*2> • - - > anY 

In our example of a + b9 there is one parameter a (n = 2), and the functions 
\p and x assumed as already known are 

xp(a) = a9 x(P, c, a) = c'. (3) 

To complete the definition of the class of the primitive recursive functions, I 
need to make precise the context in which primitive recursions are to be used. 
Specifically, what functions are to be taken as known initially, and what other 
kinds of definition may be interspersed with primitive recursions? I shall 
make these items precise presently. 

Dedekind [1888] and Peano [1889] followed the recursion for the sum 
a + b by those for the product a • b and the exponent function ab,s 

0 - 0 = 0, 
a • V = (a - b) + a, 

U°=i, 
\av-ab-a. 

The characteristic feature of primitive recursion is that, e.g. with one 
parameter a, the value of the function </> being defined for any given pair 
(b9 a) of arguments with b > 0 is made to depend via a previously known 
function on its value for the pair (b — 1, a) (besides on b and a), and so by 
iteration on its values successively for (b — 2, a), (b — 3, a),.. . and ulti­
mately for (0, a), which value is given by a previously known function of a. 
This makes Dedekind's [1888] theorem that a function is defined by the 
recursion quite transparent. 

The functions commonly used in arithmetic or elementary number theory 
are primitive recursive. Something of a calculus of primitive recursive func­
tions was developed by Skolem [1923], Gödel [1931] and Péter [1934], from 
which my exposition in [1952, Chapter IX] drew heavily. 

In [1928] Ackermann gave an example of a recursion on two variables n 
and b simultaneously (with one parameter a). In this recursion, the value of 
the function £ in question for a triple («, b, a) of argumentswith n9 b both 
> 0 is made to depend on its value for certain triples (n, by a) with (n9 b) 
preceding (n, b) in the ordering by the ordinals n<o + b9 and is given by a 

(4) 

(5) 
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known function if either n = 0 or b = 0, 

f € ( 0 , * , a ) - f l + 6, 
I i(n\ 0, a) = a(n, a) (= 0 if n = 0, 1 if n = 1, a if n > 1), (6) 
[i(n\ b', a) = £(n, £(«', 6, a), a). 

Ackermann proved that this function £ is not (as we now say) primitive 
recursive. Indeed, £(0, b, a) = a + b, i-(l, b, a) = a - b, £(2, 6, a) = ab,... ; 
and £(&, &, Z>) majorizes every primitive recursive function <f>(b). 

Generalizing from the k = 1 case (primitive recursion) and the k = 2 case 
(exemplified by Ackermann's double recursion), Péter [1936] studied the 
hierarchy of increasing classes of functions definable using A>fold recursions 
for k = 1, 2, 3, . . . . So much for the first phase of recursive function theory. 

A half century ago there was a great ferment in thinking about the 
foundations of mathematics. Stimulated by Cantor's development of set 
theory ([1874], [1895-7]) and the ensuing paradoxes (from 1895 on), the 
schools of logicism, intuitionism and formalism had taken the field. The 
formalists (after Hilbert) had put portions of classical mathematics into the 
setting of fully formalized systems, and proposed to study these systems (in 
particular to prove their consistency) by "finitary" methods, indeed by the 
methods of elementary intuitionism (after Brouwer). Hilbert had posed in 
[1918] the problem of the solvability in principle of each mathematical 
question, and the problem of the decidability of a mathematical question 
through a finite number of operations. Applied to a formal system, we thus 
have the problem of finding a decision procedure (Entscheidungsverfahren) 
whereby, given any formula of the system, its provability or unprovability in 
that system can be decided in finitely many steps. Thus arises the Entschei-
dungsproblem or decision problem, which had also appeared in Schroder 
[1895] and Löwenheim [1915]. 

What is all this really about? Let us try to view it from a standpoint above 
the details of one or another particular formal system. What does a formal 
system really do, and what would a decision procedure be? 

The germ of the concept which gives us the overview we want now has 
been in mathematics for more than two millenia: the idea of algorithms. 

An algorithm is a method or procedure, established by a finite set of rules 
or instructions, to serve as follows in relation to a given infinite class of 
questions, (a) After the procedure has been described, if we then select any 
question from the class, the procedure will apply and tell us how to perform a 
step, the first of a sequence of one or more steps, (b) After any step, if we do 
not then receive the answer to the question selected, the instructions together 
with the existing situation (to which that step led) will tell us what step to take 
next, (c) The instructions will enable us to recognize when a situation is 
reached in which the answer is before us, and to read it off then; and this will 
eventually happen (after a finite number of steps). In performing the steps 
and reading off the answer, we have only to follow the instructions, like 
robots; no insight or ingenuity or invention is required of us.6 

6This clearly paraphrases the description of an algorithm as it naturally came to my mind in 
[1967, p. 223] and [1969, p. 335]. 
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To be more specific, consider various sorts of infinite classes of questions. 
To begin with, let us take as our object domain the natural numbers, or a 
similar countably infinite domain of objects each finitely describable by its 
generation or position as a member of the domain. 

As we know, we can define functions of one or more variables, each 
ranging over the natural numbers, e.g. by recursion. We can also define 
properties and relations (i.e. propositional functions, or as I will preferably 
say "predicates") of natural-number variables, by defining functions and 
setting them equal to 0, and further by applying logical operations (including 
the quantifiers "for all x" and "(there) exists an x (such that)", or in symbols 
"(*)" and "(Ex)") to predicates already defined. 

If we have a predicate P(a) or P(al9..., an) with natural-number vari­
ables, we may have an algorithm for the infinite class of questions "Is P(a) 
true?" or "Is P(alf. . . , an) true?". We get a particular question of the class 
by selecting a particular natural number as the value of a or a particular 
«-tuple of natural numbers as the values of al9..., an. These questions call 
for "yes" or "no" as answers. The algorithm is then also called a decision 
procedure for the predicate P. If such exists, the predicate is called decidable. 

Similarly with a number-theoretic function <j>(a) or <t>(ax, . . . , an)9 an algo­
rithm for the infinite class of questions "What is the value of <t>(a)V or "What 
is the value of 4>(al9 . . . , an)T9 is also called a computation procedure for the 
function <f>. If such exists, the function is called computable. 

Since to any predicate P(a) or P(av . . . , an) we can correlate a function 
<t>(a) or <j>(al9 . . . , an) taking the value 0 or 1 according as the proposition 
taken as value by the predicate is true or false, decision procedures are 
encompassed under computation procedures. 

The example of Euclid's greatest common divisor algorithm (fourth century 
B.C.) illustrates that algorithms were present in Greek mathematics. The 
name "algorithm" is a corruption of the last part of the name of Abu 
Abdullah abu Jafar Muhammad ibn Musa al-Khowarizmi, the ninth century 
Arabian mathematician who came from the Khowarizm oasis in central 
Asia.7 

The objective of formalizing a mathematical theory a la Hubert is to 
remove all uncertainty about what constitutes a proof in the theory, of course 
only after likewise fully specifying what are the formulas expressing proposi­
tions of the theory. Given a proposed proof, it must be possible by applica­
tion of the rules defining the formal system to check in finitely many steps 
whether or not it really is a proof. 

In brief, disregarding differences among various ways of carrying out the 
details of formalization, the aim of embodying a theory in a formal system is 
to establish an algorithm for the notion of proof (besides of formula) in the 
theory. And the decision problem for a given formal system is the problem of 

7I have in my hand an autographed picture of Al-Khowarizmi.-Actually, it is likeness 
circulated at the Symposium dedicated to Al-Khowarizmi, at Urgench in Uzbekistan, September 
16-22, 1979, inscribed in Arabic with his name by Heinz Zemanek of Vienna, an Al-Khowarizmi 
scholar. 
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finding an algorithm for the notion of provability (i.e. of the existence of a 
proof) in it. 

So we fall back on the two-thousand-year-old idea of algorithms. What this 
mathematical tradition gives is numerous examples in which mathematicians 
agree that an algorithm is or is not provided. For example, a primitive 
recursion (2) provides an algorithm for the function 4> defined by it (assuming 
we already have algorithms for the functions \p and x)- But a definition of the 
form <t>(a) = (the least x such that \fs(a9 x) = 0 if such an x exists, and 0 
otherwise), where there is a known algorithm for \(/, does not of itself provide 
an algorithm for <j>. With a particular i//, some theory might be developed that 
would lead to an equivalent formulation that would provide an algorithm. 
For example, this happens if we succeed in proving that, if there is an x such 
that \p(a, x) = 0, there is such an x < 0(a) where 0 is a function for which we 
have an algorithm. 

In the world of mathematical ideas existent in 1930, one had no basis for 
establishing the impossibility of there being an algorithm for a given class of 
questions. For that one would need, further than particular examples, some 
characterization of the shapes of all possible algorithms on a given domain. 

The second half-century of recursive function theory is marked by the 
introduction of such a characterization, in a number of equivalent versions. 
At the beginning of the 1930's, no overview was possible on the most 
fundamental problems of the foundations of mathematics without this step. 

We have already seen that primitive recursions, and more generally fc-fold 
recursions, define functions algorithmically, while descriptive definitions like 
"the least x such that t//(a, *) = 0 if such an x exists, and 0 otherwise" do not, 
at least not without supplementation. 

This suggests trying to define all possible algorithms on the natural num­
bers by generalizing from the primitive and fc-fold recursions. 

Gödel in [1934], building on a suggestion of Herbrand in a letter in 1931, 
gave a definition of "general recursive functions" which took for generaliza­
tion the feature that the equations giving the values of the function defined by 
such a recursion are formally derivable from the equations of the recursion by 
using a substitution rule and a replacement rule. However, Gödel, according 
to a letter he wrote to Martin Davis on 15 February 1965, "was, at the time of 
[his 1934] lectures, not at all convinced that [this] concept of recursion 
comprises all possible recursions". 

Church had been pushing on the problem of characterizing all number-the­
oretic functions for which there are algorithms ("effectively calculable" as he 
phrased it); and as a graduate student under him I had been finding in 
example after example of functions for which there are algorithms that their 
definitions could be expressed in a certain formalism affording algorithms 
(arising out of Church [1932], [1933]) which we called the "X-calculus", i.e. 
those functions are "X-definable". This work of mine was mainly done in 
1932 (published in [1935]). Thereafter Church announced his "thesis" (pub­
lished in [1936], and so named in my [1943], [1952]) that all the functions for 
which there are algorithms are Church-Kleene X-definable, or equivalently (as 
was proved in his [1936] and my [1936a]) Herbrand-Gödel general recursive. 
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Turing in [1936-7] reached the same conclusion independently, using as a 
third equivalent notion computable by idealized computing machines of a 
certain kind (error-free and with unbounded memory), or "Turing computa­
ble". Post in a brief note [1936] gave the same idea independently. 

Several other equivalents have appeared subsequently, in particular a 
formulation by Post using his canonical systems [1943], Markov's theory of 
algorithms [1951], [1954], and a formulation of Smullyan using his elementary 
formal systems [1961]. 

These various equivalent formulations have respective merits (discussed for 
some in my [1981a]). Turing's computability is intrinsically persuasive in the 
sense that the ideas embodied in it directly support the thesis that the 
functions encompassed are all for which there are algorithms; A-definability is 
not intrinsically persuasive (the thesis using it was supported not by the 
concept itself but rather by results established about it)8 and general recur­
siveness scarcely so (its author Gödel being at the time not at all persuaded). 

What I propose to do in the rest of this talk is to develop another 
equivalent formulation, which comes out of generalizing from primitive and 
other special recursions in a different direction than Gödel did in [1934], and 
which I believe I can say is intrinsically persuasive. 

In my development I shall need the function cs (for "case") defined by 

t , v f b if a = 0, ,_. 

and the predecessor function — 1 (sometimes written pd), defined by 

flM.[«-i aoft (8) 
10 if a = 0. 

Now the pair of recursion equations (1) for a + b can be written as one, 

a + b - cs(fc, a9 (a + (b- 1))'). (9) 

The general primitive recursion (2) can similarly be written 

*(«, 93) - cs(«, *(»), X(a - 1, <tfa - 1, 93), 99)), (10) 
where I have changed the notation to use "a" as the recursion variable and 
"93" for a list of n — 1 > 0 other distinct variables as parameters. (German 
capitals are used from here on in abbreviating lists of distinct number 
variables.) 

In (10), we can think of the right side as the result of using a known 
functional \p with one «-place function variable TJ, for which in the recursion 
we substitute the function <f> being defined, and n number variables 81. Thus 
we construe (10) as having the form 

*(*) ***(*; «). (11) 
Similarly, a double recursion such as (6) can be put in the form (11). 

We may want to use several such recursions, perhaps with intervening 
composition steps, in a row, so that the i//'s for later ones are defined by 

8It was not clear initially that even the predecessor function a — 1 is X-definable; cf. my 
[1981a]. 
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earlier ones. This leads us to generalize from (11) to allow besides r\ also more 
function variables 0l9. . . , 0t ( = 0 briefly), thus 

<f>(0; %) ~ iffo, 0; 31) 

c^xKW <|>(0; Stt), 0 ; 31). (12) 

The third expression makes it explicit (using Church's A-notation [1932]) that 
the 4> in the second is being considered as a function of the number variables 
21 for given values of the function variables 0 . 

In (11) when its \j/ is given by the right side of the primitive recursion (10), 
the recursion (with the definitions of cs, — 1, \p9 x) determines the function <j> 
completely, the values being obtained by repeated applications of the equa­
tion. Similarly with the double recursion (6) put in the form (11). But this is 
not always the case. For example, if the \p in (11) is like the right side of (10) 
but with a primitive recursive function ir replacing — 1 where only for some 
values of a does a, 7r(a), ?r(7r(a)), ir{ir(jT{a))), . . . include 0, then <f>(a) is 
defined by the recursion (and the definitions of cs, ?r, \f/9 x) exactly for those 
values of a. In this paragraph, I am assuming \p and x to be completely 
defined. 

Consequently, in generalizing from primitive recursions etc. in the present 
direction, we shall allow our functions, such as <f> in (11), to be partial; i.e. for 
each tuple of natural numbers as the values of the variables 21, </>(20 is either a 
natural number (defined) or is undefined. And our functional, such as 
</>(©; 21) in (12), are likewise partial, being possibly undefined for some tuples 
of partial functions of the right numbers of number variables as the values of 
0 and of natural numbers as the values of 2Ï. Similarly with i// in (11) or (12). 

Partial number-theoretic functions were first explicitly introduced into 
recursive function theory in my [1938], where I partialized the functions for 
Herbrand-Gödel general recursiveness (Gödel [1934] and my [1936]). Thereby 
the theory was unburdened of the extraneous requirement that each function 
considered be completely defined (total); and we could have my "first 
recursion theorem" [1952, p. 348], and the "recursion theorem" of [1938, last 
two lines of 2] and [1952, pp. 352-353]. The "first recursion theorem" in 
[1952] states that the minimal solution of (12) as a functional equation in <J> 
when xp is partial recursive is partial recursive. In (11) and (12), I use " ~ " 
rather than " = " to express that both sides are defined with the same value or 
both are undefined. (I prefer to reserve " = " for the partial recursive 
predicate which is defined as usual when both sides are defined and is 
undefined otherwise.) 

Now instead I am taking (12) as a schema of definition to generate a partial 
recursive functional <f>, or with 0 empty (i.e. (11)) a partial recursive function 
<J>. I use (12) (or (11)) with the understanding that « 0 ; 21) (or «21)) is defined 
only as the equation requires it to be in a certain manner that can be reduced 
to the application of certain computation rules (my [1978, 2.2-2.4]). 

Let us return to my description of an algorithm, in the paragraph above 
beginning with the words "An algorithm is . . . ". There I talked about 
"situations" and "steps". What are we handling? Surely, the situations are 
some kind of finite complexes of symbols in the context of a question picked 
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for the algorithm. As we must have discreteness, these complexes must be 
built in some regular manner from finitely many occurrences of symbols from 
a given finite list. They may be simply finite (linear) sequences of occurrences 
of those symbols, or they may be other regular finite arrangements of 
occurrences, as in elementary school arithmetic, or in the computation trees 
of my [1959] and [1978] when only number variables (called there "type-0 
variables") and 0/s with type-0 variables are allowed. For any suitable 
geometry of a symbol space with countably many cells, rules can be given for 
representing the finite arrangements of symbol occurrences on cells of the 
space as simple finite sequences. Either using such rules first, and then coding 
the resulting sequences by positive integers, or directly, the symbol complexes 
can be coded by positive integers. In particular, if distinct positive integers 
have been assigned to the symbols, the finite sequence of symbol occurrences 
SQ, . . . , Sj can be represented by the code PQ° • . . . -pp (abbreviated 
< 0̂, . . . , ty» where s0, . . . , sl are the positive integers assigned to the sym­
bols SQ, . . . 9Sj and p0, pl9 p2,.. . are the consecutive prime numbers 
2, 3, 5, . . . (as in Godel's numbering [1931]). 

Now let me pin down in arithmetical terms what an algorithm for comput­
ing the values of a functional <f>(@; 2Ï) does. The 0 may be function variables 
or fixed functions. Now, unless 21 is empty and © are fixed, we have an 
infinite class of questions "What is <f>(0; 20?", determined by the various 
choices of tuples of natural numbers as values of the variables 2t, and, if the 
0 are not fixed, of tuples of functions as their values. We select a particular 
question of this class by naming (the values of) (0; 21). I shall gain some 
space for maneuver by using (0; 21, 0) instead. The 0 conveys that we are just 
about to start a computation by our algorithm. And after a situation (with a 
complex of symbols) has been established by the first step, or reestablished by 
a later step, that situation will be represented by (0; 21, b) where b is the code 
( > 0) for the complex of symbols then before us. As you see, I take 0, 21 to 
be still directly available after each step (although alternatively the 21 could 
be represented within the b). By (c) (in the cited paragraph), the algorithm 
"will enable us to recognize when a situation is reached in which the answer is 
before us, and to read it off then". So the algorithm must provide us with a 
functional x (f°r which we already know how to get the values) with the 
following features. When the symbol complex before us is coded by b (> 0), 
x(0; 21, b) = 0 if the answer is not yet before us, and x(0; % b) = <f>(0; % b) 
+ 1 if the answer <J>(0; % b) is before us; and x(®; % 0) = 0. And in the 
case the symbol complex before us is coded by b (> 0) and x(0; % b) = 0, 
by (b) the algorithm "will tell us what step to take next"; and likewise, by (a), 
right after picking the (0; 21) the algorithm "will. . . tell us how to perform a 
step, the first". So there is also a functional p (for which we already know 
how to get the values) such that, when the symbol complex before us is coded 
by b (> 0) and x(®; % b) = 0, then (0; 21, p(0; % b)) represents the next 
situation with p(0; 21, b) coding the symbol complex in it; and likewise 
(0; 2Ï, p(0; 21, 0)) represents the situation after the first step. For any (0; 21), 
1 write <J>(0; 2Ï, 0) as synonymous with <f>(0; 21); and when b (> 0) codes the 
symbol complex in the situation after any step in the application of the 
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algorithm begun by picking (©; 51), I write <|>(0; % b) for the answer toward 
which (hopefully) we are being led. Thus, above, when the answer is before 
us, I wrote it <J>(0; 31, b). Now everything can be brought together into an 
equation for a functional <J>(0; 3C, b\ 

*f«. 9f M ~ / * ( 0 ; *' **> *> *» i f ^ *> * > = °' 
<HU, *, *j _ j x ( 0 ; ^ >z>) ^ j .f x ( @ ; ^ ft) > a 

^ cs(x(0; *, b\ « 0 ; 31, P(0; a, b)\ x(0; «, ft) - 1). (13) 
This fits the first recursion theorem (12) with "21, ft" as its "31". And the 
functional <J>(0; 31) for which we had the algorithm is 

<f>(0;3ï)^<H0;3r,O). (14) 
When I described an algorithm above ("An algorithm is . . . "), I had not 

yet introduced partial functionals. Now, even when <f>(0; 31) is total (i.e. 
completely defined), x(0; % ft) and p(0; 31, ft) may not be total. They only 
need to be defined, with a given (0; 31), for the ft's for which we need them in 
pursuing the algorithm; specifically, for 0, ft0 = p(0; 31, 0), bx » 
p(0; 3Ï, ft0),... up to the first bx such that x(0; % bx) > 0 (inclusive for x> 
exclusive for p). When <>(0; 31) is not total, its indefinition for a given (0; 3t) 
may come about through indefinition of some needed value of the x or p, or 
through there being an infinite sequence ft0, bl9 . . . with x(0; 31, bx) = 0 for 
all x. For a partial functional <f>(0; 31), in my description of an algorithm each 
of (a), (b) and (c) should be qualified by adding "if the question selected has 
an answer".9 

Because an algorithm can be thus analyzed as resting on the application of 
(13) with functionals x and p for which we already know how to get the 
values, I am led to argue that, if we start out with the functionals that we 
must regard as known initially, and repeatedly use (12) with \p composed from 
the functionals we have already, followed each time if necessary by further 
steps of composing functionals, we will get all the functionals for which there 
are algorithms. 

What functionals should we start with? We know the natural number 
sequence 0, 1 ( = 0'),. . . , a, a\ . . . by its generation from 0 using the 
successor operation '. Surely then we know the following functionals:10 

<J>(0; 31) c* 0. S2.0 

<J>(0; a, 93) ^ a. S3. 
<K0; a, 93) 2* a' [ - * + ! ] . S1.0 

4>(G; a, 33) c* a - 1 - \ Sl.l 
ifa = 0 

Thus, we know outright 0 (as a constant functional); and, given a number 
argument a, we can have it as an identity functional, also its immediate 

9However by the result embodied in (15)—(17) below, the x and p can be picked so that, when 
0 is empty or consists of total functions only, they are total and only (c) needs to be qualified 
(indefinition coming about then only by having (x)x(0; % bx) - 0). 

10The designations "S2.0", "S3", etc. for these schemata are the ones used in my [1978], [1980]. 
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successor a'9 and also a — 1 which is its immediate predecessor if it is > 0. 
These are fundamental to finding our way around in the natural number 
sequence. Furthermore, we can assume we will always know whether we have 
before us 0 or a successor, and act accordingly. Acting accordingly can 
consist in then writing the respective one of two given numbers b and c. So 
we adopt the schema 

<H0; *, *, c, 93) c* cs(«, b9 c) \=lb i f a ~ ° ' S5.1 
if a > 0 

Let 0 = (Bl9 . . . , Bj) be variable or fixed functions of ml9 . . . , m, varia­
bles, respectively. Then (for t = 1, . . . , / ) Bt shall be used only by taking its 
value (i.e. the value of whatever function we have at the moment as the value 
of Bt9 if 0t is not fixed) for a given wr-tuple of arguments for which it is 
defined. Thus we have the schema 

<H0; 33, Œ) ^ 0,00) SO. 

where 33 consists of mt variables. It is fundamental to this theory that a 
function variable (or an assumed fixed function) Bt is used only thus. We 
utilize no global information about the 0r We only grope for one value at a 
time, by using SO with a given m,-tuple of values of 33.11 Turing [1939], in a 
somewhat different context, described this as appealing to an oracle for the 
function Bt9 who, questioned with a tuple of arguments, reveals the corre­
sponding value.12 

These are what we must start with. 
Furthermore, we want to be able at any stage to throw together functionals 

already available to us in any combinations, under the usual practice with 
notation for functions (composition of functionals). E.g. if we already have <f>, 
i//, x as known functions of 2, 1, 1 variables, respectively, <|>(<j>(i//(&), x(a))> 
\p(b)) is a known function of a, b. The rule for computing it can be written in 
closed form (with no need for a new recursion), thus: having picked values of 
a and b9 compute \p(b) and x(a)> caU *ne results c and d; then compute 
<f>(c, d)9 call the result e; and finally compute $(e9 c). This kind of definition is 
called "explicit definition". It is easily seen (in my [1978, 3.1]) that our class 
of functionals becomes closed under explicit definition when we add the 
following schemata in which *p and x are to be previously defined functionals: 

<J>(0; 8Ï) ~ ^/(0; x ( 0 ; 9t)> W). S4.0 

<J>(0; 80 =* *K©; «i) S6.0 

where 81 comes from %x by moving one of the variables in 8lj to the front of 
the list. The second of these schemata, S6.0, offsets the limitation that some of 

u So when we have completed the computation of a functional ^(0; 2() with 9t one of its 
function arguments ©, we will have used via SO the values of 0t only for certain m,-tuples of 
numbers as its arguments. The result will then be good also with 9t replaced by the partial 
function Bt which coincides with Bt for those m,-tuples of arguments and is undefined for all other 
/^-tuples; and likewise by every extension of Br This constitutes a monotonicity property of our 
functionals. 

12Turing dealt with (total) number-theoretic properties (predicates) of one variable, rather than 
with partial functionals of / function and n number variables. 
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the schemata above have been stated relative to a certain ordering of the 
variables; e.g. in S3, a is the first variable. It is also essential here that the 
schemata have been stated so that a functional <K®; $0 can be had also as 
<J>(@; % S3) with additional variables 93 (the lists of variables in our schemata 
are open ended). Identifications of two occurrences of a variable are effected 
using S4.0 together with S3 and if necessary S6.0. 

Now let us start with the class of the functional definable by repeated uses 
of the schemata I have now listed. Thus a functional <J> is in this class if </> is <t>p 

where <>!,..., <j>p are successive functionals, each one fy (i = 1,. . . ,p) 
defined by a schema, either outright (as by S2.0, S3, etc.) or from one or two 
of the preceding functionals (as by S6.0, S4.0). Then apply the first recursion 
theorem (12) as a schema 

</>(0; 2T) a* xp(\% <J>(0; 51), 6; 21), Sll. 
with \p in the aforesaid class. Adding this <j>, and using explicit definitions 
anew, we have an in general larger class of functionals *// available for a 
second application of the first recursion theorem Sll; and so on. 

I claim there is no way to establish an algorithm for a functional <f>(0; 21) 
which cannot thus be analyzed as the result of a finite number of applications 
of the first recursion theorem, after introducing our initial functionals, and 
with preceding, intervening, and final uses of explicit definition. I call the 
functionals <J>(0; 21) so obtainable the partial recursive functionals. 

We saw earlier that a primitive recursion can be construed as a simple 
application of the first recursion theorem. Suppose we add to our Hst of 
schemata the schema of primitive recursion (for 0 empty, (2) or (10) above) 

<t>(0; 0, 33) =* *K0; ») , S 5 

4>(0; a', 33) =* x(®; <*, <H©; <*> ®), »)• 
If we then omit the first recursion theorem as a schema Sll (or equivalently, 
without adding S5 use Sll only to effect primitive recursions), we generate a 
smaller class of functionals (all totally defined if the functions 0 are), which I 
call the primitive recursive functionals.13 

How often may we need to use the first recursion theorem Sll (our most 
powerful method of definition) other than, if we do not have S5 as a separate 
schema, in defining primitive recursive functionals? With a given list 0 of 
function variables (as fixed by / and ml9 . .., m,), only once!14 There is a 
fixed primitive recursive functional i//* such that, applying the first recursion 

13For 0 consisting of total functions only, this is in my [1978, p. 213]. 
14The question was asked by Andrei Ershov at the 1979 Urgench Symposium, and answered 

by me there (cf. [1981b, §5]) but without mentioning that (when S5 is separately available) we do 
not need different applications of SI 1 for the various lists 91 of number variables, as comes out of 
my [1978, 3.2]. Indeed, with a little more work, we can get by with just one use of the recursion 
theorem (when S5 is separately available) for all lists 0 (as well as for all lists ST). To do this, we 
represent lists 6 of / functions of mx,..., mt variables by single one-place functions <0>*, just 
as in (16) we represent lists aït..., an of n numbers by single numbers (ah . . . , a„>, where 
*/ - (<*i> . . . , * „ » , for / - 1 , . . . , n, using my [1952, p. 230, # 19] (and (0), - 0 for all i). If z is 
an index of a functional « 0 ; 2Ï) where 0 is / functions of Wj mt variables, the / and 
m i , . . . , / « / are given by z. Now, e.g. with / — 3, m1 — 2, m2 • 3, m3 — 1, we can take 
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theorem to define 

<t>*(S; z, a9 b) ^ ^*(Xzab <J>*(0; z, a, b)9 0 ; z, a9 b) (15) 

and putting for each n (where <tfj,. . . , 0W> = /?o' * • • • A^-i) 

{ z } 0 ^ , . . . , an) « <*>*(©; z,<*i> • • •, *„>> 0), (16) 

each partial recursive functional <>(©; al9... 9 an) is given for some fixed z as 

•(8;«i ^ « W V i 4 (IT) 
The method of the proof is this. A partial recursive functional 
<f>(0; al9 . . . , an) is defined by a sequence of schema applications, whereby 
<>!,. . . , «^ with <f> = «^ are defined successively. A system of indexing can be 
established so that an index z of <f> represents this sequence of schema 
applications (details in my [1978, 1.3]), and thus encapsules the definition of 
</>. Now, if we take z as a variable, we can devise an algorithm which is an 
algorithm for all algorithms (with the list 0): a universal algorithm.15 In some 
detail: Having an index z, we can give numbers e (called Gödel numbers in 
[1978, 3.2]) to expressions (0-expressions in [1978, 2.2]) such as arise in 
computing the functional <f>(0; al9. . . 9 an) with the index z for given values 
of 0, al9 . . . , an. We can further build the Gödel numbers e into codes b > 0 
for the complexes of symbols in computational situations (computations not 
necessarily completed, in the terminology of my [1980, 7.2]). Now there are 
primitive recursive functionals x*(®5 z> a> *) anc* P*(0; z> <*> b) with the fol­
lowing properties. Take any choice of (0; z, a), i.e. of values of the variables 
0 , z, a9 to select a question for our universal algorithm, 0 being / functions of 
ml9 . . . , mt variables respectively. If z is an index of a partial recursive 
functional <J> of / function variables with ml9 . . . , mt number variables respec­
tively and n number variables (if so, n is given by z), then x*(®î *> a, 0) = 0 
and p*(0; z, a9 0) is the code of the computation just begun with 
<^(A)0, . . . , p*_x) as the initial 0-expression.16 Thus we take 0 O ° , . . . , P*_x as 
the formal number variables for the functional <f> = <j>p in whose computation 
for al9. . . , an as their values (and for 0 as chosen) we are interested. For 
a > 0, we determine al9 . . . , an from the chosen a by writing a = 
(al9 . . . , ak} with a k > n9 if necessary by taking at = 0 for all sufficiently 
big i < n = k; for a = 0, we take ax = . . . = an — 0. In the said computa­
tion, we shall need no other number variables than P$ , . . . , P^-u an(* w e 

shall assign them al9 . . . , an as their respective values throughout. If z is an 
index of a partial recursive functional <f> of / function variables with 

<e>*(a) c* *,((*)„ (0)2) if (a)0 - 0, B2((a)i> («)* (*)3) * (*)o - 1, *3((*)i) * (*)o > 2. This 
spreads the values, and instances of indefinition, of 9lf 02, 0$ on disjoint subsets of the domain of 
<8>*, unlike the method used (with total one-place functions) in [1959, 2.1]. Now 0y — Xab 
< e > * « 0 , a , 6 » , $2 = \abc <0>*«1, a, b, c » , 03 - Xa < 6 > * « 2 , Ö » . In (15) "0" becomes 
simply "$" with 0 a one-place function, the right side of (16) becomes $*«6>*; 
z, < « ! , . . . , a„>, 0), and (17) is unchanged. 

15Universal algorithms (in other representations) first appeared in my [1936] and Turing 
[1936-7]. 

16Since the list 0, for each of 4>lt..., <f>p (where 4> - <j>p) is determined by the schema 
applications, I omit "0," as argument of ^ in writing the 0-expressions ([1978, 2.2]). 
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mv . . . , W/ number variables and n number variables, and b > 0 is the code 
of a computation begun with <t>p(Po,. . . , /?n°_i) under the assignment 
©, a„ . . . , #„, then, if that computation is uncompleted, x*(®î z> a, 6) = 0 
and p*(0; z, a, b) is the code of the computation immediately extending that 
one (possibly undefined, if the 0 are not all total); and, if that computation is 
completed, x*(0; z, 0, &) = 1 + (the value computed) and p*(0; z, a, b) = 0. 
Otherwise, x*(®; z> a> *) — P*(0; £> #> *) = 0. We thus obtain a primitive 
recursive functional */>* for (15), having the form on the right of (13) with our 
primitive recursive x* and p* and with "z, a, b" as its "91, b*\ so that <t>* has 
the property stated in (16)—(17). 

An immediate consequence of the characterization by our schemata of all 
the possible algorithms for computing functionals <|>(0; 91) with given lists of 
function variables 0 and number variables 91 is that there are such function­
als, and, with 0 empty, functions, for which there is no algorithm: unconfut­
able functionals and functions. For, the characterization makes the class of 
the algorithms as normalized in our way countable, while, even with 0 empty, 
the class of the functionals <J>(0; 9f) is uncountable (assuming 91 not empty). 

How simply can we define an unconfutable function? Take the case 0 is 
empty and 91 is one variable a, so {z}0(av . . . , an) specializes to {z}(a). 
Using (15)—(16) with n = 1, {z}(a) is defined exactly if the sequence 
X*(z, <a>, /?*(0, z, a)), X*(*, <*>, fi*(l, *, «)), X*(', <*>, 0*0, *, *)), 
where /**(0, z, a) = p*(z, <a>, 0) and /**(.*', z, a) •• p*(z, <a>, i8*(x, z, a)); 
has a member > 0. Thus (z}(a)-is-defined is expressible as (Ex)T(z9 a, x) 
where T(z, a, x) is the primitive recursive predicate x*(z> <ö)> /**(*> >̂ ^)) > 
0 and "(Ex)" expresses "there exists an x such that". Now if we define 

t(a) = ( { a * ( a ) + l i f ( £ x ) r ( a > a ' x> (C a s e !)» (18) 
\ 0 otherwise (Case 2), 

f is an uncomputable total function. For, if f were computable, then, for 
some number z, Ç(a) = {z}(a) for all a; hence {z}(z) is defined, i.e. 
(Ex)T(z, z, x); so (z}(z) = f(z) = {z}(z) + 1, a contradiction! 

This brings us to the point which in other treatments led (long ago) to some 
fundamental results on the foundations of mathematics. I shall quickly 
recapitulate the arguments (much as in my [1957], [1958], [1964], [1967], 
[1969]). 

How does the definition (18) of £(a) fall short of providing an algorithm for 
it? We would clearly have an algorithm for f if only we had one for deciding 
which of the two cases applies. Thus there can be no algorithm for the 
predicate (Ex) T(a9 a, x)\ This is a version of Church's theorem [1936]. We 
have an undecidable predicate, obtained simply by prefixing an existential 
quantifier (Ex) to the decidable predicate T(a, a, x). 

It is easy to proceed from this result to two celebrated results concerning 
formal systems. 

I consider how certain propositions, depending on a parameter a, are 
expressible by formulas in a suitable formal system. The system can be the 
usual formal system of elementary number theory or various other systems. 
In a suitable formal system, the propositions (Ex)T(a9 a> x) for a = 
0, 1, 2, . . . will be expressed by respective formulas Aa (obtained from a by 
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an algorithm) such that Aa is provable if and only if (Ex)T(a9 a, x) (is true). 
The "only if" is a consistency property (often reducible to what Gödel called 
"w-consistency"). The "if comes about because a formal proof of Aa should 
be obtainable, corresponding to the informal proof of (Ex)T(a9 a, x) which 
consists in verifying by the decision procedure for T that T(a9 a, x) for the 
given a and a suitable x. 

This being the case for a formal system, the system is undecidable; i.e. 
there is no decision procedure (Entscheidungsverfahren) for the provability of 
any formula in the system. For, if there were, by applying it to the formulas 
Aa (obtainable from a by an algorithm) we would have an algorithm for 
(Ex)T(a, a9 x), which we just saw cannot exist. This reasoning can be used to 
establish the undecidability of the usual formal system of elementary number 
theory, and also of the pure first-order predicate calculus (a famous result of 
Church [1936a] and Turing [1936-7]). 

Consider the negations of Jhe propositions (Ex)T(a, a9 x)9 i.e. 
(Ex)T(a9 a, x) or equivalently (x)T(a9 a9 x). In any of the aforesaid systems 
in which the propositions (Ex)T(a9 a9 x) are expressed by closed formulas Aa 

(not the predicate calculus, where Aa have free predicate variables) and which 
have the symbol -i for negation, the propositions (x)T(a9 a9 x) are expressed 
by the formulas - i^, . Suppose that (as a consistency property) -\Aa is 
provable only if (x)T(a9 a9 x). I shall argue that it is not the case that, for 
every a9 -nAa is provable if (x)T(a9 a9 x). For, as remarked above, the 
accomplishment of a formal system is to provide an algorithm for the notion 
of proof. Applying this to the formulas -iAa9 and using the algorithm for 
getting these from a9 the predicate -i ^4a-is-provable is expressible in the form 
(Ex)R(a9 x) where R(a9 x) is the decidable predicate that x is the code (say a 
Gödel number in the manner of Gödel [1931]) of a proof of -\Aa. Now if, for 
every a9 -nAa is provable if (as well as only if) (x)T(a9 a9 x)9 we would have 
that, for all a9 (x)T(a9 a9 x) = (Ex)R(a9 x). But (x)T(a9 a9 x) is not expressi­
ble in the form (Ex)R(a9 x) with R decidable. For if it were, we could decide 
whether or not (Ex)T(a9 a9 x) by looking for the least x (which must exist by 
the law of the excluded middle) such that either T(a9 a9 x) or R(a9 x)9 and 
answering "yes" or "no" according to whether, for that x9 T(a9 a9 x) or 
R(a9 x). This is a generalized version (given in my [1943], and less simply in 
my [1936]) of the famous theorem of Gödel [1931] on the existence of 
formally undecidable sentences in Principia Mathematica and related systems 
(the first of the two incompleteness theorems of [1931]): for some number/?, 
the formula -\Ap is unprovable, and also true (i.e. (x)T(p9p9 x)) so that Ap is 
also unprovable.17 The theorem in this version is generalized from Gödel 
[1931], since it applies outright to all formal systems which simply are 
adequate for expressing some propositions of elementary number theory 

17What I have just established is that ( <*)[(*) r(tf, a, x)^>(-\Aa is provable)]. This makes it 
absurd that such a p should not exist. To obtain such a p directly: With R as above, 
the-least-jc-such-that-/Ê(a, JC) is a partial recursive function of a with index/?, and (Ex)T(p, a, x) 
== (-\Aa is provable). It follows easily that (x)T(p,py x) and that -\Ap and Ap are unprovable 
(cf. my [1967, p. 251, SECOND PROOF], or [1957] or [1958]). 
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(correctly, i.e. with the requisite consistency properties) and satisfy the struc­
tural requirement that there is an algorithm for being a proof. Here there is 
no possibility of escaping the incompleteness (as by seeking to devise a formal 
system quite remote in its details from Principia Mathematica), since the 
features of formal systems just named are objectives of ours in formalizing 
theories including elementary number theory. In this version, the formally 
undecidable sentences Ap (with different numbers p for different formal 
systems) express values of the preassigned number-theoretic predicate 
(Ex)T(a, a, x). As I expressed it in [1943], there is neither a complete 
algorithmic theory for this predicate (i.e. (Ex)T(a, a, x) is undecidable), nor 
(by the generalized Gödel theorem) a complete formal deductive theory. 

These were among the results that ushered in the second half century 
(nearly) of recursive function theory. 

Much has happened since then. Many of the newer developments have 
been associated with the use of function variables, as illustrated above by the 
0 Y 

To begin with something not so new, take the idea of a total recursive 
functional <|>(0; W) and specialize to the case of one assumed function 0 and 
that one-placed and total and one number variable a. By <f>(0; a) being 
recursive we define when one one-place number-theoretic function <f> = Xa 
<!>($; a) is recursive in another 0 = Xa 9(a). Here <f> and 0 can be the functions 
(taking only 0 and 1 as values) which represent two predicates P(a) = <f>(a) = 
0 and Q(a) = 0(a) = 0. The recursiveness of P in Q, formulated differently 
by Turing in [1939], gives a reducibility notion that was used by Post [1944], 
[1948] in studying the number-theoretic predicates. Slightly earlier, in my 
[1943] I described a hierarchy of number-theoretic predicates in which two 
positions are occupied by the decidable predicates R(a) and the predicates 
expressible in the form (Ex)R(a, x) with R decidable, which we encountered 
a moment ago. This hierarchy can be extended way upward. One of the ways 
of extending it beyond arithmetic is to use variables of successive higher finite 
types 1, 2, 3 , . . . consisting of the total one-place functions over the preced­
ing type to the natural numbers (where type 0 is the natural numbers). I took 
the step to include type 1 (of which a version is given above) in [1950] with 
[1955], [1955a], [1955b]; and to all finite types in [1959] and [1963]. What I 
have drawn upon in today's lecture is the use of the first recursion theorem as 
one of a list of schemata in my revisitation of the resulting generalized 
recursion theory in [1978] and [1980]. Here I have focussed on what comes 
out of that when we specialize to using only number variables and number-
theoretic function variables. This concludes my discussion of elementary 
recursive function theory from a higher standpoint. 
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