
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 5, Number 1, July 1981

THE THEORY OF RECURSIVE FUNCTIONS,
APPROACHING ITS CENTENNIAL1

{Elementarrekursiontheorie vom hbheren Standpunkte aus.1)

BY STEPHEN C. KLEENE

ABSTRACT. An algorithm is a procedure, given by a finite set of instructions,
to serve as follows in relation to a given infinite class of questions, (a) If we
select any question from the class, the instructions will tell us how to
perform a step, (b) After any step, if we do not receive the answer then, the
instructions together with the existing situation will tell us what step to take
next, (c) The instructions will enable us to recognize when a situation is
reached in which the answer is before us, and to read it off then; and this
will eventually happen if the question has an answer. In "steps" and
"situations'*, what are we handling? Since there must be no ambiguity,
surely some kind of regular complexes of occurrences of symbols from a
given finite list. Such complexes can be coded by positive integers. Consider
specifically an algorithm for computing a functional <p(B; 8T) where 0 are
number-theoretic function variables and 31 are natural number variables. A
question is selected from the infinite class "What is the value of ^(9; 31)?"
by specifying (0; 21). I gain some space for maneuver by using instead
(0; % 0). After any step, the situation will be represented by (0; 8, b)
where b is the code for the complex of symbols in it. By (c), there must be a
functional x(0; % b)> for which we already know how to get the values,
such that, in the situation represented by (0; ft, b), x(6; ft, £) *• 0 if the
answer is not before us, and otherwise x(0; % b) — <K0; % b) + 1 where
<K0; ft, b) is the answer; and x(0; ft, 0) - 0. By (b) and (a), there must
likewise be a functional p(0; ft, b) such that in the situation represented by
(0; ft, b), if x(0; ft, b) - 0 then (0; ft, p(0; ft, b)) represents the situation
after the next step; and (0; 21, p(0; ft, 0» represents the situation after the
first step. Now, putting <K@î ft, b) « <f<0; ft, p(0; ft, b)) if x(6; % &) - 0,
« x(0; ft, b) - 1 if x(0; % b) > 0, we have a definition of <K0; ft, b) of
the form # 0 ; % b) « ^(mb^è\ ft, b), 0 ; 2t, b) as in Kleene's first recur­
sion theorem [15>52, p. 348]; and « 0 ; 3Q « <J<0; % 0). Thence it is argued
that the first recursion theorem, in a proper setting, enables all functionals
<K0; 21) to be defined for which there are algorithms; and consequences are
deduced therefrom.

The theory of recursive functions is nearly one hundred years old. For
nearly the first fifty years it was the theory of what are now called "primitive

This paper was presented as an address to the Society at its meeting in Kenosha, Wisconsin
(The University of Wisconsin, Parkside) in 1980; received by the editors November 15,1980.

1980 Mathematics Subject Classification, Primary 03D20; Secondary 03D10, 03A05.
Key words and phrases. The first recursion theorem, schemata for recursive definitions,

primitive recursion, algorithms, Herbrand-Gödel general recursiveness, ^-definability, Turing
computability, partial recursiveness, Church's thesis, Church's theorem, Gödel's theorem.

'I prepared this paper for a general audience. Then I was amazed to find on the program
twenty-three other papers (including four special sessions organized by Richard A. Shore) on
recursion theory, which illustrates the health of the nonagenarian.

2Kleene is a North German form of Klein.
© 1981 American Mathematical Society
0002-9904/81/0000-0303/$05.75

43

44 STEPHEN C. KLEENE

recursive functions" and some extensions thereof. A little under fifty years
ago general recursive functions and equivalents came on the stage.

The simplest infinite mathematical system is that of the natural numbers,
i.e. the nonnegative integers

0, 1, 2 ,

I choose to deal with these rather than with the positive integers

1, 2, 3 , . . . ,

and I shall transpose to the natural numbers the part of the work I review
that was phrased in terms of the positive integers.3

On Tuesday, September 21, 1886, Kronecker declared, "Die ganzen Zahlen
hat der Hebe Gott gemacht, alles andere ist Menschenwerk (God made the
integers, all the rest is work of man)." We know so well the natural number
system from Peano's five axioms, published by him in [1889] and [1891]. In
fact, as Peano acknowledged in [1891, p. 93], these axioms come from the
definition of a simply infinite system in Dedekind, "Was sind und was sollen
die Zahlen?" [1888]. I think we can say that recursive function theory was
born there ninety-two years ago with Dedekind's Theorem 126 ("Satz der
Definition durch Induktion") that functions can be defined by primitive
recursion, as I shall presently illustrate.4

Under Dedekind and Peano's treatment, the natural numbers constitute the
system of objects obtained by starting with an object 0 ("zero"), and re­
peatedly generating a next object by an operation ' ("successor" or "+1").5

That one thus generates only natural numbers is stated in the first two Peano
axioms. That objects thus differently generated are distinct is stated in the
third and fourth Peano axioms. That all the natural numbers are so generated
is given by the fifth Peano axiom, which says that we can parallel the
generation of the natural numbers using 0 and ' by proofs that all the natural
numbers have a mathematical property, i.e. proofs by mathematical induc­
tion. Indeed, in the set-theoretic terminology which was appearing about the
same time, a subset of the natural numbers containing 0 and closed under the
operation ' is the set of all the natural numbers.

Recursion, or definition by induction, is the principle of definition corre­
sponding to proof by induction. The example that comes to mind first is the
definition of the sum function a + b, by the two equations

\ a + b' = (a + b)'. K '

3Of course the two systems by themselves are isomorphic. They differ in their application as
cardinal numbers, and in the definitions (suited to that application) adopted for the functions
a + b,a-b and ab.

4Peter [1534] introduced the name "primitive recursion**, and the name "primitive recursive
functions'* came in with my [1936] for what had been called simply "recursive functions** by
Gödel [1991], [1934] and Péter [1934], [1935], [1936]. "Recursion** (but not "recursive function**)
appeared in Skolem [1923, p. 11] and Hubert [1926].

5Dedekind and Peano dealt with the positive integers 1, 2, 3 , . . . ; but as stated I am
transposing to the natural numbers 0, 1, 2 , Other work cited below which was phrased in
terms of the positive integers is that of Skolem, Church, Kleene before [1936], Post and Smullyan.

THE THEORY OF RECURSIVE FUNCTIONS 45

You may wonder why in 1980 I am dwelling on this. There is a point of
view (developed by me since 1977) from which the quantum jump at midlife
of recursion theory from dealing only with primitive and other special
recursive functions to general recursive functions can be based on thinking
through the form of a recursion as exemplified by this definition of a + b.

However, let me first deal with this less boldly. The definition of a + b
comes under the general form of a primitive recursion on b with n — 1 (> 0)
parameters al9 . . . , an,4

<J>(0, a2, . . . , an) = \p(a2, . . . , an)9

<j>(b\ a2, . . . , an) = x(b> <K&> <*2> • • • > <*n)> <*2> • - - > anY

In our example of a + b9 there is one parameter a (n = 2), and the functions
\p and x assumed as already known are

xp(a) = a9 x(P, c, a) = c'. (3)

To complete the definition of the class of the primitive recursive functions, I
need to make precise the context in which primitive recursions are to be used.
Specifically, what functions are to be taken as known initially, and what other
kinds of definition may be interspersed with primitive recursions? I shall
make these items precise presently.

Dedekind [1888] and Peano [1889] followed the recursion for the sum
a + b by those for the product a • b and the exponent function ab,s

0 - 0 = 0,
a • V = (a - b) + a,

U°=i,
\av-ab-a.

The characteristic feature of primitive recursion is that, e.g. with one
parameter a, the value of the function </> being defined for any given pair
(b9 a) of arguments with b > 0 is made to depend via a previously known
function on its value for the pair (b — 1, a) (besides on b and a), and so by
iteration on its values successively for (b — 2, a), (b — 3, a),.. . and ulti­
mately for (0, a), which value is given by a previously known function of a.
This makes Dedekind's [1888] theorem that a function is defined by the
recursion quite transparent.

The functions commonly used in arithmetic or elementary number theory
are primitive recursive. Something of a calculus of primitive recursive func­
tions was developed by Skolem [1923], Gödel [1931] and Péter [1934], from
which my exposition in [1952, Chapter IX] drew heavily.

In [1928] Ackermann gave an example of a recursion on two variables n
and b simultaneously (with one parameter a). In this recursion, the value of
the function £ in question for a triple («, b, a) of argumentswith n9 b both
> 0 is made to depend on its value for certain triples (n, by a) with (n9 b)
preceding (n, b) in the ordering by the ordinals n<o + b9 and is given by a

(4)

(5)

46 STEPHEN C. KLEENE

known function if either n = 0 or b = 0,

f € (0 , * , a) - f l + 6,
I i(n\ 0, a) = a(n, a) (= 0 if n = 0, 1 if n = 1, a if n > 1), (6)
[i(n\ b', a) = £(n, £(«', 6, a), a).

Ackermann proved that this function £ is not (as we now say) primitive
recursive. Indeed, £(0, b, a) = a + b, i-(l, b, a) = a - b, £(2, 6, a) = ab,... ;
and £(&, &, Z>) majorizes every primitive recursive function <f>(b).

Generalizing from the k = 1 case (primitive recursion) and the k = 2 case
(exemplified by Ackermann's double recursion), Péter [1936] studied the
hierarchy of increasing classes of functions definable using A>fold recursions
for k = 1, 2, 3, So much for the first phase of recursive function theory.

A half century ago there was a great ferment in thinking about the
foundations of mathematics. Stimulated by Cantor's development of set
theory ([1874], [1895-7]) and the ensuing paradoxes (from 1895 on), the
schools of logicism, intuitionism and formalism had taken the field. The
formalists (after Hilbert) had put portions of classical mathematics into the
setting of fully formalized systems, and proposed to study these systems (in
particular to prove their consistency) by "finitary" methods, indeed by the
methods of elementary intuitionism (after Brouwer). Hilbert had posed in
[1918] the problem of the solvability in principle of each mathematical
question, and the problem of the decidability of a mathematical question
through a finite number of operations. Applied to a formal system, we thus
have the problem of finding a decision procedure (Entscheidungsverfahren)
whereby, given any formula of the system, its provability or unprovability in
that system can be decided in finitely many steps. Thus arises the Entschei-
dungsproblem or decision problem, which had also appeared in Schroder
[1895] and Löwenheim [1915].

What is all this really about? Let us try to view it from a standpoint above
the details of one or another particular formal system. What does a formal
system really do, and what would a decision procedure be?

The germ of the concept which gives us the overview we want now has
been in mathematics for more than two millenia: the idea of algorithms.

An algorithm is a method or procedure, established by a finite set of rules
or instructions, to serve as follows in relation to a given infinite class of
questions, (a) After the procedure has been described, if we then select any
question from the class, the procedure will apply and tell us how to perform a
step, the first of a sequence of one or more steps, (b) After any step, if we do
not then receive the answer to the question selected, the instructions together
with the existing situation (to which that step led) will tell us what step to take
next, (c) The instructions will enable us to recognize when a situation is
reached in which the answer is before us, and to read it off then; and this will
eventually happen (after a finite number of steps). In performing the steps
and reading off the answer, we have only to follow the instructions, like
robots; no insight or ingenuity or invention is required of us.6

6This clearly paraphrases the description of an algorithm as it naturally came to my mind in
[1967, p. 223] and [1969, p. 335].

THE THEORY OF RECURSIVE FUNCTIONS 47

To be more specific, consider various sorts of infinite classes of questions.
To begin with, let us take as our object domain the natural numbers, or a
similar countably infinite domain of objects each finitely describable by its
generation or position as a member of the domain.

As we know, we can define functions of one or more variables, each
ranging over the natural numbers, e.g. by recursion. We can also define
properties and relations (i.e. propositional functions, or as I will preferably
say "predicates") of natural-number variables, by defining functions and
setting them equal to 0, and further by applying logical operations (including
the quantifiers "for all x" and "(there) exists an x (such that)", or in symbols
"(*)" and "(Ex)") to predicates already defined.

If we have a predicate P(a) or P(al9..., an) with natural-number vari­
ables, we may have an algorithm for the infinite class of questions "Is P(a)
true?" or "Is P(alf. . . , an) true?". We get a particular question of the class
by selecting a particular natural number as the value of a or a particular
«-tuple of natural numbers as the values of al9..., an. These questions call
for "yes" or "no" as answers. The algorithm is then also called a decision
procedure for the predicate P. If such exists, the predicate is called decidable.

Similarly with a number-theoretic function <j>(a) or <t>(ax, . . . , an)9 an algo­
rithm for the infinite class of questions "What is the value of <t>(a)V or "What
is the value of 4>(al9 . . . , an)T9 is also called a computation procedure for the
function <f>. If such exists, the function is called computable.

Since to any predicate P(a) or P(av . . . , an) we can correlate a function
<t>(a) or <j>(al9 . . . , an) taking the value 0 or 1 according as the proposition
taken as value by the predicate is true or false, decision procedures are
encompassed under computation procedures.

The example of Euclid's greatest common divisor algorithm (fourth century
B.C.) illustrates that algorithms were present in Greek mathematics. The
name "algorithm" is a corruption of the last part of the name of Abu
Abdullah abu Jafar Muhammad ibn Musa al-Khowarizmi, the ninth century
Arabian mathematician who came from the Khowarizm oasis in central
Asia.7

The objective of formalizing a mathematical theory a la Hubert is to
remove all uncertainty about what constitutes a proof in the theory, of course
only after likewise fully specifying what are the formulas expressing proposi­
tions of the theory. Given a proposed proof, it must be possible by applica­
tion of the rules defining the formal system to check in finitely many steps
whether or not it really is a proof.

In brief, disregarding differences among various ways of carrying out the
details of formalization, the aim of embodying a theory in a formal system is
to establish an algorithm for the notion of proof (besides of formula) in the
theory. And the decision problem for a given formal system is the problem of

7I have in my hand an autographed picture of Al-Khowarizmi.-Actually, it is likeness
circulated at the Symposium dedicated to Al-Khowarizmi, at Urgench in Uzbekistan, September
16-22, 1979, inscribed in Arabic with his name by Heinz Zemanek of Vienna, an Al-Khowarizmi
scholar.

48 STEPHEN C. KLEENE

finding an algorithm for the notion of provability (i.e. of the existence of a
proof) in it.

So we fall back on the two-thousand-year-old idea of algorithms. What this
mathematical tradition gives is numerous examples in which mathematicians
agree that an algorithm is or is not provided. For example, a primitive
recursion (2) provides an algorithm for the function 4> defined by it (assuming
we already have algorithms for the functions \p and x)- But a definition of the
form <t>(a) = (the least x such that \fs(a9 x) = 0 if such an x exists, and 0
otherwise), where there is a known algorithm for \(/, does not of itself provide
an algorithm for <j>. With a particular i//, some theory might be developed that
would lead to an equivalent formulation that would provide an algorithm.
For example, this happens if we succeed in proving that, if there is an x such
that \p(a, x) = 0, there is such an x < 0(a) where 0 is a function for which we
have an algorithm.

In the world of mathematical ideas existent in 1930, one had no basis for
establishing the impossibility of there being an algorithm for a given class of
questions. For that one would need, further than particular examples, some
characterization of the shapes of all possible algorithms on a given domain.

The second half-century of recursive function theory is marked by the
introduction of such a characterization, in a number of equivalent versions.
At the beginning of the 1930's, no overview was possible on the most
fundamental problems of the foundations of mathematics without this step.

We have already seen that primitive recursions, and more generally fc-fold
recursions, define functions algorithmically, while descriptive definitions like
"the least x such that t//(a, *) = 0 if such an x exists, and 0 otherwise" do not,
at least not without supplementation.

This suggests trying to define all possible algorithms on the natural num­
bers by generalizing from the primitive and fc-fold recursions.

Gödel in [1934], building on a suggestion of Herbrand in a letter in 1931,
gave a definition of "general recursive functions" which took for generaliza­
tion the feature that the equations giving the values of the function defined by
such a recursion are formally derivable from the equations of the recursion by
using a substitution rule and a replacement rule. However, Gödel, according
to a letter he wrote to Martin Davis on 15 February 1965, "was, at the time of
[his 1934] lectures, not at all convinced that [this] concept of recursion
comprises all possible recursions".

Church had been pushing on the problem of characterizing all number-the­
oretic functions for which there are algorithms ("effectively calculable" as he
phrased it); and as a graduate student under him I had been finding in
example after example of functions for which there are algorithms that their
definitions could be expressed in a certain formalism affording algorithms
(arising out of Church [1932], [1933]) which we called the "X-calculus", i.e.
those functions are "X-definable". This work of mine was mainly done in
1932 (published in [1935]). Thereafter Church announced his "thesis" (pub­
lished in [1936], and so named in my [1943], [1952]) that all the functions for
which there are algorithms are Church-Kleene X-definable, or equivalently (as
was proved in his [1936] and my [1936a]) Herbrand-Gödel general recursive.

THE THEORY OF RECURSIVE FUNCTIONS 49

Turing in [1936-7] reached the same conclusion independently, using as a
third equivalent notion computable by idealized computing machines of a
certain kind (error-free and with unbounded memory), or "Turing computa­
ble". Post in a brief note [1936] gave the same idea independently.

Several other equivalents have appeared subsequently, in particular a
formulation by Post using his canonical systems [1943], Markov's theory of
algorithms [1951], [1954], and a formulation of Smullyan using his elementary
formal systems [1961].

These various equivalent formulations have respective merits (discussed for
some in my [1981a]). Turing's computability is intrinsically persuasive in the
sense that the ideas embodied in it directly support the thesis that the
functions encompassed are all for which there are algorithms; A-definability is
not intrinsically persuasive (the thesis using it was supported not by the
concept itself but rather by results established about it)8 and general recur­
siveness scarcely so (its author Gödel being at the time not at all persuaded).

What I propose to do in the rest of this talk is to develop another
equivalent formulation, which comes out of generalizing from primitive and
other special recursions in a different direction than Gödel did in [1934], and
which I believe I can say is intrinsically persuasive.

In my development I shall need the function cs (for "case") defined by

t , v f b if a = 0, ,_.

and the predecessor function — 1 (sometimes written pd), defined by

flM.[«-i aoft (8)
10 if a = 0.

Now the pair of recursion equations (1) for a + b can be written as one,

a + b - cs(fc, a9 (a + (b- 1))'). (9)

The general primitive recursion (2) can similarly be written

*(«, 93) - cs(«, *(»), X(a - 1, <tfa - 1, 93), 99)), (10)
where I have changed the notation to use "a" as the recursion variable and
"93" for a list of n — 1 > 0 other distinct variables as parameters. (German
capitals are used from here on in abbreviating lists of distinct number
variables.)

In (10), we can think of the right side as the result of using a known
functional \p with one «-place function variable TJ, for which in the recursion
we substitute the function <f> being defined, and n number variables 81. Thus
we construe (10) as having the form

() ***(*; «). (11)
Similarly, a double recursion such as (6) can be put in the form (11).

We may want to use several such recursions, perhaps with intervening
composition steps, in a row, so that the i//'s for later ones are defined by

8It was not clear initially that even the predecessor function a — 1 is X-definable; cf. my
[1981a].

50 STEPHEN C. KLEENE

earlier ones. This leads us to generalize from (11) to allow besides r\ also more
function variables 0l9. . . , 0t (= 0 briefly), thus

<f>(0; %) ~ iffo, 0; 31)

c^xKW <|>(0; Stt), 0 ; 31). (12)

The third expression makes it explicit (using Church's A-notation [1932]) that
the 4> in the second is being considered as a function of the number variables
21 for given values of the function variables 0 .

In (11) when its \j/ is given by the right side of the primitive recursion (10),
the recursion (with the definitions of cs, — 1, \p9 x) determines the function <j>
completely, the values being obtained by repeated applications of the equa­
tion. Similarly with the double recursion (6) put in the form (11). But this is
not always the case. For example, if the \p in (11) is like the right side of (10)
but with a primitive recursive function ir replacing — 1 where only for some
values of a does a, 7r(a), ?r(7r(a)), ir{ir(jT{a))), . . . include 0, then <f>(a) is
defined by the recursion (and the definitions of cs, ?r, \f/9 x) exactly for those
values of a. In this paragraph, I am assuming \p and x to be completely
defined.

Consequently, in generalizing from primitive recursions etc. in the present
direction, we shall allow our functions, such as <f> in (11), to be partial; i.e. for
each tuple of natural numbers as the values of the variables 21, </>(20 is either a
natural number (defined) or is undefined. And our functional, such as
</>(©; 21) in (12), are likewise partial, being possibly undefined for some tuples
of partial functions of the right numbers of number variables as the values of
0 and of natural numbers as the values of 2Ï. Similarly with i// in (11) or (12).

Partial number-theoretic functions were first explicitly introduced into
recursive function theory in my [1938], where I partialized the functions for
Herbrand-Gödel general recursiveness (Gödel [1934] and my [1936]). Thereby
the theory was unburdened of the extraneous requirement that each function
considered be completely defined (total); and we could have my "first
recursion theorem" [1952, p. 348], and the "recursion theorem" of [1938, last
two lines of 2] and [1952, pp. 352-353]. The "first recursion theorem" in
[1952] states that the minimal solution of (12) as a functional equation in <J>
when xp is partial recursive is partial recursive. In (11) and (12), I use " ~ "
rather than " = " to express that both sides are defined with the same value or
both are undefined. (I prefer to reserve " = " for the partial recursive
predicate which is defined as usual when both sides are defined and is
undefined otherwise.)

Now instead I am taking (12) as a schema of definition to generate a partial
recursive functional <f>, or with 0 empty (i.e. (11)) a partial recursive function
<J>. I use (12) (or (11)) with the understanding that « 0 ; 21) (or «21)) is defined
only as the equation requires it to be in a certain manner that can be reduced
to the application of certain computation rules (my [1978, 2.2-2.4]).

Let us return to my description of an algorithm, in the paragraph above
beginning with the words "An algorithm is . . . ". There I talked about
"situations" and "steps". What are we handling? Surely, the situations are
some kind of finite complexes of symbols in the context of a question picked

THE THEORY OF RECURSIVE FUNCTIONS 51

for the algorithm. As we must have discreteness, these complexes must be
built in some regular manner from finitely many occurrences of symbols from
a given finite list. They may be simply finite (linear) sequences of occurrences
of those symbols, or they may be other regular finite arrangements of
occurrences, as in elementary school arithmetic, or in the computation trees
of my [1959] and [1978] when only number variables (called there "type-0
variables") and 0/s with type-0 variables are allowed. For any suitable
geometry of a symbol space with countably many cells, rules can be given for
representing the finite arrangements of symbol occurrences on cells of the
space as simple finite sequences. Either using such rules first, and then coding
the resulting sequences by positive integers, or directly, the symbol complexes
can be coded by positive integers. In particular, if distinct positive integers
have been assigned to the symbols, the finite sequence of symbol occurrences
SQ, . . . , Sj can be represented by the code PQ° • . . . -pp (abbreviated
< 0̂, . . . , ty» where s0, . . . , sl are the positive integers assigned to the sym­
bols SQ, . . . 9Sj and p0, pl9 p2,.. . are the consecutive prime numbers
2, 3, 5, . . . (as in Godel's numbering [1931]).

Now let me pin down in arithmetical terms what an algorithm for comput­
ing the values of a functional <f>(@; 2Ï) does. The 0 may be function variables
or fixed functions. Now, unless 21 is empty and © are fixed, we have an
infinite class of questions "What is <f>(0; 20?", determined by the various
choices of tuples of natural numbers as values of the variables 2t, and, if the
0 are not fixed, of tuples of functions as their values. We select a particular
question of this class by naming (the values of) (0; 21). I shall gain some
space for maneuver by using (0; 21, 0) instead. The 0 conveys that we are just
about to start a computation by our algorithm. And after a situation (with a
complex of symbols) has been established by the first step, or reestablished by
a later step, that situation will be represented by (0; 21, b) where b is the code
(> 0) for the complex of symbols then before us. As you see, I take 0, 21 to
be still directly available after each step (although alternatively the 21 could
be represented within the b). By (c) (in the cited paragraph), the algorithm
"will enable us to recognize when a situation is reached in which the answer is
before us, and to read it off then". So the algorithm must provide us with a
functional x (f°r which we already know how to get the values) with the
following features. When the symbol complex before us is coded by b (> 0),
x(0; 21, b) = 0 if the answer is not yet before us, and x(0; % b) = <f>(0; % b)
+ 1 if the answer <J>(0; % b) is before us; and x(®; % 0) = 0. And in the
case the symbol complex before us is coded by b (> 0) and x(0; % b) = 0,
by (b) the algorithm "will tell us what step to take next"; and likewise, by (a),
right after picking the (0; 21) the algorithm "will. . . tell us how to perform a
step, the first". So there is also a functional p (for which we already know
how to get the values) such that, when the symbol complex before us is coded
by b (> 0) and x(®; % b) = 0, then (0; 21, p(0; % b)) represents the next
situation with p(0; 21, b) coding the symbol complex in it; and likewise
(0; 2Ï, p(0; 21, 0)) represents the situation after the first step. For any (0; 21),
1 write <J>(0; 2Ï, 0) as synonymous with <f>(0; 21); and when b (> 0) codes the
symbol complex in the situation after any step in the application of the

52 STEPHEN C. KLEENE

algorithm begun by picking (©; 51), I write <|>(0; % b) for the answer toward
which (hopefully) we are being led. Thus, above, when the answer is before
us, I wrote it <J>(0; 31, b). Now everything can be brought together into an
equation for a functional <J>(0; 3C, b\

*f«. 9f M ~ / * (0 ; *' **> *> *» i f ^ *> * > = °'
<HU, *, *j _ j x (0 ; ^ >z>) ^ j .f x (@ ; ^ ft) > a

^ cs(x(0; *, b\ « 0 ; 31, P(0; a, b)\ x(0; «, ft) - 1). (13)
This fits the first recursion theorem (12) with "21, ft" as its "31". And the
functional <J>(0; 31) for which we had the algorithm is

<f>(0;3ï)^<H0;3r,O). (14)
When I described an algorithm above ("An algorithm is . . . "), I had not

yet introduced partial functionals. Now, even when <f>(0; 31) is total (i.e.
completely defined), x(0; % ft) and p(0; 31, ft) may not be total. They only
need to be defined, with a given (0; 31), for the ft's for which we need them in
pursuing the algorithm; specifically, for 0, ft0 = p(0; 31, 0), bx »
p(0; 3Ï, ft0),... up to the first bx such that x(0; % bx) > 0 (inclusive for x>
exclusive for p). When <>(0; 31) is not total, its indefinition for a given (0; 3t)
may come about through indefinition of some needed value of the x or p, or
through there being an infinite sequence ft0, bl9 . . . with x(0; 31, bx) = 0 for
all x. For a partial functional <f>(0; 31), in my description of an algorithm each
of (a), (b) and (c) should be qualified by adding "if the question selected has
an answer".9

Because an algorithm can be thus analyzed as resting on the application of
(13) with functionals x and p for which we already know how to get the
values, I am led to argue that, if we start out with the functionals that we
must regard as known initially, and repeatedly use (12) with \p composed from
the functionals we have already, followed each time if necessary by further
steps of composing functionals, we will get all the functionals for which there
are algorithms.

What functionals should we start with? We know the natural number
sequence 0, 1 (= 0'),. . . , a, a\ . . . by its generation from 0 using the
successor operation '. Surely then we know the following functionals:10

<J>(0; 31) c* 0. S2.0

<J>(0; a, 93) ^ a. S3.
<K0; a, 93) 2* a' [- * + !] . S1.0

4>(G; a, 33) c* a - 1 - \ Sl.l
ifa = 0

Thus, we know outright 0 (as a constant functional); and, given a number
argument a, we can have it as an identity functional, also its immediate

9However by the result embodied in (15)—(17) below, the x and p can be picked so that, when
0 is empty or consists of total functions only, they are total and only (c) needs to be qualified
(indefinition coming about then only by having (x)x(0; % bx) - 0).

10The designations "S2.0", "S3", etc. for these schemata are the ones used in my [1978], [1980].

THE THEORY OF RECURSIVE FUNCTIONS 53

successor a'9 and also a — 1 which is its immediate predecessor if it is > 0.
These are fundamental to finding our way around in the natural number
sequence. Furthermore, we can assume we will always know whether we have
before us 0 or a successor, and act accordingly. Acting accordingly can
consist in then writing the respective one of two given numbers b and c. So
we adopt the schema

<H0; *, *, c, 93) c* cs(«, b9 c) \=lb i f a ~ ° ' S5.1
if a > 0

Let 0 = (Bl9 . . . , Bj) be variable or fixed functions of ml9 . . . , m, varia­
bles, respectively. Then (for t = 1, . . . , /) Bt shall be used only by taking its
value (i.e. the value of whatever function we have at the moment as the value
of Bt9 if 0t is not fixed) for a given wr-tuple of arguments for which it is
defined. Thus we have the schema

<H0; 33, Œ) ^ 0,00) SO.

where 33 consists of mt variables. It is fundamental to this theory that a
function variable (or an assumed fixed function) Bt is used only thus. We
utilize no global information about the 0r We only grope for one value at a
time, by using SO with a given m,-tuple of values of 33.11 Turing [1939], in a
somewhat different context, described this as appealing to an oracle for the
function Bt9 who, questioned with a tuple of arguments, reveals the corre­
sponding value.12

These are what we must start with.
Furthermore, we want to be able at any stage to throw together functionals

already available to us in any combinations, under the usual practice with
notation for functions (composition of functionals). E.g. if we already have <f>,
i//, x as known functions of 2, 1, 1 variables, respectively, <|>(<j>(i//(&), x(a))>
\p(b)) is a known function of a, b. The rule for computing it can be written in
closed form (with no need for a new recursion), thus: having picked values of
a and b9 compute \p(b) and x(a)> caU *ne results c and d; then compute
<f>(c, d)9 call the result e; and finally compute $(e9 c). This kind of definition is
called "explicit definition". It is easily seen (in my [1978, 3.1]) that our class
of functionals becomes closed under explicit definition when we add the
following schemata in which *p and x are to be previously defined functionals:

<J>(0; 8Ï) ~ ^/(0; x (0 ; 9t)> W). S4.0

<J>(0; 80 =* *K©; «i) S6.0

where 81 comes from %x by moving one of the variables in 8lj to the front of
the list. The second of these schemata, S6.0, offsets the limitation that some of

u So when we have completed the computation of a functional ^(0; 2() with 9t one of its
function arguments ©, we will have used via SO the values of 0t only for certain m,-tuples of
numbers as its arguments. The result will then be good also with 9t replaced by the partial
function Bt which coincides with Bt for those m,-tuples of arguments and is undefined for all other
/^-tuples; and likewise by every extension of Br This constitutes a monotonicity property of our
functionals.

12Turing dealt with (total) number-theoretic properties (predicates) of one variable, rather than
with partial functionals of / function and n number variables.

54 STEPHEN C. KLEENE

the schemata above have been stated relative to a certain ordering of the
variables; e.g. in S3, a is the first variable. It is also essential here that the
schemata have been stated so that a functional <K®; $0 can be had also as
<J>(@; % S3) with additional variables 93 (the lists of variables in our schemata
are open ended). Identifications of two occurrences of a variable are effected
using S4.0 together with S3 and if necessary S6.0.

Now let us start with the class of the functional definable by repeated uses
of the schemata I have now listed. Thus a functional <J> is in this class if </> is <t>p

where <>!,..., <j>p are successive functionals, each one fy (i = 1,. . . ,p)
defined by a schema, either outright (as by S2.0, S3, etc.) or from one or two
of the preceding functionals (as by S6.0, S4.0). Then apply the first recursion
theorem (12) as a schema

</>(0; 2T) a* xp(\% <J>(0; 51), 6; 21), Sll.
with \p in the aforesaid class. Adding this <j>, and using explicit definitions
anew, we have an in general larger class of functionals *// available for a
second application of the first recursion theorem Sll; and so on.

I claim there is no way to establish an algorithm for a functional <f>(0; 21)
which cannot thus be analyzed as the result of a finite number of applications
of the first recursion theorem, after introducing our initial functionals, and
with preceding, intervening, and final uses of explicit definition. I call the
functionals <J>(0; 21) so obtainable the partial recursive functionals.

We saw earlier that a primitive recursion can be construed as a simple
application of the first recursion theorem. Suppose we add to our Hst of
schemata the schema of primitive recursion (for 0 empty, (2) or (10) above)

<t>(0; 0, 33) =* *K0; ») , S 5

4>(0; a', 33) =* x(®; <*, <H©; <*> ®), »)•
If we then omit the first recursion theorem as a schema Sll (or equivalently,
without adding S5 use Sll only to effect primitive recursions), we generate a
smaller class of functionals (all totally defined if the functions 0 are), which I
call the primitive recursive functionals.13

How often may we need to use the first recursion theorem Sll (our most
powerful method of definition) other than, if we do not have S5 as a separate
schema, in defining primitive recursive functionals? With a given list 0 of
function variables (as fixed by / and ml9 . .., m,), only once!14 There is a
fixed primitive recursive functional i//* such that, applying the first recursion

13For 0 consisting of total functions only, this is in my [1978, p. 213].
14The question was asked by Andrei Ershov at the 1979 Urgench Symposium, and answered

by me there (cf. [1981b, §5]) but without mentioning that (when S5 is separately available) we do
not need different applications of SI 1 for the various lists 91 of number variables, as comes out of
my [1978, 3.2]. Indeed, with a little more work, we can get by with just one use of the recursion
theorem (when S5 is separately available) for all lists 0 (as well as for all lists ST). To do this, we
represent lists 6 of / functions of mx,..., mt variables by single one-place functions <0>*, just
as in (16) we represent lists aït..., an of n numbers by single numbers (ah . . . , a„>, where
*/ - (<*i> . . . , * „ » , for / - 1 , . . . , n, using my [1952, p. 230, # 19] (and (0), - 0 for all i). If z is
an index of a functional « 0 ; 2Ï) where 0 is / functions of Wj mt variables, the / and
m i , . . . , / « / are given by z. Now, e.g. with / — 3, m1 — 2, m2 • 3, m3 — 1, we can take

THE THEORY OF RECURSIVE FUNCTIONS 55

theorem to define

<t>*(S; z, a9 b) ^ ^*(Xzab <J>*(0; z, a, b)9 0 ; z, a9 b) (15)

and putting for each n (where <tfj,. . . , 0W> = /?o' * • • • A^-i)

{ z } 0 ^ , . . . , an) « <*>*(©; z,<*i> • • •, *„>> 0), (16)

each partial recursive functional <>(©; al9... 9 an) is given for some fixed z as

•(8;«i ^ « W V i 4 (IT)
The method of the proof is this. A partial recursive functional
<f>(0; al9 . . . , an) is defined by a sequence of schema applications, whereby
<>!,. . . , «^ with <f> = «^ are defined successively. A system of indexing can be
established so that an index z of <f> represents this sequence of schema
applications (details in my [1978, 1.3]), and thus encapsules the definition of
</>. Now, if we take z as a variable, we can devise an algorithm which is an
algorithm for all algorithms (with the list 0): a universal algorithm.15 In some
detail: Having an index z, we can give numbers e (called Gödel numbers in
[1978, 3.2]) to expressions (0-expressions in [1978, 2.2]) such as arise in
computing the functional <f>(0; al9. . . 9 an) with the index z for given values
of 0, al9 . . . , an. We can further build the Gödel numbers e into codes b > 0
for the complexes of symbols in computational situations (computations not
necessarily completed, in the terminology of my [1980, 7.2]). Now there are
primitive recursive functionals x*(®5 z> a> *) anc* P*(0; z> <*> b) with the fol­
lowing properties. Take any choice of (0; z, a), i.e. of values of the variables
0 , z, a9 to select a question for our universal algorithm, 0 being / functions of
ml9 . . . , mt variables respectively. If z is an index of a partial recursive
functional <J> of / function variables with ml9 . . . , mt number variables respec­
tively and n number variables (if so, n is given by z), then x*(®î *> a, 0) = 0
and p*(0; z, a9 0) is the code of the computation just begun with
<^(A)0, . . . , p*_x) as the initial 0-expression.16 Thus we take 0 O ° , . . . , P*_x as
the formal number variables for the functional <f> = <j>p in whose computation
for al9. . . , an as their values (and for 0 as chosen) we are interested. For
a > 0, we determine al9 . . . , an from the chosen a by writing a =
(al9 . . . , ak} with a k > n9 if necessary by taking at = 0 for all sufficiently
big i < n = k; for a = 0, we take ax = . . . = an — 0. In the said computa­
tion, we shall need no other number variables than P$, . . . , P^-u an(* w e

shall assign them al9 . . . , an as their respective values throughout. If z is an
index of a partial recursive functional <f> of / function variables with

<e>*(a) c* *,((*)„ (0)2) if (a)0 - 0, B2((a)i> («)* (*)3) * (*)o - 1, *3((*)i) * (*)o > 2. This
spreads the values, and instances of indefinition, of 9lf 02, 0$ on disjoint subsets of the domain of
<8>*, unlike the method used (with total one-place functions) in [1959, 2.1]. Now 0y — Xab
< e > * « 0 , a , 6 » , $2 = \abc <0>*«1, a, b, c » , 03 - Xa < 6 > * « 2 , Ö » . In (15) "0" becomes
simply "$" with 0 a one-place function, the right side of (16) becomes $*«6>*;
z, < « ! , . . . , a„>, 0), and (17) is unchanged.

15Universal algorithms (in other representations) first appeared in my [1936] and Turing
[1936-7].

16Since the list 0, for each of 4>lt..., <f>p (where 4> - <j>p) is determined by the schema
applications, I omit "0," as argument of ^ in writing the 0-expressions ([1978, 2.2]).

56 STEPHEN C. KLEENE

mv . . . , W/ number variables and n number variables, and b > 0 is the code
of a computation begun with <t>p(Po,. . . , /?n°_i) under the assignment
©, a„ . . . , #„, then, if that computation is uncompleted, x*(®î z> a, 6) = 0
and p*(0; z, a, b) is the code of the computation immediately extending that
one (possibly undefined, if the 0 are not all total); and, if that computation is
completed, x*(0; z, 0, &) = 1 + (the value computed) and p*(0; z, a, b) = 0.
Otherwise, x*(®; z> a> *) — P*(0; £> #> *) = 0. We thus obtain a primitive
recursive functional */>* for (15), having the form on the right of (13) with our
primitive recursive x* and p* and with "z, a, b" as its "91, b*\ so that <t>* has
the property stated in (16)—(17).

An immediate consequence of the characterization by our schemata of all
the possible algorithms for computing functionals <|>(0; 91) with given lists of
function variables 0 and number variables 91 is that there are such function­
als, and, with 0 empty, functions, for which there is no algorithm: unconfut­
able functionals and functions. For, the characterization makes the class of
the algorithms as normalized in our way countable, while, even with 0 empty,
the class of the functionals <J>(0; 9f) is uncountable (assuming 91 not empty).

How simply can we define an unconfutable function? Take the case 0 is
empty and 91 is one variable a, so {z}0(av . . . , an) specializes to {z}(a).
Using (15)—(16) with n = 1, {z}(a) is defined exactly if the sequence
X*(z, <a>, /?*(0, z, a)), X*(*, <*>, fi*(l, *, «)), X*(', <*>, 0*0, *, *)),
where /**(0, z, a) = p*(z, <a>, 0) and /**(.*', z, a) •• p*(z, <a>, i8*(x, z, a));
has a member > 0. Thus (z}(a)-is-defined is expressible as (Ex)T(z9 a, x)
where T(z, a, x) is the primitive recursive predicate x*(z> <ö)> /**(*> >̂ ^)) >
0 and "(Ex)" expresses "there exists an x such that". Now if we define

t(a) = ({ a * (a) + l i f (£ x) r (a > a ' x> (C a s e !)» (18)
\ 0 otherwise (Case 2),

f is an uncomputable total function. For, if f were computable, then, for
some number z, Ç(a) = {z}(a) for all a; hence {z}(z) is defined, i.e.
(Ex)T(z, z, x); so (z}(z) = f(z) = {z}(z) + 1, a contradiction!

This brings us to the point which in other treatments led (long ago) to some
fundamental results on the foundations of mathematics. I shall quickly
recapitulate the arguments (much as in my [1957], [1958], [1964], [1967],
[1969]).

How does the definition (18) of £(a) fall short of providing an algorithm for
it? We would clearly have an algorithm for f if only we had one for deciding
which of the two cases applies. Thus there can be no algorithm for the
predicate (Ex) T(a9 a, x)\ This is a version of Church's theorem [1936]. We
have an undecidable predicate, obtained simply by prefixing an existential
quantifier (Ex) to the decidable predicate T(a, a, x).

It is easy to proceed from this result to two celebrated results concerning
formal systems.

I consider how certain propositions, depending on a parameter a, are
expressible by formulas in a suitable formal system. The system can be the
usual formal system of elementary number theory or various other systems.
In a suitable formal system, the propositions (Ex)T(a9 a> x) for a =
0, 1, 2, . . . will be expressed by respective formulas Aa (obtained from a by

THE THEORY OF RECURSIVE FUNCTIONS 57

an algorithm) such that Aa is provable if and only if (Ex)T(a9 a, x) (is true).
The "only if" is a consistency property (often reducible to what Gödel called
"w-consistency"). The "if comes about because a formal proof of Aa should
be obtainable, corresponding to the informal proof of (Ex)T(a9 a, x) which
consists in verifying by the decision procedure for T that T(a9 a, x) for the
given a and a suitable x.

This being the case for a formal system, the system is undecidable; i.e.
there is no decision procedure (Entscheidungsverfahren) for the provability of
any formula in the system. For, if there were, by applying it to the formulas
Aa (obtainable from a by an algorithm) we would have an algorithm for
(Ex)T(a, a9 x), which we just saw cannot exist. This reasoning can be used to
establish the undecidability of the usual formal system of elementary number
theory, and also of the pure first-order predicate calculus (a famous result of
Church [1936a] and Turing [1936-7]).

Consider the negations of Jhe propositions (Ex)T(a, a9 x)9 i.e.
(Ex)T(a9 a, x) or equivalently (x)T(a9 a9 x). In any of the aforesaid systems
in which the propositions (Ex)T(a9 a9 x) are expressed by closed formulas Aa

(not the predicate calculus, where Aa have free predicate variables) and which
have the symbol -i for negation, the propositions (x)T(a9 a9 x) are expressed
by the formulas - i^, . Suppose that (as a consistency property) -\Aa is
provable only if (x)T(a9 a9 x). I shall argue that it is not the case that, for
every a9 -nAa is provable if (x)T(a9 a9 x). For, as remarked above, the
accomplishment of a formal system is to provide an algorithm for the notion
of proof. Applying this to the formulas -iAa9 and using the algorithm for
getting these from a9 the predicate -i ^4a-is-provable is expressible in the form
(Ex)R(a9 x) where R(a9 x) is the decidable predicate that x is the code (say a
Gödel number in the manner of Gödel [1931]) of a proof of -\Aa. Now if, for
every a9 -nAa is provable if (as well as only if) (x)T(a9 a9 x)9 we would have
that, for all a9 (x)T(a9 a9 x) = (Ex)R(a9 x). But (x)T(a9 a9 x) is not expressi­
ble in the form (Ex)R(a9 x) with R decidable. For if it were, we could decide
whether or not (Ex)T(a9 a9 x) by looking for the least x (which must exist by
the law of the excluded middle) such that either T(a9 a9 x) or R(a9 x)9 and
answering "yes" or "no" according to whether, for that x9 T(a9 a9 x) or
R(a9 x). This is a generalized version (given in my [1943], and less simply in
my [1936]) of the famous theorem of Gödel [1931] on the existence of
formally undecidable sentences in Principia Mathematica and related systems
(the first of the two incompleteness theorems of [1931]): for some number/?,
the formula -\Ap is unprovable, and also true (i.e. (x)T(p9p9 x)) so that Ap is
also unprovable.17 The theorem in this version is generalized from Gödel
[1931], since it applies outright to all formal systems which simply are
adequate for expressing some propositions of elementary number theory

17What I have just established is that (<*)[(*) r(tf, a, x)^>(-\Aa is provable)]. This makes it
absurd that such a p should not exist. To obtain such a p directly: With R as above,
the-least-jc-such-that-/Ê(a, JC) is a partial recursive function of a with index/?, and (Ex)T(p, a, x)
== (-\Aa is provable). It follows easily that (x)T(p,py x) and that -\Ap and Ap are unprovable
(cf. my [1967, p. 251, SECOND PROOF], or [1957] or [1958]).

58 STEPHEN C. KLEENE

(correctly, i.e. with the requisite consistency properties) and satisfy the struc­
tural requirement that there is an algorithm for being a proof. Here there is
no possibility of escaping the incompleteness (as by seeking to devise a formal
system quite remote in its details from Principia Mathematica), since the
features of formal systems just named are objectives of ours in formalizing
theories including elementary number theory. In this version, the formally
undecidable sentences Ap (with different numbers p for different formal
systems) express values of the preassigned number-theoretic predicate
(Ex)T(a, a, x). As I expressed it in [1943], there is neither a complete
algorithmic theory for this predicate (i.e. (Ex)T(a, a, x) is undecidable), nor
(by the generalized Gödel theorem) a complete formal deductive theory.

These were among the results that ushered in the second half century
(nearly) of recursive function theory.

Much has happened since then. Many of the newer developments have
been associated with the use of function variables, as illustrated above by the
0 Y

To begin with something not so new, take the idea of a total recursive
functional <|>(0; W) and specialize to the case of one assumed function 0 and
that one-placed and total and one number variable a. By <f>(0; a) being
recursive we define when one one-place number-theoretic function <f> = Xa
<!>($; a) is recursive in another 0 = Xa 9(a). Here <f> and 0 can be the functions
(taking only 0 and 1 as values) which represent two predicates P(a) = <f>(a) =
0 and Q(a) = 0(a) = 0. The recursiveness of P in Q, formulated differently
by Turing in [1939], gives a reducibility notion that was used by Post [1944],
[1948] in studying the number-theoretic predicates. Slightly earlier, in my
[1943] I described a hierarchy of number-theoretic predicates in which two
positions are occupied by the decidable predicates R(a) and the predicates
expressible in the form (Ex)R(a, x) with R decidable, which we encountered
a moment ago. This hierarchy can be extended way upward. One of the ways
of extending it beyond arithmetic is to use variables of successive higher finite
types 1, 2, 3 , . . . consisting of the total one-place functions over the preced­
ing type to the natural numbers (where type 0 is the natural numbers). I took
the step to include type 1 (of which a version is given above) in [1950] with
[1955], [1955a], [1955b]; and to all finite types in [1959] and [1963]. What I
have drawn upon in today's lecture is the use of the first recursion theorem as
one of a list of schemata in my revisitation of the resulting generalized
recursion theory in [1978] and [1980]. Here I have focussed on what comes
out of that when we specialize to using only number variables and number-
theoretic function variables. This concludes my discussion of elementary
recursive function theory from a higher standpoint.

REFERENCES

ACKERMANN, WlLHELM

[1928] Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann. 99, 118-133.
CANTOR, GEORG

[1874] Uber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen, J. Reine
Angew. Math. 77, 258-262.

THE THEORY OF RECURSIVE FUNCTIONS 59

[1895-7]

[1933]

[1936]
[1936a]

Beitrage zur Begrundung der transfiniten Mengenlehre, Math. Ann. 46 (1895), 481-
512; 49 (1897), 207-246.

CHURCH, ALONZO
[1932] A set of postulates for the foundation of logic, Ann. of Math. (2) 33, 346-366.

A set of postulates for the foundation of logic {second paper), Ann. of Math. (2) 34,
839-864.
An unsohable problem of elementary number theory. Amer. J. Math. 58, 345-363.
A note on the Entscheidungsproblem, J. Symbolic Logic 1, 40-41; Correction,
101-102.

DEDEKIND, RICHARD

[1888] Was sind und was sollen die Zahlenl Braunschweig.
GÖDEL, KURT

[1931] Uber formal unentscheidbare Sàtze der Principia Mathematica und verwandter Sys­
tème. I, Monatsh. Math. Phys. 38, 173-198.

[1934] On undecidable propositions of formal mathematical systems, mimeographed notes by
S. C. Kleene and J. B. Rosser on lectures at the Institute for Advanced Study, 1934;
reprinted in Martin Davis, The undecidable, basic papers on undecidable propositions,
unsohable problems and computable functions, Raven Press, Hewlett, N. Y., 1965,
pp. 39-74.

HILBERT, DAVID

[1918] Axiomatisches Denken, Math. Ann. 78,405-415.
[1926] Über das Unendliche, Math. Ann. 95, 161-190.

KLEENE, STEPHEN, C.

[1935] A theory of positive integers informal logic, Amer. J. Math. 57, 153-173; 219-244.
General recursive functions of natural numbers, Math. Ann. 112, 727-742.
\-definability and recursiveness, Duke Math. J. 2, 340-353.
On notation for ordinal numbers, J. Symbolic Logic 3,150-155.
Recursive predicates and quantifiers, Trans. Amer. Math. Soc. 53,41-73.
Recursive functions and intuitionistic mathematics, Proc. Internat. Congr. Math.
(Cambridge, Mass., U.S.A., 1950), Amer Math. Soc., Providence, R. I., 1952,1, pp.
679-685.
Introduction to metamathematics, North-Holland, Amsterdam, P. Noordhoff,
Groningen and D. Van Nostrand, Toronto and New York.
Arithmetical predicates and function quantifiers, Trans. Amer. Math. Soc. 79, 312-
340.
On the forms of the predicates in the theory of constructive ordinals {second paper),
Amer. J. Math. 77,405-428.
Hierarchies of number-theoretic predicates, Bull. Amer. Math. Soc. 61,193-213.
Mathematics, foundations of, Encyclopaedia Britannica, 1957 and subsequent print­
ings. Beginning with 1974, the article was reworked to replace Kleene's section on
intuitionism by a fuller treatment by Solomon Fefermann.
Mathematical logic constructive and non-constructive operations, Proc. Internat.
Congr. Math. (Edinburgh, 1958) (J. A. Todd, éd.), Cambridge at the University
Press, 1960, pp. 137-153.
Recursive Junctionals and quantifiers of finite types. I, Trans. Amer. Math. Soc. 91,
1-52.
Recursive Junctionals and quantifiers of finite types. II, Trans. Amer. Math. Soc. 108,
106-142.
Computability, The Voice of America Forum Lectures, Phil, of Science Series, no. 6;
reprinted, Philosophy of Science Today (Sidney Morgenbesser, éd.), Basic Books,
New York and London, 1967, pp. 36-45.
Mathematical logic, Wiley, New York, London and Sidney.
The new logic, Sigma-Xi-RESA National Lecture, Southeast Tour (Spring 1969),
Amer. Sci. 57, 333-347.
Recursive Junctionals and quantifiers of finite types revisited. I. Generalized Recur­
sion Theory. II, Proc. 1977 Oslo Sympos. (J. E. Fenstad, R. O. Gandy and G. E.

[1936]
[1936a]
[1938]
[1943]
[1950]

[1952]

[1955]

[1955a]

[1955b]
[1957]

[1958]

[1959]

[1963]

[1964]

[1967]
[1969]

[1978]

file:///-definability

60 STEPHEN C. KLEENE

Sacks, eds.), North-Holland, Amsterdam, New York and Oxford, pp. 185-222.
[1980] Recursive functionals and quantifiers of finite types revisited, II, The Kleene Sym­

posium (Madison, Wis., June 1978) (J. Barwise, H. J. Keisler and K. Kunen, eds.),
North-Holland, Ansterdam, New York and Oxford, pp. 1-29.

[1981a] Origins of recursive function theory, 20th Annual Sympos. Foundations of Computer
Science (San Juan, Puerto Rico, 1979), Institute of Electrical and Electronics
Engineers (IEEE 79CH 1471-2C), pp. 371-382; Annals of the History of Comput­
ing, 1981 (to appear).

[1981b] Algorithms in various contexts, Proc. Sympos. Algorithms in Modern Mathematics
and Computer Science (dedicated to Al-Khowarizmi) (Urgench, Khorezm Region,
Uzbek, SSSR, 1979), Springer-Verlag, Berlin, Heidelberg and New York, 1981 (to
appear).

KLEIN, FELIX

[1908-9] Eiementarmathematik vom hoheren Standpunkte aus, Lithographed, Leipzig; En­
glish transi, from 3rd German ed. (E. R. Hedrick and C. A. Noble, eds.),
Macmillan, New York, 1932.

KRONECKER, LEOPOLD

[1886] The saying quoted in the third paragraph of the text was spoken in his lecture on 21
September 1886 before der Deutschen Naturforscherversammlung zu Berlin,
according to H. Weber, Leopold Kronecker, Math. Ann. 43 (1893), 1-25 (cf. p. 15).
Also cf. Leopold Kronecker's Werke, hrg. K. Henzel, vol. 3, pt. 2, p. 203.

LÖWENHEIM, LEOPOLD

[1915] Über Möglichkeiten im Relativkalkül, Math. Ann. 76,447-470.
MARKOV, A. A.

[1951] Theory of algorithms, Amer. Math. Soc. Transi. (2) 15 (1960), 1-14.
[1954] Theory of algorithms, The National Science Foundation, Washington, D.C., the

Department of Commerce, U.S.A., and the Israel Program for Scientific Transla­
tion, Jerusalem, 1961.

PEANO, GUISEPPE

[1889] Arithmetics principia, nova methodo exposita, Turin, Bocca.
[1891] Sul concetto di numero, Rivista di Matematica 1, 87-102; 256-267.

PÉTER, ROZSA

[1934] Uber den Zusammenhang der verschiedenen Begriffe der rekursiven Funktion, Math.
Ann. 110, 612-632.

[1935] Konstruktion nichtrekursiver Funktionen, Math. Ann. I l l , 42-60.
[1936] Über die mehrfache Rekursion, Math. Ann. 113,489-527.

POST, EMIL L.

[1936] Finite combinatory processes-formulation 1, J. Symbolic Logic 1, 103-105.
[1943] Formal reductions of the general combinatorial decision problem, Amer. J. Math. 65,

197-215.
[1944] Recursively enumerable sets of positive integers and their decision problems, Bull.

Amer. Math. Soc. 50,284-316.
[1948] Degrees of recursive unsolvability, abstract (preliminary report) in Bull. Amer. Math.

Soc. 54, 641-642.
SCHRODER, ERNST

[1895] Vorlesungen über die Algebra der Logik {exakte Logik), 3 Algebra und Logik der
Relative, part 1, Leipzig.

SKOLEM, THORALF

[1923] Begrundung der elementaren Arithmetik durch die rekurrierende
Denkweise ohne Anwendung scheinbare Veranderlichen mit unendlichem Ausdeh-
nungsbereich, Skrifter utgit av Videnskapsselskapet i Kristiania, I. Matematisk-
Naturvidenskabelig Klasse 1923, no. 6; English transi., Jean van Heijenoort, From
Frege to Gödel, a source book in mathematical logic, 1879-1931, Harvard Univ.
Press, Cambridge, Mass., 1967, pp. 302-333.

THE THEORY OF RECURSIVE FUNCTIONS 61

SMULLYAN, RAYMOND M.

[1961] Theory of formal systems, Annals of Math. Studies, no. 47, Princeton Univ. Press,
Princeton, N. J.

TURING, ALAN MATHISON

[1936-7] On computable numbers\ with an application to the Entscheidungsproblem, Proc.
London Math. Soc. (2) 42, 230-265; A Correction, 43 (1937), 544-546.

[1939] Systems of logic based on ordinals, Proc. London Math. Soc. (2) 45, 161-228.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706

