
886 BOOK REVIEWS 

you are immersed, though perhaps only up to your knees, in the sea of 
categories and functors. Similar remarks apply to the definition of operator 
ideals, which takes you in up to your waist, and then thinking about the 
relation between spaces of linear maps, summable operators, quotients, sub-
spaces and duals-well perhaps one should learn to swim after all. 

For the novice there is of course a big difference between swimming in 
your depth where, if in trouble, you can revert to a more familiar attitude, 
and moving into deeper water. In the book under review the change occurs 
about 2/3 of the way through, at the beginning of Chapter 4. The first three 
chapters cover familiar material about Banach spaces, tensor products and 
modules over Banach algebras though there are categorical overtones. The 
remainder deals with material which will be new to many functional analysts. 
Just as in Banach algebra theory the basic object of study is the algebra of 
bounded operators on a Banach space and its closed subalgebras, in Banach 
category theory the basic object is some set of Banach spaces and the 
bounded maps between them. Obviously the composition product of two such 
maps is not always defined but algebraic category theory is designed to cope 
with exactly this problem. Representations of Banach algebras, that is Banach 
modules, from the more familiar theory are replaced by functors from the 
Banach category into the category of all Banach spaces. Notions such as 
tensor products extend to the more general situation too. 

One advantage of discussing a subject so ill thought of as "general 
nonsense" is that it doesn't need much to show that the reputation is 
undeserved and the authors certainly achieve this and more. On the other 
hand it is fair to say that the subject is mainly descriptive and does not solve 
any pre-existing problems-as did the Banach algebra approach to Wiener's 
theorem for example. For anyone curious to see how category theory can be 
applied to the basic structures of functional analysis this is a lively introduc­
tion with plenty of applications to concrete situations. The reader unfamiliar 
with the basic notions of category theory (e.g. category, small category, full 
subcategory) will need to familiarize himself with them from another source 
as they are not explained here-an unfortunate blemish but not a fatal flaw. 
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The general topology of product spaces is a theory which bristles with 
counterexamples. Think of a good question concerning normality, paracom-
pactness or the Lindelof property in product spaces, and chances are that an 
example, rather than a theorem, will settle the matter. Many of the most 
durable of these examples are built using lines of various kinds. Must the 
product of two paracompact spaces be paracompact? No, consider the square 
of the Sorgenfrey line-it's not even normal [S]. Must the product of a 
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paracompact space and a separable metric space be paracompact? No, 
consider the product of the Michael line with the usual space of irrational 
numbers-it's also not even normal [Mij. Must the product of two paracom­
pact spaces be paracompact provided it is normal? Consistently no, since by 
mixing in a little modern set theory (specifically, Martin's Axiom plus the 
negation of the Continuum Hypothesis) Przymusinski found a subspace of 
the Sorgenfrey Une whose square is normal but not paracompact [P], And in 
that same set theoretic setting, Nyikos [Ny] used another kind of line to settle 
a question of Katëtov, exhibiting a compact, nonmetrizable Hausdorff space 
X whose square is hereditarily normal. (Katëtov had observed that if X3 is 
hereditarily normal for a compact space X, then X must be metrizable.) 
Further examples of the uses of lines in product theory appear in [Al] and 
[MiJ. 

All of the lines mentioned above arise from the following general construc­
tion. Beginning with a linearly ordered set (X, <) , select four disjoint sets 
R9 E9 ƒ, and L which cover X. Construct a topology for X by: (1) isolating all 
points of /; (2) using all intervals of the form [x9 b) as a neighborhood base at 
x in case x e R; (3) using all intervals of the form (a, x] as a neighborhood 
base at x in case x B L; and (4) using all intervals of the form (a9 b)9 where 
a < x < by as a neighborhood base at x in case x e E. The resulting space is 
denoted by GO(R9 E9 ƒ, L) and is called a generalized ordered space. To 
obtain the Sorgenfrey line, let X = R, the usual set of real numbers, and form 
G0(R, 0 , 0 , 0 ) . To obtain the Michael line, construct GO(0, Q, P , 0 ) 
where Q and P are the sets of rational and irrational numbers respectively. 

It seems that Cech introduced generalized ordered spaces in his seminar 
during the 1930's. Since the earliest days of this century, mathematicians had 
been studying linearly ordered topological spaces, which are obtained by 
equipping linearly ordered sets with the usual open-interval topology. It is 
easy to see that if a linearly ordered set (X9 < ) is equipped with the 
open-interval topology and if Y c X9 then the relative topology which Y 
inherits from X need not coincidewith the open-interval topology induced on 
Y by the restriction of < to Y. Cech observed that the generalized ordered 
spaces are precisely those spaces which can be topologically embedded in a 
linearly ordered space, and that the generalized ordered class is a hereditary 
class. 

A generalized ordered space gets its structure from the sets R9 E9 7, and L 
used in its construction, of course, but also from the linear ordering of the 
underlying set which can itself be quite complex. The most familiar linearly 
ordered sets-the set R and the set [0, w^ of countable ordinals-have order-
ings which are uncharacteristically simple. More complex orderings can arise 
from lexicographic products. For example, with P, Q and coj as above, and 
0 < A < w„ consider the set X(X) consisting of all functions /: [0, A]-»R 
which have t(a) e Q if a < X and /(A) G P. Let X - U {X(\): \ < ux is a 
limit ordinal}. Order X lexicographically, i.e., if s ¥* t belong to X9 let a be the 
first ordinal where s(a) ^ t(a) and define s < t if s(a) < t(a) in the usual 
ordering of R [Be]. Another interesting linearly ordered set which can arise 
from a lexicographic product is an rij-set, i.e., a linearly ordered set X with 
the property that if A and B are countable subsets of X which satisfy a < b 
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for each a G A and b E B, then there are points/?, q E X having a <p < q 
< b for each a G A and each b E B [GJ]. Much further from the real world, 
one might find linear orderings which yield Souslin lines (linearly ordered 
spaces which are not separable and yet in which every disjoint family of open 
intervals is countable), but whether or not such things exist depends on your 
set theory [RJ. 

Given a topological space, how can one recognize whether its topology can 
come from a linear ordering? Eilenberg [E] characterized connected, locally 
connected spaces whose topology is the open-interval topology of some linear 
ordering: they are precisely the spaces X for which the set {(x,y): x *£y) is a 
disconnected subspace oîX X X. Rudin [RJ answered the question "When is 
a subspace of R orderable (perhaps by some other ordering than the one 
inherited from R)?" and announced a general solution to the question "When 
can the topology of a generalized ordered space be the open-interval topology 
of some linear ordering?" Herrlich [H] characterized metric spaces which are 
orderable. And finally, van Dalen and Wattel [vDW] solved the general 
orderability problem by proving (1) that a Hausdorff space is a generalized 
ordered space if and only if it has a subbase S = %x u S2 where each S,. is 
linearly ordered by inclusion and (2) that a Hausdorff space is linearly 
orderable if and only if it has a subbase S — %x u §2 where each S, is 
linearly ordered by set-inclusion and has the property that if T E S, satisfies 
T = n {S E S,: T c S, T ^ S) then Tmust also satisfy 

r = U {S E S,.: S c T9S¥*T}. 

Generalized ordered spaces are well behaved from the viewpoint of general 
topology. Three examples of this good behavior concern Dowker spaces, 
monotonie normality and the Dugundgi extension theorem. Any generalized 
ordered space has the property that its product with the closed unit interval is 
normal, so there are no generalized ordered Dowker spaces [Ba]. Second, 
every generalized ordered space is monotonically normal, i.e., for each pair 
(A, U) where A is closed and U is open and A c U9 there is an open set 
G(A, U) satisfying A c G(A, U) c c\(G(A, U)) c U and satisfying G(A, U) 
C G(B9 V) whenever A c B and U c V [HLZ]. Third, every generalized 
ordered space satisfies a strong form of the Dugundji extension theorem, i.e., 
if A is a closed subspace of a generalized ordered space X, then there is a 
linear, norm-preserving extender e: C*(A) -» C*(X), where C*(A) and C*(X) 
denote the Banach spaces of continuous, bounded, real-valued functions of A 
and Xy respectively, equipped with sup-norm [HL]. (All of these normality 
results use the Axiom of Choice in an obvious way and an old problem of 
Birkhoff [Bi] asks whether linearly ordered spaces are provably normal 
without that axiom.) 

The theory of generalized ordered spaces becomes less predictable when 
one turns from normality to metrization theory. The basic metrization theo­
rem for linearly ordered spaces asserts that a linearly ordered space is 
metrizable if and only if the diagonal {(JC, JC): X E X} is a G -̂subset of the 
product space X X X [L]. That result is definitely false in the wider class of 
generalized ordered spaces since one can easily observe that the Sorgenfrey 
line is not metrizable and yet has a G6-diagonal. (That observation leads to an 
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even more interesting fact: there is no linear ordering of R which yields the 
Sorgenfrey line as its open-interval topology.) The proper version of the 
(^-diagonal theorem for generalized ordered spaces was given by Faber in 
[Fa]: a generalized ordered space X is metrizable if and only if there is a 
sequence 8,, S2> • • • °* °P e n covers of X satisfying (1) for each p E X, 
H {St(/?, SJ: n > 1} - {p}, where St(/?, §„) = \J {G G §n: p G G), and 
(2) the set (p E X: {St(/?, ê„): « > 1} is not a neighborhood base at/?} is a 
a-discrete subset of X. Faber's result takes care of about half of the metriza-
tion theory for generalized ordered spaces. The monograph under review here 
studies much of the rest. 

Van Wouwe's monograph concentrates on generalized metric spaces called 
/?, M and 2-spaces, and perhaps a preliminary word about these types of 
topological spaces is in order here. We say that a completely regular space X 
is a/?-space [A] if there are collections %l9 3 Q , . . . of open subsets of the 
Cech-Stone compactification of X such that for each p E X9 0 ^ 
fi {St(/?, %n): n > 1} c X. We say that a space X is an Af-space [Mo] if 
there is a sequence J,, # 2 , . . . of open covers of X such that $n+x star-refines 
%n and such that if p E X and xn E St(/?, $n) for each n > 1, then the 
sequence <*„> has at least one cluster point in X. Finally, we say that a space 
A' is a 2-space [Na] if there is a sequence of locally finite closed covers Wv 

W2> • • • of X such that for each/? E X, the set 

C(p) » p | [F: for some n > 1,/? E F E #„} 

is countably compact and has the property that if U is open and contains 
C(/?), then for some n > 1, n {i7 E ^n: /? E F) c £/. In what sense might 
these three very technical-sounding types of spaces be called generalized 
metric spaces? First, every metric space is /?, M and 2. Second, each of the 
properties defining p, M and 2-spaces is a "factor" of metrizability in a 
nontrivial and useful theorem. For example, a space is metrizable if and only 
if it is paracompact, a/?-space, and has a G5-diagonal [Bo], [O], and a space is 
metrizable if and only if it is an Af-space having a point-countable base [F], 
[Mc]. Third, while many nonmetrizable spaces are />, M or 2-spaces (any 
locally compact group is all three, and any CW-complex is a 2-space), spaces 
which are p, M or 2 have enough structure to guarantee certain metric-like 
behavior, e.g., that the product of countably many spaces, each of which is 
paracompact and/?, M or 2, must be paracompact. 

In general, there is no relationship between /?-spaces and M-spaces. The 
first major result in van Wouwe's monograph establishes that in the class of 
generalized ordered spaces,/? implies M. (The same result for linearly ordered 
spaces has been independently obtained by Velichko [V].) The proof is 
natural and elegant. Given any generalized ordered space X9 van Wouwe 
constructs two quotient spaces gX and cX of X, both of which are again 
generalized ordered spaces, and a natural closed continuous mapping from 
gX onto cX. He then proves that X is a /?-space if and only if gX is 
metrizable, and that A' is an M-space if and only if cX is metrizable. Hence, if 
X is a/?-space, then cX is seen to be the image of a metrizable space under a 
closed, continuous mapping. While closed mappings cannot, in general, be 
counted on to preserve metrizability, they always preserve a weaker structure 
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called a semistratification which, for generalized ordered spaces, is known to 
be equivalent to metrizability. Thus, if X is a/j-space, then cX is metrizable so 
that X must be an espace . 

A second section of van Wouwe's monograph gives new proofs of a curious 
known result: a generalized ordered space is metrizable if and only if every 
subspace of it is either p or M [BeL]. The final section of the monograph 
attacks the analogous problem for 2-spaces: must a generalized ordered 
space be metrizable if each of its subspaces is known to be a 2-space? To 
date, this problem remains unsolved, even if one restricts attention to com­
pact spaces. Van Wouwe obtains several interesting reductions of the prob­
lem. For example, it would solve the general problem if someone would prove 
that every closed subset of a Lindelof generalized ordered space X must be a 
Ga-set, given that every subspace of A' is a 2-space. 
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Equations of evolution, by Hiroki Tanabe, translated from Japanese by 
N. Mugibayashi and H. Haneda, Monographs and Studies in Mathematics, 
No. 6, Pitman, London-San Francisco-Melbourne, 1979, xii + 260 pp., 
$42.00. 

Many mixed problems i.e. initial value-boundary value problems for partial 
differential equations can be written in the form 

du(t)/dt = A(u(t)),u(0)=f. (I) 

Here the unknown function u maps nonnegative time ^ G R + = [0, oo) into a 
Banach space X, A is an operator acting on its domain tf)(A) c X to X, and 
the initial data ƒ is in fy(A). The boundary conditions are absorbed into the 
description of ty(A), and saying that the solution takes values in fy(A) 
amounts to saying that the (time independent) boundary conditions hold for 
all t. We assume that A is a densely defined linear operator, and we are 
interested in the case when the problem (1) is well posed, i.e. a solution exists, 
it is unique, and it depends continuously (in a suitable sense) on the 
ingredients of the problem, viz. ƒ and A. When this is the case let T(t) map 
the solution at time 0 (i.e. f) to the solution at time / (i.e. u(t)). Then the 
uniqueness gives the semigroup property T(t)T(s) = T(t + s) for M 6 R + , 
and we have T(t) ="etA" at least formally; but in general^ is an unbounded 
operator so one must be careful. 

The Hille-Yosida-Phillips theory of (one parameter strongly continuous) 
semigroups of (linear) operators makes this all precise. The theory says that 
(1) is well posed iff it is governed by a semigroup T — {T(t): t E R + } iff A 
generates a semigroup T; and moreover, A generates a semigroup T iff A 
satisfies certain explicitly verifiable conditions. For instance, when the semi­
group is contractive i.e. || 7X0II < 1 for all f > 0, the exponential formula 

suggests that T can be recovered from A if (I — XA)~l is an everywhere 
defined contraction (i.e. ||(7 — \A)~l\\ < 1) for each \ > 0. In this case A is 
called m-dissipative, and this condition is both necessary and sufficient for A 
to generate a contraction semigroup. 


