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Physical mathematics has always been an important part of mathematics as 
a discipline which concerns itself with deepening and uncovering mathemati­
cal theorems by interpreting them in the light of applications to physics. Of 
course, in mathematics one is often faced with the challenge of putting a 
result in the right perspective ("what does this really mean?"), to look at it the 
right way; but even more so when it comes to relating the formulas to the 
"real world". Many an apology has been made on behalf of the cult of pure 
mathematics (pure almost in the sense of virgin, untouched by any reality but 
the mathematical), that here is where the beauty of the subject is found. This 
point of view is in turn still under fire from those advocating less abstraction 
and more solution in mathematics. I think there is an in-between, indeed I see 
a genuine interest in the mathematical community in applications of mathe­
matics, in combining abstract beauty with concrete power, and even remote 
hopes of assisting physics in its many struggles with fields and particles. 

Theoretical physics deals with building models of so-called physical sys­
tems; speaking of a physical system already breaks down the universe in two 
parts: the system plus a background (to the neglected or influencing the 
system in a given way). This jig-saw puzzle approach must add up to our 
given universe (the only true physical system: "les lois physiques concernent 
tous les mondes possibles, alors que le monde réel n'est tiré qu'à un seul 
exemplaire" (H. Poincaré))-a complicated verification by experimental 
physics. 

Perhaps the system to which most attention (and success) has been devoted 
is that of the Hydrogen atom: a point particle moving in R3 under the 
influence of a central force field with potential — r~\ r = (xj + x\ + x|)1 /2 . 
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Classically, each instant the system is in some (pure) state of position 
x = (*„ x2, x3) and linear momentum p = (P\>P2>PÙ* 

M= {(x,p)|x,pGR3 ,x^0) 
is called the phase space. The observables are functions on M such as 

h=\(p\+pl+pl)-r-x (energy) 

l = x X p (angular momentum) 
a = I X p + r_1x (Runge-Lenz vector). 

Relative to the Poisson parenthesis on M 

we see that 

{ M } - { A , ^ } - { / , , ^ } - 0 

Ci» h) - - ^ {h> "2} - ~<*3> W «2} - 2*/3 (1) 
where the last relations are cyclic in 1, 2, 3. The time-evolution of any 
observable ƒ = /(x(f), p(0) is given by 

In particular for x(/) this says that (for mass one) 

^ x ( 0 - -r(<r3x(0 (2) 

and it amounts to saying that the system evolves in time on M along the 
Hamiltonian vector field {A, •}. This is a typical classical Hamiltonian 
system with what seems to be an overly elaborate structure-after all, aren't 
we just supposed to solve (2)? Not quite, we are also interested in the 
symmetries of the system, and (1) tells us that 1 and a are preserved under the 
motion (a plane orbit with no precession). Also y » 1 + a and z = 1 — a 
restricted to the level surface A = -\ generate (under Poisson parenthesis) 
two mutually commuting Lie algebras of 50(3), and the same functions map 
the manifold ME of orbits in M of energy — \ one-to-one onto a direct 
product of 2 Riemannian spheres, so ME = S2 X S2. Thus the Hydrogen 
atom possesses not just the obvious S0(3)-symmetry but actually an S0(3) X 
S'0(3)-symmetry, which was not apparent just by looking at (2). In the 
quantum mechanical description of the system, we encounter the same 
observables, this time as selfadjoint linear operators on H = L2(R3) (the state 
space of Schrödinger wave functions), and also the same symmetries, replac­
ing the Poisson bracket by the commutator between linear operators. The 
negative energy spectrum (bound states) is { — n~2\n = 1, 2, 3 , . . . }, the 
group SU(2) X SU(2) acts on HB, the Hilbert space of bound states, and 
there is an essentially unique homomorphism from the semisimple Lie group 
SU(29 2) into the group of unitary operators on HB with the given action of 
tne subgroup U(l) X SU(2) X SU(2) (here U(l) gives the one-parameter 
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group corresponding to the energy). It is a curious coincidence that this 
unitary representation of SU(2, 2) is equivalent to the representation on the 
space of positive-frequency solutions to the wave equation on R3 X R 

3/2 dx\ dxj dxlr 

(or the analogous equation on R X S3). This is also in a certain sense the 
smallest unitary representation of SU(2, 2) (much like the defining represen­
tation of say SU(2) is for that group). 

The previous example (which forgot about the quantum structure of 
photons and electrons) touches (although lightly) on several of the mathe­
matical theories that we are to consider in connection with analysis, mani­
folds and physics. 

The title of the book under review invites many speculations; it espouses a 
good part of the library and of current research. Which then, are the areas of 
analysis, the theory of manifolds, and physics which have something in 
common? What should be included in a (l°n8 aiM* difficult) hypothetical 
graduate course taught under the same heading? 

From analysis I would first choose general integration theory [18] plus 
harmonic analysis on Lie groups (already an ambitious step indeed, but this is 
a good class)-mostly to account for representations of symmetry groups in 
quantum mechanics [14], [5], [23] and to get a close look at special functions. 
Then on to differential geometry [8], [6], not just to encompass space-times 
but more importantly with bundles, connections and complex manifolds in 
mind. Consider as an example the description of a Yang-Mills gauge field on 
an open set U in the flat space-time R3 X R: let ƒ(*) be a function (a physical 
field) on U with values in a complex vector space V (internal symmetry 
space) carrying a unitary representation of the (gauge) Lie group G. f(x) 
represents the field from entities such as mesons or quarks and V provides 
room for internal degrees of freedom of such particles (e.g. isospin for 
G — SU(2)). G acts in a natural way on f(x) viz. f or g e G and ir the 
representation in question 

ƒ(*)->«(*>/(*). (3) 
This is called a global gauge transformation as opposed to the local gauge 
transformation 

f(x)^n(g(xMx) (4) 

where g now may depend on JC. The minimal invariant subspaces of V axe 
thought of as the various types or families of particles making up the field 
f(x) (say families of different isospin). 

Starting (as is customary) from a Lagrangian density 

L - L(f(X), (?ƒ)(*)) 

where V denotes the gradient on £/, assumed to be invariant under all 
transformations (3), one wishes to modify L to become invariant under 
everything of the form (4). The answer is to replace the straight differentia­
tion V by a covariant differentiation 

D=V + ir(a(x)) (5) 
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so that 
L = L(f(x), (£>ƒ)(*)). 

Here a(x) has 4 components, each taking values in the Lie algebra of G, and 
we again by IT denote the action of the Lie algebra on V. The rule (5) is often 
in physics referred to as a minimal coupling, and letting U(x) = ir(g(x)) and 
A(x) » ir(a(x)), while (4) takes place A(x) transform like 

A(x)-*U(x)A(x)U(xyl + U(x)V(U(x)~l) 

= *(AdMx)) • a(x)) + U(x)V(U(xyl). (6) 
AdG is the adjoint action of G on its Lie algebra. That L is indeed invariant 
under (4) and (6) follows easily from the differentiation formula 

0=V(U(x)U(x)-1) 

= (VU(x))U(x)'1 + U(x)V(U(xyl). 

From the requirement of local gauge invariance we have thus arrived at L, 
which has in it the extra (gauge) field A(x), an analogue of the vector 
potential in electromagnetism. The nonlinear system of differential equations 
to be satisfied by f(x) and A(x) are now the Euler-Lagrange equations for 
stationary points of the action 

f(L+F2) Ju 
where F2 is a certain canonical gauge-invariant quadratic expression in the 
covariant derivatives of A(x). L = L = 0 corresponds to the Yang-Mills 
equations in vacuum, for which many special (in particular so-called self dual) 
solutions have been found. In the case of G = SU(2) X U(l) (unifying weak 
and electromagnetic interactions) one is still trying to identify in huge 
accelerator experiments members (W-mesons: one of the predictions of the 
recent Nobel laureates) of the (quantized) field A (x). 

It is remarkable, that a physical invariance leads us to consider one of the 
basic structures in modern geometry: that of a fiber bundle and associated 
vector bundles (in this case over space-time) with connection (a(x) represents 
a one-form), internal symmetries being mirrored in the geometry of the fiber 
group Gy and the location in space and time in the differential geometry on 
the base. 

The recent success of the theory of twistors [4] in translating self-dual 
connections on the four-sphere to certain rank 2 vector bundles on complex 
projective 3-space may be viewed as an instance of the integral geometry of a 
double fibration of a manifold Z: 

Z 
• \ 

X Y. 
Here X could be Rn and Y equal to R+ X Sn"!, thought of as the manifold 
of all hyperplanes in X (think of a hyperplane tangent to a sphere around the 
origin). Now take Z to be the subset of A' X y for which x G j>-the diagram 
then is related to the Radon transform (to a function on X associate its 
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integrals over all possible hyperplanes). As in deformation theory for complex 
manifolds and as for the Radon transform, points in X parametrize certain 
submanifolds of Y and vice versa. Via Z then, geometric objects may be lifted 
between X and Y [27], [7], [11]. Poisson-parentheses as in the example with 
the Hydrogen atom are part of the discipline called symplectic geometry. 
Perhaps the central issue will be symplectic geometry and the behavior of 
Lagrangian submanifolds, which provide the machinery of classical field and 
particle dynamics [2], [1], [9], and literally expose the functor of passing from 
classical to quantum mechanics [26], [20]. Connected with this is the propaga­
tion of singularities in partial differential equations as in geometrical optics or 
the Dirichlet and Neumann problems for the wave equation [22]. One aspect 
of analysis not to be forgotten is spectral theory, expansions in eigenfunctions 
and spectral kernels, which provide the mathematics of nonbound eigenstates 
of quantum systems. For instance, back in the case of the Hydrogen atom, 
the negative energy states only fill half of L2(R3), the other half being a direct 
integral of nonbound states. Which brings us to scattering (and inverse 
scattering [15]) theory [12] and poles of the scattering matrix. In physical 
practice, elementary particles are often associated with resonances in a 
scattering experiment, and can sometimes be thought of as the (Regge) poles 
of the scattering matrix. These poles empirically He on a logarithmic curve, a 
fact which still has to be understood mathematically (not to mention the 
number-theoretic meaning of these poles for the automorphic wave equation 
[13]). Finally, one might discuss states of operator algebras as a vehicle for 
statistical mechanics, in turn a model of quantum field theory. 

Not the least bit discouraged, everybody signs up for the next year of 
manifolds: Starting with sheaf cohomology and various realizations such as 
de Rham cohomology and characteristic classes of fiber bundles, one could 
include the Riemann-Roch theorem to make way for some surprising applica­
tions to the unrelativisitic Hydrogen atom [19]. Morse theory has most 
recently been used [3] in studying the homology of the space of instanton 
solutions to the Euclidean Yang-Mills equations, and even classical applica­
tions to certain density functions in crystals are still interesting [25]. Topologi­
cal dynamics and phase-plane analysis with bifurcations are of course not just 
of relevance in physics but also in much mathematical biology and chemistry. 
Somewhat in the same vein one might conclude with singularities of differen­
tial mappings plus unfoldings and various indices of singularities. 

Any treatment of physics must necessarily be based on examples close to 
nature; little test particles make their appearance, small quantities sometimes 
vanish altogether (sometimes even big ones)-but foremost one must spend 
some time on the philosophy of the relation between the coherence of the 
physical system on one side and that of the mathematics describing it on the 
other. Somewhat crudely, one could say that it took Einstein longer to find 
the equations of gravity than it took Hubert, who merely from a natural 
axiom derived its consequences. But then Einstein's understanding and ap­
preciation was that much deeper than Hubert's. General relativity [17] could 
be an example of action principles and also illustrate the difficulties in giving 
a system both a Lagrangian formulation and a canonical formulation in terms 
of a Hamiltonian on a symplectic manifold. Gauge field theories (see [21] for 
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a good survey of this and other geometrical aspects of particle physics) inherit 
some of their interpretation from the gauge invariance of Maxwell's equa­
tions. Therefore, it is important to get a clear picture of (classical) relativistic 
particle dynamics in the space-time M of general relativity. One formulation 
considers the cotangent bundle T*M of M with canonical projection IT and 
2-form co. Let H be the Hamiltonian defined by the Lorentz square of a 
tangent vector (transferred to P M via the same Lorentz metric on M). 
Compute the Hamiltonian vector field X of H relative to the form <o + *n*F, 
where F is the 2-form on M representing the electromagnetic field. Then the 
flow of X gives the movement of the particle. fFKfl-approximations to 
solutions of Schrödinger's equation and geometric quantization [7] would 
bring us back full circle to recent developments in representations of semisim-
ple Lie groups [10] (WKB becomes exact and not just an approximation for 
the character of a discrete series representation constructed from a certain 
Lagrangian in the cotangent bundle of the group-a recent unpublished result 
by B. Kostant, see also [16], [24]). 

Wishful thinking aside, how does the volume by Choquet, de Witt and 
Dillard prepare the student (this is not a research book) for the world of 
analysis, manifolds and physics? A good part of the book deals with basic 
differential geometry, somewhat in the spirit of [6], giving a lucid exposition 
under the steady hand of Madame Choquet-Bruhat. Care is taken in balanc­
ing concrete understanding in coordinate charts against avoiding too may 
confusing tensor indices. This section includes exterior differential systems, 
their characteristic manifolds, complete integrability and integration on mani­
folds with a good introduction to homology and cohomology. Pseudo-
Riemannian manifolds and connections are illuminated by the canonical 
differential operators on differential forms and covariant differentiation re­
spectively, followed by a brief discussion of geodesies on Riemannian mani­
folds. 

The next chapter gives the definitions and properties of spaces of distribu­
tions, convolutions and Fourier transforms and applications to Sobolev 
spaces and partial differential equations. Finally there is a presentation of the 
prerequisites for the study of nonlinear partial differential equations, namely 
infinite dimensional manifolds (with cylindrical measures in the linear case) 
and Leray-Schauder theory using degree of mappings to establish existence of 
solutions. 

It is impossible in a few words to do justice to this voluminous work which 
contains much information (even the introductory chapter listing background 
from analysis)-indeed I think it will be valuable also to physicists wanting to 
look up facts in analysis on manifolds. Many of the longer proofs are 
omitted, but there is still much to learn from the remaining proofs. The 
format of the book is carefully worked out with index and important 
definitions marked in the margin of each page, and examples are well placed 
in the text. 

All applications to physics are relegated to problems at the end of each 
chapter with answers immediately following. Sometimes in these exercises one 
feels that things are piled a little too high with many definitions, interpre­
tations and solutions obscuring just where the physics fits into the mathe-
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matics. Perhaps a few more words on how the Hamilton-Jacobi equation is 
related to the calculus of variations or to Hamilton's equation would be well 
placed in problem 4, p. 260; or in problem 2, p. 104 we are told (and likewise 
several other places) that a formula for the Van Vleck matrix plays an 
important role in many problems of physics-leaving us wanting to know 
what role and what physics. Still, for the energetic beginning student of 
physical mathematics there are enough references to lead him on, and 
certainly many hints in the problems aimed at spinors, Jacobi fields, Euler-
Lagrange equations, soap-bubbles, Maxwell's equations, catastrophes, Hamil-
tonians, shock waves, the Schwarzschild solution, wave equations, the diffu­
sion equation, the symplectic structure of the Klein-Gordon equation, Wiener 
integrals and more. 

Obviously many topics are missing in the book, but I especially would have 
liked to see some symplectic geometry, Yang-Mills fields, groups of symme­
tries, fluid dynamics and examples like mechanics of deformable bodies (say 
formulating Hooke's law) and a little kinematics of fields and particles on 
curved manifolds. 

As science is becoming more and more compartmentalized, it is encour­
aging with enterprises that want to cross the waters between mathematics and 
physics and let the indigenous populations see through the mutual mist. Far 
from raising any sunken Atlantis, I still recommend this book and its authors 
for visualizing the voyage and for setting up a firm outpost on mainland 
mathematics. 
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As the authors state in their preface, this is a book about "general 
nonsense", a term indicating the uneasy attitude many of us have towards the 
material. This term cannot be other than perjorative-why should a valid and 
necessary part of an argument get such scant respect? Many of us lose 
patience with a tower of increasingly compUcated general propositions with a 
liberal scattering of words like natural and contravariant with perhaps a 
diagram which when chased enough merely states the obvious-why can't we 
stick to something interesting like operator theory where there are real 
theorems? And yet there must be another side of the coin or the subject 
would not attract the attention of enough competent mathematicians to 
survive-what can it be? One ingredient in our reaction is the reluctance to 
take a new point of view, learn some new words and a new way of looking at 
things. Former generations reacted similarly to modern analysis and abstract 
algebra. However some notions really do need this generalized framework, for 
example the concept of a tensor norm. Often this is defined as a norm on a 
product X ® Y of Banach spaces but the way the term is used is more in 
keeping with thinking of it as a description of a norm on each possible X ® Y 
with various relationships between the norms so described-if you accept this 


