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as has been done for the classical three-body problem. Maybe it has been 
done somewhere. 

The author is on less firm ground in the other sections on applications but 
it is still good reading. However, a statement as on the top of p. 153 "Our 
remarks apply with only obvious simple changes" (from the integers to the 
real line) shows some naivete and includes three words (only, obvious, simple) 
which every mathematician knows may be cause for grave concern. On the 
other hand Mackey is clearly aware (in this situation) of the difficulties 
involved when natural orderings are not apparent. Perhaps it should be noted 
that the references given here to the probability literature are very incomplete. 

To summarize, this is an extremely good book, written by a mathematician 
who is also a scientist and who is willing to make subjective statements to 
keep the theory alive and growing. It fills the bill in our current battles to 
revive the philosophy of mathematics as a part of a general scientific 
consciousness. It even passes the additional test of stating clearly certain open 
questions which remain in the theory and in the larger scientific investigations 
on which the theory may bear. 
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Nonlinear mappings of monotone type, by Dan Pascali and Silviu Sburlan, 
Sythoff & Noordhoff, Alphen aan den Rijn, The Netherlands, 1978, x + 
342 pp., $43.00. 
In the study of nonlinear problems much use is made of compactness 

arguments. Particularly since the work of Leray and Schauder [5], the 
compact operators have been widely used in this study and new applications 
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continue to be made. However, in many interesting problems, the operators 
that arise fail to be compact. This has led, over the past two decades, to the 
search for classes of mappings, which actually arise in applications, for which 
nontrivial theorems can be proved. Several such classes have been studied 
(see e.g. [7], [8]), but most attention has been paid to the monotone operators. 
One good reason for this popularity is their appearance in many applications 
particularly in the theory of partial differential equations. 

On the real line R, monotone operators are the monotone nondecreasing 
functions. In a Hubert space H with inner product (•,•)> T: H -» H is 
monotone if (x — y, T(x) — T(y)) > 0 for all x, y in H. Thus linear mono­
tone operators in H are the well-known positive operators. To make the 
above definition work in a Banach space context, it is supposed that T map a 
Banach space X into its dual space X* and (•,•) then denotes the duality 
between X and X*. 

Consider the problem of minimizing a convex function <j>: H —» R. If <f> is 
differentiable with gradient <>': H -» H the problem of finding infMG// <j>(u) 
becomes that of solving the equation <t>'(u) = 0. What property of <f>' corre­
sponds to convexity of <j>l <J> is convex if and only if <f>' is monotone. 

The study of the gradients of convex functions was replaced by the study of 
the larger class of monotone operators. The following result is probably the 
basic one. 

Let T: H -» H be a continuous, monotone operator such that 
(*, T(x))/\\x\\-> oo as \\x\\ -> oo. Then T maps H onto H, that is, the 
equation T(x) = ƒ has at least one solution for every ƒ in H. 

In fact, continuity is too strong; a weaker notion called hemicontinuity 
suffices. Also H can be replaced by a reflexive Banach space. One method of 
proof is to solve approximate problems in arbitrary finite dimensional sub-
spaces and to use the monotonicity property to carry out a limiting argument. 

This theorem can be applied to yield an existence theorem for certain 
boundary value problems for nonlinear partial differential equations. It is 
supposed that the equation can be written in divergence form and that certain 
polynomial growth restrictions are met. The boundary value problem can 
then be given a variational formulation as an equation of the form T(u) — ƒ 
where T acts from a Sobolev space to its dual. This gives the so-called Hubert 
space method when applied to linear differential operators. Monotonicity of 
T corresponds to an ellipticity requirement. However this is needed on the 
terms of all orders whereas, as in the linear case, ellipticity should only be 
required on the terms containing the highest order derivatives. This difficulty 
was overcome by combining a monotonicity requirement on the terms of 
highest order with compactness on the lower order terms. The compactness is 
obtained from the Sobolev embedding theorems. However, even in the 
absence of compact embeddings, a recent result of Browder [4] (not included 
in the book) shows that partial differential expressions give rise to mappings 
of monotone type, in this case the pseudomonotone operators [1]. 

If an elliptic boundary value problem has a linear part which possesses a 
Green's function, the problem can be transformed into an integral equation 
of Hammerstein type which can be written u + KFu = 0. Here A' is a linear 
integral operator and F is a Nemitskii or substitution operator. In this 
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context, operators of monotone type have been successfully employed, partic­
ularly, pseudomonotone operators and maximal (in the sense of graph inclu­
sion) monotone operators. 

In certain problems it is often natural to split the operator into two parts 
say as T + S, for example, linear part plus the nonlinear part. Clearly the 
range of r + 5, R(T + S) is contained in R(T) + R(S). However, in a 
number of cases, for example T, S both maximal monotone plus some extra 
condition, these two sets are "almost equal" in that they have the same 
closures and the same interiors. These abstract results can be used to show 
that certain conditions necessary for boundary value problems to have 
solutions are close to being sufficient. 

Certain free boundary value problems, problems in the presence of ob­
stacles, and minimization problems with constraints, are best formulated as 
variational inequalities: given a closed, convex set K, find u in K such that 

(u - t?, T(u)) > 0 for all v in K. 

Here again, using pseudomonotone operators seems to be the right generality 
in which to consider these problems. However, important results on existence 
and regularity of solutions were obtained for monotone operators. The article 
of Stampacchia [9] is an excellent introduction to these problems. The subject 
continues to expand. 

Boundary value problems where some of the terms may grow rapidly have 
been called strongly nonlinear. One approach to these is to switch to an 
appropriate Orlicz-Sobolev space especially adapted to handle that growth. 
Another, due to Browder, which applies if these terms have the "correct" sign, 
allows one to remain in the framework of Sobolev spaces. This led to the 
study of new classes of operators of monotone type which are neither 
everywhere defined nor bounded. One of the tasks here is to weaken or 
remove certain technical assumptions. Recent results of Brézis and Browder 
[3] make a substantial step in this direction. 

The present book covers all of the above topics and many more. It would 
be impossible to collect in a single volume all that is known about mappings 
of monotone type, so some selection is necessary. The authors have therefore 
only included applications to elliptic problems. Parabolic problems can be 
handled with minor modifications and some hints of this are given in the 
sections on further results and exercises at the end of each chapter. Similarly 
semigroups of nonlinear contractions, which are intimitely related to maximal 
monotone operators (at least, in a Hubert space (e.g. [2])), are only mentioned 
in passing. However, whole books have been devoted to this topic. 

A good knowledge of functional analysis is needed to read this book. A 
little is reviewed in the first chapter but, in my view, a few more definitions 
could have been included such as that of weakly convergent sequences. Also 
notation used on page 2 is not introduced until page 7. 

The bulk of the book is about the various techniques that are being used 
with mappings of monotone type. However, some facts about compact 
operators are given, including a development of the topological degree 
(following Heinz). A useful section is included on Sobolev spaces but some 
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technical proofs of embedding theorems might have been referenced rather 
than proved. 

Each chapter ends with bibliographical comments. As some sections of the 
book closely follow the original papers these comments should have pointed 
out exactly who proved what, but often fail to do so. 

There are the usual wealth of misprints and a few errors. For example, on 
page 3 a result of Browder is "proved". However, as soon as they deviate 
from Browder's correct proof they say "Since a normed linear space is 
separable if and only if its dual is, (Dunford and Schwartz p. 65) . . . ", which 
is false. The cited reference states the correct version. The proof on page 16 
contains a slip (misprint?) and on page 281 it is stated that the truncation of a 
function in the Sobolev space Wm,p also lies in the space: this holds only if 
m = 1 (or 0). 

The book contains much material previously unavailable in book form. 
Some of the subjects are far from closed and developments have occurred 
since the book's publication. The book can well be read by someone who 
wishes to "get into" this subject. Whether it can be used in university courses, 
as the authors hope, is less clear. 

REFERENCES 

1. H. Brézis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. 
Inst. Fourier Grenoble 18 (1968), 115-175. 

2. , Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de 
Hubert, Math. Studies, vol. 5, North-Holland, Amsterdam, 1973. 

3. H. Brézis and F. E. Browder, Strongly nonlinear elliptic boundary value problems, Ann. 
Scuola Norm. Sup. Pisa 5 (1978), 587-603. 

4. F. E. Browder, Pseudo-monotone operators and nonlinear elliptic boundary value problems on 
unbounded domains, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 2659-2661. 

5. J. Leray and J. Schauder, Topologie et équations fonctionelles, Ann. Sci. Ecole Norm. Sup. 51 
(1934), 45-78. 

6. R. I. Kachurovskii, Non-linear monotone operators in Banach spaces (English translation), 
Russian Math. Surveys 23 (1968), 117-165. 

7. W. V. Petryshyn, On the approximation-solvability of equations involving A-proper and 
pseudo-A-proper mappings, Bull. Amer. Math. Soc. 81 (1975), 223-312. 

8. B. N. Sadovskii, Limit compact and condensing operators (English translation), Russian Math. 
Surveys 27 (1972), 85-155. 

9. G. Stampacchia, Variational inequalities, Theory and Applications of Monotone Operators, 

Ed. Oderisi, Gubbio, 1969, pp. 101-192. 

JEFFREY R. L. WEBB 
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 2, Number 1, January 1980 
© 1980 American Mathematical Society 
0002-9904/80/0000-0021/$02.25 

Differentiation of real functions, by Andrew M. Bruckner, Lecture Notes in 
Math., vol. 659, Springer-Verlag, Berlin and New York, 1978, x + 246 pp., 
$12.00. 

For most of us, the extent of our knowledge of the differentiation theory of 
real functions is quite limited. The standard information may be classified as 
follows: 

(i) Derivatives share some of the properties of continuous functions, e.g., 
they have the intermediate value (Darboux) property. 


