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the major theorem of the paper was not the proof of the denumerability of 
the set of algebraic numbers, but the nondenumerability of the reals. 

Earlier historians, E. T. Bell in particular, have claimed that antisemitism 
was at the root of much of the opposition to Cantor's work. But as Dauben 
clearly establishes, Georg Cantor was not of Jewish ancestry; he was baptized 
a Lutheran and remained a devout Christian throughout his life. We obtain a 
deeper understanding of the nature of modern mathematics if we look to the 
mathematician qua mathematician for the source of the opposition. 

It is consistent with the known facts that Kronecker's unwavering opposi­
tion to Cantor's work was the result of a total and fundamental difference of 
opinion as to the nature of mathematics. The extent of this difference can be 
seen in two aphorisms: Kronecker's "God made the integers; all else is the 
work of man" and Cantor's "The essence of mathematics is its freedom". For 
Kronecker the objects of mathematical investigation were the integers; these 
were fixed and unchanging. The mathematician's role was limited to the 
investigation of constructions built upon these eternal god-created forms. 
Creativity of new forms was not part of the province of the mathematician. 

Cantor saw things differently. He knew that he could understand only if he 
had the freedom to create the forms and concepts which would encapsulate 
what he sought to understand. Dauben recognizes this, writing that the most 
important feature of his mathematical ability was "the capacity for creating 
new forms and concepts when existing approaches failed". 

If we are to fully understand Cantor's influence on the nature of mathe­
matical activity it is necessary to see Kronecker as belonging to the mathe­
matical mainstream. It may be true that in his insistence that only the integers 
possessed an independent existence, he cast his net too narrowly, but the 
prevailing mathematical opinion then, as it had been since before Plato, was 
that the essence of mathematical activity is investigative, not creative. Philos­
ophers still hold to this view, being far more concerned with epistemological 
matters than with ontological ones. However, after initial opposition, 
mathematicians were quick to appreciate the freedom that Cantor's concep­
tion of mathematics offered; as Hubert wrote in 1925: "No one shall expel us 
from the paradise which Cantor created for us". 

Just as Prometheus stole fire from the gods and instructed the human race 
in its use, so Cantor showed us that, like Kronecker's God, we too are free to 
create symbolic forms. The integers may be thcogenic; since Cantor the rest 
of mathematics has become anthropogenic. 
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Integral representations of functions and imbedding theorems, by Olcg V. Besov, 
Valentin P. Il'in, and Sergei M. Nikol'skiï, with an introduction by Mitchell 
H. Taibleson, V. H. Winston & Sons, Washington, D. C, vol. I, 1978, 
viii + 245 pp., vol. II, 1979, viii +311 pp., $19.95 per volume. 

This book (hereinafter referred to as Integral representations) is closely 
related to, but (both in technique and content) independent of Nikol'skiFs [5] 
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which Mitchell Taibleson reviewed in this Bulletin [8]. In [8], Taiblcson gave a 
history of the subject, motivated some of the early questions, identified some 
of the major workers and theorems and dealt with a number of technical 
definitions and examples. We encourage the reader to refer to it. Here we 
shall take a less detailed perspective, but shall try to distinguish the work of 
Besov, irin and Nikorskiï, and particularly the book Integral representations, 
from that which preceded it. 

Let ƒ: Rn -» C be defined everywhere. Every calculus student learns (or at 
least is told) that separate continuity (rcsp. differentiability) of ƒ does not 
imply its continuity (resp. differentiability) as a function of several variables. 
This failure takes place both qualitatively and quantitatively. The following 
entertaining example was noticed by Yudovich. Let 

ƒ(*!, x2) = xxx2 log log(l/ (x\ + xl)) 

for x near (0, 0) G R2. Then 
(i) ƒ is continuous, 
(ii) ƒ,, is continuous, 
(iii) f22 is continuous 

but 
(iv) the weak derivative fl2 is not even essentially bounded. 
On the other hand, all counterexamples involve a lack of uniformity. For 

instance if/: Rn -» C and there arc constants Ak so that 

p/^)kf(xv...9xn)\\LHRn)<Ak 

for / = 1 , . . . , n and k = 0, 1 , . . . , then ƒ Œ C™ (Proof: Plancherel's theo­
rem implies that £*ƒ(£) G L2 for all i, fc, so/?(£)ƒ(£) G L2 for all polynomials/? 
so p(d/dx)f G L2 for all polynomials/?, where differentiation is interpetcd in 
the weak sense. Now the Sobolev imbedding theorem implies that ƒ G C°° 
after correction on a set of null measures). The hypotheses may even be 
weakened to (d/dxtff G LjJJBL") for all i, k. 

As early as 1911, S. Bernstein considered quantitative versions of this 
result. If a £ Z and ƒ is Aa ([a] times continuously differentiable with all 
[a]-order derivatives satisfying a Lipschitz condition of order a — [a]) uni­
formly in each variable separately, is ƒ G Aa(R'1)? BernSteïn proved that 
ƒ G Aa_e(R

n), any 6 > 0. In 1948 Nikol'skiï removed the e. Moreover, he 
obtained sharp estimates for mixed derivatives if one assigns a different 
degree of smoothness to each coordinate direction. 

It is easy to see how problems of this kind can spawn an industry. For 
instance, if we assign to each coordinate direction xt a. Lcbcsgue space LPi and 
an index kt G N, then we may consider those/: R" -» C which for each i have 
kt weak derivatives with respect to xt each of which lives in LPi. What is the 
greatest q so that such an ƒ is in Lqtl Is such a function in any Lipschitz 
space? Does such a function automatically satisfy a similar condition for 
larger pt and smaller kp. Which cross derivatives exist and in what Lp classes 
do they live? 

These questions all originate in the basic work of Sobolev. Since we shall 
have future occasion to refer to this work, we give now an example of such a 
result. 
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THEOREM. Let \ < p < q < oo. Let ƒ: R W ^ C , / G Z/ , df/dxj G Lp(Rn), 
j = 1, . . . , /i, w/zere //ze derivative is interpreted in the sense of distributions. 
Then f G Lq(Rn) provided \/q = \/p - l / « . 

Properly formulated, this is a theorem about continuous imbedding of 
Banach spaces. 

We now enumerate several other basic problems of function theory, all 
closely related to the imbedding problem, and all of which are treated in 
Integral representations. The authors discuss Lipschitz spaces, Nikol'skiï 
spaces, Besov spaces, Sobolev spaces, Campanato spaces and several others 
of their own invention. We shall use the symbols B or Bj to denote any of 
these (or any of the nonisotropic variants indicated above). 

(1) THE COMPACTNESS PROBLEM. In case Bx Q B2, is the inclusion map 
compact? (Examples: The Ascoli-Arzela Theorem, the Rellich Lemma.) 

(2) THE TRACE PROBLEM. Consider the operator 

rn,k: /(*1> • • • >*n) -*A*l> • • • , **, 0, . . . , 0) 

assigning to functions in Cc°°(Rn) their restrictions in CC°°(R*). When can the 
domain be extended to some ^ ( R " ) and correspondingly the range to some 
B2(R

k) so that the extended operator is bounded? (First considered by 
Sobolev.) 

(3) THE EXTENSION PROBLEM. If G ç R " is there a bounded linear operator 

E: B(G)-^B(Rn) 

so that E(f)\G = ƒ? (This problem has been considered by Calderón, Stein 
and Hestenes. One sees that this is a question both of function theory and of 
geometry. Domains with cusps or whose boundaries bifurcate are bound to 
be problematic.) 

(4) MULTIPLICATIVE INEQUALITIES (also called Landau inequalities). When 
does a logarithmically convex combination of norms majorize the norm on an 
intermediate space? An example is 

IWIc.(R)<q^2p-|W|c/^)-
(This question has been considered by, among others, Landau, Gagliardo-
Nirenberg, and Stein.) 

All of these problems are basic to classical analysis, and find manifold 
applications in function theory and partial differential equations. For in­
stance, one may interpret the regularity problem for the Laplacian as follows. 
Suppose that 

AW = 2 3 V 3 ^ 2 = / (*) 

and that we know that ƒ E B. What can we say about w? The equation (*), 
roughly speaking, gives information about d2u/dxf, i = 1,. . . , n, from which 
we would hope to extract information about cross derivatives. So the question 
takes on the flavor of the original problem of Bernstein. That this problem 
can be solved, i.e., that one can estimate all the derivatives of u (to some 
order) in terms of Aw = ƒ, is the property of coerciveness of A. Perhaps the 
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main application of the techniques of Integral representations which is in­
cluded in the book is a number of theorems on coerciveness. 

The Russian school has made major contributions to the study of the 
foregoing problems in the classical isotropic setting. Besov, Il'in and Nikol'-
skiï have played the central role, beginning with Nikol'skiFs 1948 paper, in 
the study of these problems in the category of the nonisotropic spaces 
mentioned at the beginning of this review. 

The book [5] constitutes a report mainly on the work done in this subject 
for functions defined in all of Rn. Indeed, it succeeded in resolving many of 
the natural questions of imbedding, compactness, and trace, provided exam­
ples to show that the results are sharp, and proved a number of approxima­
tion results. The book Integral representations is a logical successor to [5]. It 
addresses the above questions, and some additional ones, for functions 
defined on a subdoman G C Rn. The new results are far more than formal 
transliteration of those in [5]: entirely new techniques are developed in 
Integral representations. Indeed, while [5] used the method of best approxima­
tion by entire functions of exponential type (or in the periodic case, by 
trigonometric polynomials), it is very unnatural to approximate functions on 
a domain G by entire functions. 

It is reasonable, both historically and practically, to turn to integral 
representations when doing function theory on G. If a function can be 
represented as an integral of itself, there is much to be learned (consider the 
Cauchy and Poisson integral formulae). The idea is to force a quasi-explicit 
averaging kernel to carry the information. 

Surely the most primitive integral representation formula is the fundamen­
tal theorem of calculus: 

ƒ(*)=ƒ(()) + fXf(t)dt. 

As the authors state, all of their integral formulae are based on the following 
additional idea (which has roots going far back in the literature of harmonic 
analysis). Let 

<p e Cc°°(Rrt), f<p(x)dx = l. 

Define, for e > 0, <pe(x) = e~n(p(x/e), and for ƒ E Z/(R") let fe(x) = 
ƒ * %(x). For 0 < 6 < h write 

fM = f^)-je
hft(fM)dt. 

When e->0, it is known (see [7]) that fe-> ƒ pointwise a.e., so that letting 
e -> 0 formally on the right gives 

The differentiation under the integral sign falls on the <p so that we have 
succeeded in expressing ƒ as an integral (or average) of itself. By integrating 
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by parts, or by adding and subtracting appropriate terms, we can express ƒ as 
an integral of its derivatives, or as an integral of its finite differences 
(expressions like f(x + h) - f(x)). Sobolev already exploited these ideas to 
prove his imbedding and trace theorems. The contribution of Integral repre­
sentations is to systematically represent any of 

©ƒ, 
(ii)(a/9*y/, 
(iii)/(x + h)-f(x), etc. 

in terms of any of the others, and to do so in a fashion which allows the 
assignment of weights to each variable. We thereby have a handle for 
studying our basic function-theoretic problems in the category of isotropic or 
nonisotropic spaces. 

Nonisotropic spaces arise naturally instudying, say, the boundary behavior 
for solutions to the heat equation, the 9-Neumann problem or the Dirichlet 
problem for the Laplace-Beltrami operator in the Bergman metric. The utility 
of imbedding theorems in proving regularity results, of compactness theorems 
in passing from a priori to more general estimates, of trace theorems in 
restricting from a domain to its boundary and so on, is well established. 
Therefore Integral representations should become an important reference. Its 
systematic treatment of the calculus of finite differences and integral for­
mulae set it apart from other books in the field. Finally, since so much of the 
original research is in Russian, this English translation provides a valuable 
guide to the literature. 

There is some difficulty with seeing the forest for the trees, since theorems 
are usually stated in maximum generality. The novice should be advised that 
a greater perspective may be gained by first reading Stein's Singular integrals 
and differentiability properties of functions [7] and also by having a look at the 
methods of [1], [2] and [5]. 

The reader who is not already convinced of the technical nature of this 
book should consider the following. Classically, function theory on domains 
G Ç R " was studied under the auspices of a cone condition. That is, we 
assume that 9G may be covered in a nice way by open sets Gv G 2 , . . . , and 
that to each G, is assigned a cone Tj so that if x E 3G n G, then {x} + Tj C 
G. This is plausible because we wish to express functions on G n Gj as 
averages over these cones. In the present work, cones are replaced by more 
general objects called horns (a typical horn is {(xv JC2)

 e R2: Q <\x\ <x2< 
2x\}). At various points in Integral representations, the authors consider weak, 
strong, and regular conditions (fill in the blank with "horn", "cone", 
"cube", or "rectangular parallelipiped"). So we have twelve kinds of domains, 
myriad function spaces, and n dimensions over which to sprinkle them. There 
are also five basic questions (and several less basic ones such as isomorphism 
of different isotropy classes) to consider. Thus the book, while it considers 
important material, is not to be approached casually. 

The authors (and the translator) have done a fine job of giving us a 
readable presentation of this difficult material. In fact the book is essentially 
self-contained (if not well motivated). The work begins by reviewing a lot of 
basic function theory: fractional integration, singular integrals, the inequali-
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ties of Minkowski, Holder, Hardy, etc. (Many of these are generalized to 
nonisotropic versions for the task at hand.) There is then a long chapter (76 
pages) presenting all the integral representation formulae. A nice section on 
coercive estimates provides some applications of the theory. The remainder of 
the two volumes is organized, roughly speaking, according to the function 
spaces being studied rather than the function-theoretic questions being con­
sidered. From the point of view of readability, this seems to have been a good 
choice. 

The style of the book is informal: the authors are not afraid to repeat 
definitions and formulas when they are needed (however the book would 
have benefited enormously from a list of notation and an extensive index). 
Most sections begin with a nontechnical description of what is about to be 
done. There are many enlightening comments describing alternate ap­
proaches to a given question (for instance the extension theorems are studied 
via integral formulae but the approaches of Hestenes and Stein are also 
mentioned) or simply explaining what is going on. Long calculations are 
usually broken up into plausible sequences of lemmas. 

The numerous misprints, the bad translating, and the grotesque biblio­
graphical transmogrification of [5] which Taibleson lamented in his review [8] 
have been avoided in Integral representations. (There are still a few uncomfor­
table habits of phraseology, probably unavoidable in any translation. The 
phrase "/ is concentrated on G" is used instead of "/is supported on G". "A 
result of Hubert", with no other identifying words, turns out to be the 
Nullstellensatz. The "Newton-Leibniz formula" is the authors' name for the 
fundamental theorem of calculus.) The vast improvement is no doubt due in 
large measure to Taibleson's efforts as translation editor of Integral repre­
sentations. 

It would have been an asset had the authors considered whether the various 
function spaces considered form real or complex scales of interpolation 
spaces. It would have been valuable to know whether the spaces are stable 
under singular integrals or fractional integrals of various kinds (some of this 
information is implicit in the proofs-it could have been made explicit). 
Numerous maximal functions and problems in the theory of differentiation of 
integrals lurk in the background of the discussions in the book; only the 
Jessen-Marcinkievicz-Zygmund theorem is mentioned. Interpolation theory 
could have been used to simplify and clarify some of the proofs. 

We would also like to submit, not so much to criticize as to suggest further 
avenues of research, that the results of this book have a certain aura of 
artificiality. A class of functions whose definition is rigidly tied to the 
coordinate directions has little to do with a generic subdomain of Rn. (The 
authors do consider function spaces on manifolds, but do not address this 
problem.) Even the unit disc satisfies only a very restricted family of "horn 
conditions", conditions which are necessary for most of the theorems in the 
book. What is perhaps more natural, and has wider applicability to partial 
differential equations, is to consider functions which satisfy different differen­
tiability conditions along (possibly noncommuting) families of vector fields. 
These arise, for instance, in the 3-Neumann problem [3] and in the study of 
hypoelliptic operators [4], [6]. It would be valuable to have integral formulae 
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for these classes of functions. We hope that future volumes might consider 
these matters. 

Integral representations will prove a valuable reference for experts. By its 
very technical nature, it contains no results with the compelling elegance of, 
say, the Riemann mapping theorem. But the techniques are far more im­
portant than the specific results and, by that measure, the book is a success. 
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The algebra of random variables, by M. D. Springer, Wiley, New York, 1979, 
xxii + 470 pp., $26.95. 

It is both surprising and regrettable that it took over 30 years after the 
appearance of the pioneering paper by B. Epstein in (1948), Some applications 
of the Mellin transform in statistics, to produce the first text on the Algebra of 
random variables which is based on an elaboration and extension of Epstein's 
ideas. It is also equally unfortunate and puzzling that Epstein's paper ap­
peared so late in this century, over ten years after Cramer's classical Random 
variables and probability distributions. The book under review is indeed very 
close in its mathematical content to the treatises on the subject matter of the 
special functions which originated in the beginning of this century. In fact, 
the mathematics in this book could fit very well into Whittaker and Watson's 
Modern analysis (1915). 

This lag of about half a century is-in my opinion-due to two basic 
reasons: the awkward and uncertain position of probability theory (and thus 
indirectly what is known today as "statistical distribution theory") within the 
framework of all the mathematical disciplines which lasted at least until the 
publication of Kolmogorov's axiomatization in 1933 and to some extent to a 
certain contempt exercised by the editors of some mathematical and statisti-


