
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 2, Number 1, January 1980 

SUFFICIENCY OF McMULLEN'S CONDITIONS FOR 

/-VECTORS OF SIMPLICIAL POLYTOPES 
BY LOUIS J. BILLERA1 AND CARL W. LEE2 

For convex d-polytope P let ft{P) equal the number of faces of P of dimen­
sion i, 0 < i < d - 1. f(P) = (f0(P)9 . . . , fd^QP)) is called the f vector of P 
An important combinatorial problem is the characterization of the class of all 
/-vectors of polytopes, and in particular of simplicial polytopes (i.e. those for 
which each facet is a simplex). McMuUen in [5] conjectures a set of necessary 
and sufficient conditions for (/0, . • . 9fd~i) to be the/-vector of a simplicial 
d-polytope and proves this conjecture in the case of polytopes with few vertices. 
We sketch here a proof of the sufficiency3 of these conditions, and derive in a 
related way a general solution to an upper bound problem posed by Klee. 

The /-vectors of simplicial <i-polytopes satisfy the Dehn-Sommerville equa­
tions 

where we put f„x{P) = 1. As in [6, p. 170], for af-vector ƒ = (/0, . . . ,fd^x) 
and integer e > d let 

with the convention that £_x = 1 and ff = 0 for / < - 1 or i > d - 1. We note 
here that these relations are invertible, allowing us to express the f( as nonnegative 
linear combinations of the hj€\f). The Dehn-Sommerville equations for/are, 
for any e > d, equivalent to g\e\f) = (- O ^ ^ M C A - 1 < / < [e/2] - L 
Let h and / be positive integers. Then h can be written uniquely as 
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*-(?)• (£\)+-+(?) 
where at > ai^_1 > • * • > ÜJ > j > 1. Following McMullen put 

' " - f c / M V ' ) •••••(?;.') 
and define 0(/> = 0. McMullen conjectured ( [5] , [6, p. 179]) that ( / 0 , . . . , 
fd~\) i s t n e /-vector of a simplicial d-polytope if and only if the following three 
conditions hold: 

da+ l\n = -^4-7( / ) . -1 <i" < [M(d + D] - 1 , (i) 

*îd + I )(/)>0, 0 < / < / i - l , (2) 

4d+1}(/) < fefr+1}(/))<0. 1< / < « - 1, 0) 

where w = [d/2]. Condition (1) is just the set of Dehn-Sommerville equations^, 

the conjectured necessity of (2) is known as the Generalized Lower Bound Con-

jecture([7]9 [6, p. 178]). 

We will sketch a proof of the following 

THEOREM 1. Iff ~ ( /0 , . . . 9fd^x) satisfies (1), (2), and (3) above, then 

ƒ = f(P) for some simplicial d-polytope P. 

The case d < 2 is easily dispensed with, so assume d>2. For finite (d -
l)-dimensional simplicial complex S let I Si denote the underlying topological 
space of S. / (S ) = ( / 0 (2) , . . . , / ^ ( S ) ) is the fvector of 2 , where # 2 ) is 
the number of /-dimensional simplices in 2 . For e > d write / z ^ ( 2 ) for 
/ i ( e ) ( / (2)) . We call /z((i)(2) the h-vector of 2 . This is equivalent to Stanley's 
/z-vector of [9]. If I Si is a (d - l)-sphere then the Dehn-Sommerville equations 
hold (see, for example, Grünbaum [1, p. 152]). If I Si is a d-ball then 91 Si is 
a (d - l)-sphere with associated complex 92. I Al is then a ^-sphere, where A = 
S U v • 32. It can be shown that h\d+ 1}(A) = h\d+1}(2) + / ^ ] ( 9 2 ) , 0 < i < 
d 4- 1 (where we take /zicp(92) = 0). The Dehn-Sommerville equations for A 
and 92 allow us to solve for fcje)(32) in terms of hjd+ l)(E). In particular [7] 

h\d + *>(32) = h$d+ *>(2) - ^ + Y4(S) , 0 < Ï < [fc(rf + 1)]. 

A nonvoid set M of monomials Y\l • • • y*j is said to be an order ideal 

of monomials if whenever mx E Af and m2\m1 then m2 EM. Let $ be the 

set of all monomials in the variables Yx, . . . , Ys. Give the elements of $ the 

lexicographic linear order < induced by Yx < • • • < Ys. A finite or infinite 

sequence (//(0), / ƒ ( ! ) , • • • ) of nonnegative integers is said to be an Q-sequence 
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if there exists an order ideal M of monomials in the variables Y1, . . . , Ys with 
each deg Yt = 1 such that H(i) = card{m Gill: deg m = /} . Stanley in [10] 
gives the following 

THEOREM. Let H: N —> N. The following statements are equivalent: 
(i) (H(Q)9 //(l), • • • ) is an 0-sequence. 
(ii) #(0) = 1 and for all i>\9 H(i + 1) < H(i)®. 
(iii) Let s = H(l) and for each i > 0 let Mt be the first (in the ordering 

above) H(i) monomials of degree i in the variables Yl9 . . . , Ys. Define 
M = Ui>0 Mv Then M is an order ideal of monomials. Call M the lexicographic 
order ideal of monomials associated with (//(0), H(l)9 • • • ). 

IDEA OF PROOF OF THEOREM 1. If (f09 . . . , fd-t) satisfies (1), (2), and 
(3), then by the above theorem (//(0), . . . , H(d + 1)) is an 0-sequence, where 
H(i) = hid+ *>(ƒ) for 0 < i < n and H(i) = 0 for n + 1 < i < d + 1. A simpli-
cial complex 2 is constructed by choosing as its maximal simplices certain (d 4-
l)-sets from a *>-set, where i> = # ( l ) 4 d + l , such that 2 is shellable in the 
sense of [9] and such that (//(0), . • . , H(d + 1)) is its /2-vector. It is then 
shown that 2 is the complex associated with a shellable proper collection 8 of 
facets of the cyclic polytope C(y9 d 4 1), implying that 121 is a d-ball. 9121 is 
then a (d - l)-sphere with associated complex 32. From H(i) = 0, n 4 1 < i 
< d 4 1, it can be concluded that h$d+1>(92) = h\d+ l\f)9 0<i<n. This 
and the Dehn-Sommerville equations for 92 yield /2(cf+1)(92) = ftw+1)(/), 
whence we conclude ƒ = ƒ(2). Next, with an appropriate realization of 
C(V, d + 1) in Rd + 1 , a point z G R d + 1 can be found such that z is beyond 
those facets of C(y, d 4- 1) that are in B and beneath the rest. Then the vertex 
figure P of z in conv(C(V, d 4 1) U {z}) is a d-polytope whose boundary complex 
is isomorphic to 92, demonstrating sufficiency. (In fact, P is «-stacked in the 
sense of [7].) 

A sketch of the construction of 2 follows. The case //(I) = 0 is easily 
dealt with. For #(1) > 1, let U = {ul9 . . . , uv>] where v = H(l) 4 In. Let 
* ' be the set of all 2rc-subsets W' of U of the form {w/j, M/1 +1} U • • • U {uin9 
uin+1} where 1 < il9 in 4- 1 < v\ and z/+ x > ij 4 1, 1 < ƒ < n - 1. Let 7 ' = 
{ut, . . . , vd+ t_2n }, V = F' U £/ and * be the set of all (d + l)-subsets IV of 
F of the form V* UWf for W' E ty'. Give the elements of ty the lexicographic linear 
order < induced by ut < • • • < uv>. Let <bn be the set of all monomials in the vari­
ables Yx,..., Ys of degree at most n9 where s = //(l). A one-to-one order pre­
serving correspondence (5: $w —• ̂  can be defined. From $n choose the lexi­
cographic order ideal of monomials M associated with (#(0), . . . , H(n)). List 
the elements of M in order mx < • * • < m^. Consider the corresponding ele­
ments of ^ , Ft = PQni). Let 2 be the d-dimensional simplicial complex whose 
maximal simplices are Fl9 . . . , FM. It can be shown that 2 is shellable with 
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shelling order F l f • . . , FM and that h(d+ ^(S) = (#(1), ...,H(d+ 1)). 
Relabel the elements of V- {vx, . , . , vd+1„2n>

 u\> • • • > *V) a s W> 
. . . , vv} where *> = ƒƒ( l) + <i + L Consider the cyclic poly tope C(y, d + 1) = 
conv{ülf . , . , « „ } where y. = (ti$ tf, • . . , f f+ 1) e Rd+1 , ^ < • • • < tv. 
This notation implicitly defines a one-to-one correspondence between V and the 
vertex set of C(v, d + 1). Then {Fx, . . , , F^} is a representation of a shellable 
proper collection B of facets of C(y, d + 1). The existence of a realization of 
C0>, d + l ) C R d + 1 and of a point z G R d + 1 beyond precisely the facets in 8 
reduces to finding rational numbers tx < • • * < tv satisfying a finite number of 
polynomial inequalities. This can be accomplished by an application of a version 
of Tarski's Principle (see e.g. [2, Theorem 13, p. 290]). Once this is done, the 
desired simplicial polytope P can be obtained as previously described. 

A PROBLEM OF KLEE ON UPPER BOUNDS. For 3 <d <r<v, a polytope 
(resp. spherical complex) P is of type (dy vy r) if P is a d-polytope (resp. (d - 1)-
spherical complex) with v vertices, one of which is incident to precisely r edges. 
The problem, stated by Klee in a dual fashion, is to determine max fd-x(P) 
over all simplicial polytopes P of type (d, P, r). Klee places bounds on this num­
ber and determines it in some particular cases [3], [4]. We offer the complete 
solution with the following 

THEOREM 2. Let S be a simplicial sphere of type (d, v, r). Then f({S) < 
f((C(y - 1, d)) + fffXr + 1, d)) - ft{C{rt d)\ 0 < i < d - 1. Further, there 
exists a simplicial d-polytope P* that satisfies all of the above expressions with 
equality. (Here ffSXd, d)) is2ifi = d-l, and is f£C(d, d - 1)) otherwise.) 

The bounds are established in the same manner that Stanley uses in [8], 
relying on the fact that A-vectors of simplicial spheres are 0-sequences. P* is 
obtained from a construction similar to that used in the proof of Theorem 1. 
Here, however, the desired polytope is conv(C(V - 1, d) U {z}) for an appropri­
ate z. By a triangulation argument similar to that of pulling vertices of poly­
topes it can in fact be shown that P* achieves the maximum number of /-dimen­
sional faces over the class of all (not necessarily simplicial) spherical complexes 
of type (d, v, r). (Spherical complexes are defined in [6].) 
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