SUFFICIENCY OF McMULLEN'S CONDITIONS FOR f-VECTORS OF SIMPLICIAL POLYTOPES

BY LOUIS J. BILLERA¹ AND CARL W. LEE²

For convex d-polytope P let $f_i(P)$ equal the number of faces of P of dimension $i, 0 \le i \le d-1$. $f(P) = (f_0(P), \ldots, f_{d-1}(P))$ is called the f-vector of P. An important combinatorial problem is the characterization of the class of all f-vectors of polytopes, and in particular of simplicial polytopes (i.e. those for which each facet is a simplex). McMullen in [5] conjectures a set of necessary and sufficient conditions for (f_0, \ldots, f_{d-1}) to be the f-vector of a simplicial f-polytope and proves this conjecture in the case of polytopes with few vertices. We sketch here a proof of the sufficiency of these conditions, and derive in a related way a general solution to an upper bound problem posed by Klee.

The f-vectors of simplicial d-polytopes satisfy the Dehn-Sommerville equations

$$\sum_{i=j}^{d-1} (-1)^i \binom{i+1}{j+1} f_i(P) = (-1)^{d-1} f_j(P), \quad -1 \le j \le d-1,$$

where we put $f_{-1}(P)=1$. As in [6, p. 170], for d-vector $f=(f_0,\ldots,f_{d-1})$ and integer $e\geqslant d$ let

$$g_{j}^{(e)}(f) = h_{j+1}^{(e)}(f) = \sum_{i=-1}^{j} (-1)^{j-i} \binom{e-i-1}{e-j-1} f_{i}, \quad -1 \le j \le e-1,$$

with the convention that $f_{-1}=1$ and $f_i=0$ for i<-1 or i>d-1. We note here that these relations are invertible, allowing us to express the f_i as nonnegative linear combinations of the $h_j^{(e)}(f)$. The Dehn-Sommerville equations for f are, for any $e \ge d$, equivalent to $g_i^{(e)}(f)=(-1)^{e-d}g_{e-i-2}^{(e)}(f), -1 \le i \le [e/2]-1$. Let h and i be positive integers. Then h can be written uniquely as

Received by the editors July 18, 1979.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 52A25; Secondary 05A15, 05A19, 05A20, 90C05, 13H10.

Key words and phrases. Convex polytope, f-vector, 0-sequence, shelling, simplicial complex.

¹Supported in part by NSF grant MCS77-28392 and ONR contract N00014-75-C-0678.

²Supported, in addition, by an NSF Graduate Fellowship.

³ADDED IN PROOF. R. Stanley has proved necessity since this was written.

$$h = \begin{pmatrix} a_i \\ i \end{pmatrix} + \begin{pmatrix} a_{i-1} \\ i-1 \end{pmatrix} + \cdots + \begin{pmatrix} a_j \\ i \end{pmatrix}$$

where $a_i > a_{i-1} > \cdots > a_i \ge j \ge 1$. Following McMullen put

$$h^{\langle i \rangle} = \begin{pmatrix} a_i + 1 \\ i + 1 \end{pmatrix} + \begin{pmatrix} a_{i-1} + 1 \\ i \end{pmatrix} + \cdots + \begin{pmatrix} a_j + 1 \\ j + 1 \end{pmatrix}$$

and define $0^{(i)} = 0$. McMullen conjectured ([5], [6, p. 179]) that (f_0, \ldots, f_{d-1}) is the f-vector of a simplicial d-polytope if and only if the following three conditions hold:

$$g_i^{(d+1)}(f) = -g_{d-i-1}^{(d+1)}(f), \quad -1 \le i \le [\frac{1}{2}(d+1)] - 1, \tag{1}$$

$$g_i^{(d+1)}(f) \ge 0, \quad 0 \le i \le n-1,$$
 (2)

$$g_i^{(d+1)}(f) \le (g_{i-1}^{(d+1)}(f))^{(i)}, \quad 1 \le i \le n-1,$$
 (3)

where $n = \lfloor d/2 \rfloor$. Condition (1) is just the set of Dehn-Sommerville equations, the conjectured necessity of (2) is known as the *Generalized Lower Bound Conjecture* ([7], [6, p. 178]).

We will sketch a proof of the following

THEOREM 1. If $f = (f_0, \ldots, f_{d-1})$ satisfies (1), (2), and (3) above, then f = f(P) for some simplicial d-polytope P.

The case d < 2 is easily dispensed with, so assume $d \ge 2$. For finite (d-1)-dimensional simplicial complex Σ let $|\Sigma|$ denote the underlying topological space of Σ . $f(\Sigma) = (f_0(\Sigma), \ldots, f_{d-1}(\Sigma))$ is the f-vector of Σ , where $f_i(\Sigma)$ is the number of i-dimensional simplices in Σ . For $e \ge d$ write $h^{(e)}(\Sigma)$ for $h^{(e)}(f(\Sigma))$. We call $h^{(d)}(\Sigma)$ the h-vector of Σ . This is equivalent to Stanley's h-vector of [9]. If $|\Sigma|$ is a (d-1)-sphere then the Dehn-Sommerville equations hold (see, for example, Grünbaum [1, p. 152]). If $|\Sigma|$ is a d-ball then $\partial |\Sigma|$ is a (d-1)-sphere with associated complex $\partial \Sigma$. $|\Delta|$ is then a d-sphere, where $\Delta = \Sigma \cup v \cdot \partial \Sigma$. It can be shown that $h_i^{(d+1)}(\Delta) = h_i^{(d+1)}(\Sigma) + h_{i-1}^{(d)}(\partial \Sigma)$, $0 \le i \le d+1$ (where we take $h_{-1}^{(d)}(\partial \Sigma) = 0$). The Dehn-Sommerville equations for Δ and $\partial \Sigma$ allow us to solve for $h_i^{(e)}(\partial \Sigma)$ in terms of $h_i^{(d+1)}(\Sigma)$. In particular [7]

$$h_i^{(d+1)}(\partial \Sigma) = h_i^{(d+1)}(\Sigma) - h_{d+1-i}^{(d+1)}(\Sigma), \quad 0 \le i \le [\frac{1}{2}(d+1)].$$

A nonvoid set M of monomials $Y_1^{a_1} \cdots Y_s^{a_s}$ is said to be an order ideal of monomials if whenever $m_1 \in M$ and $m_2 \mid m_1$ then $m_2 \in M$. Let Φ be the set of all monomials in the variables Y_1, \ldots, Y_s . Give the elements of Φ the lexicographic linear order < induced by $Y_1 < \cdots < Y_s$. A finite or infinite sequence $(H(0), H(1), \cdots)$ of nonnegative integers is said to be an 0-sequence

if there exists an order ideal M of monomials in the variables Y_1, \ldots, Y_s with each deg $Y_i = 1$ such that $H(i) = \text{card}\{m \in M: \text{deg } m = i\}$. Stanley in [10] gives the following

THEOREM. Let $H: \mathbb{N} \to \mathbb{N}$. The following statements are equivalent:

- (i) $(H(0), H(1), \cdots)$ is an 0-sequence.
- (ii) H(0) = 1 and for all $i \ge 1$, $H(i + 1) \le H(i)^{\langle i \rangle}$.
- (iii) Let s = H(1) and for each $i \ge 0$ let M_i be the first (in the ordering above) H(i) monomials of degree i in the variables Y_1, \ldots, Y_s . Define $M = \bigcup_{i \ge 0} M_i$. Then M is an order ideal of monomials. Call M the lexicographic order ideal of monomials associated with $(H(0), H(1), \cdots)$.

IDEA OF PROOF OF THEOREM 1. If (f_0, \ldots, f_{d-1}) satisfies (1), (2), and (3), then by the above theorem $(H(0), \ldots, H(d+1))$ is an 0-sequence, where $H(i) = h_i^{(d+1)}(f)$ for $0 \le i \le n$ and H(i) = 0 for $n+1 \le i \le d+1$. A simplicial complex Σ is constructed by choosing as its maximal simplices certain (d + 1)-sets from a ν -set, where $\nu = H(1) + d + 1$, such that Σ is shellable in the sense of [9] and such that $(H(0), \ldots, H(d+1))$ is its h-vector. It is then shown that Σ is the complex associated with a shellable proper collection B of facets of the cyclic polytope $C(\nu, d + 1)$, implying that $|\Sigma|$ is a d-ball. $\partial |\Sigma|$ is then a (d-1)-sphere with associated complex $\partial \Sigma$. From $H(i)=0, n+1 \le i$ $\leq d+1$, it can be concluded that $h_i^{(d+1)}(\partial \Sigma) = h_i^{(d+1)}(f)$, $0 \leq i \leq n$. This and the Dehn-Sommerville equations for $\partial \Sigma$ yield $h^{(d+1)}(\partial \Sigma) = h^{(d+1)}(f)$. whence we conclude $f = f(\Sigma)$. Next, with an appropriate realization of C(v, d+1) in \mathbb{R}^{d+1} , a point $z \in \mathbb{R}^{d+1}$ can be found such that z is beyond those facets of C(v, d + 1) that are in B and beneath the rest. Then the vertex figure P of z in conv($C(v, d + 1) \cup \{z\}$) is a d-polytope whose boundary complex is isomorphic to $\partial \Sigma$, demonstrating sufficiency. (In fact, P is n-stacked in the sense of [7].)

A sketch of the construction of Σ follows. The case H(1)=0 is easily dealt with. For $H(1)\geqslant 1$, let $U=\{u_1,\ldots,u_{\nu'}\}$ where $\nu'=H(1)+2n$. Let Ψ' be the set of all 2n-subsets W' of U of the form $\{u_{i_1},u_{i_1+1}\}\cup\cdots\cup\{u_{i_n},u_{i_n+1}\}$ where $1\leqslant i_1,i_n+1\leqslant\nu'$, and $i_{j+1}>i_j+1$, $1\leqslant j\leqslant n-1$. Let $V'=\{v_1,\ldots,v_{d+1-2n}\},\ V=V'\cup U$ and Ψ be the set of all (d+1)-subsets W of V of the form $V'\cup W'$ for $W'\in\Psi'$. Give the elements of Ψ the lexicographic linear order < induced by $u_1<\cdots< u_{\nu'}$. Let Φ_n be the set of all monomials in the variables Y_1,\ldots,Y_s of degree at most n, where s=H(1). A one-to-one order preserving correspondence $\beta\colon\Phi_n\to\Psi$ can be defined. From Φ_n choose the lexicographic order ideal of monomials M associated with $(H(0),\ldots,H(n))$. List the elements of M in order $m_1<\cdots< m_{\mu}$. Consider the corresponding elements of Ψ , $F_i=\beta(m_i)$. Let Σ be the d-dimensional simplicial complex whose maximal simplices are F_1,\ldots,F_{μ} . It can be shown that Σ is shellable with

shelling order F_1, \ldots, F_u and that $h^{(d+1)}(\Sigma) = (H(1), \ldots, H(d+1))$.

Relabel the elements of $V=\{v_1,\ldots,v_{d+1-2n},u_1,\ldots,u_{\nu'}\}$ as $\{v_1,\ldots,v_\nu\}$ where $\nu=H(1)+d+1$. Consider the cyclic polytope $C(\nu,d+1)=\operatorname{conv}\{v_1,\ldots,v_\nu\}$ where $v_i=(t_i,t_i^2,\ldots,t_i^{d+1})\in \mathbf{R}^{d+1}$, $t_1<\cdots< t_\nu$. This notation implicitly defines a one-to-one correspondence between V and the vertex set of $C(\nu,d+1)$. Then $\{F_1,\ldots,F_\mu\}$ is a representation of a shellable proper collection $\mathcal B$ of facets of $C(\nu,d+1)$. The existence of a realization of $C(\nu,d+1)\subseteq \mathbf{R}^{d+1}$ and of a point $z\in \mathbf{R}^{d+1}$ beyond precisely the facets in $\mathcal B$ reduces to finding rational numbers $t_1<\cdots< t_\nu$ satisfying a finite number of polynomial inequalities. This can be accomplished by an application of a version of Tarski's Principle (see e.g. [2, Theorem 13, p. 290]). Once this is done, the desired simplicial polytope P can be obtained as previously described.

A PROBLEM OF KLEE ON UPPER BOUNDS. For $3 \le d \le r < \nu$, a polytope (resp. spherical complex) P is of type (d, ν, r) if P is a d-polytope (resp. (d-1)-spherical complex) with ν vertices, one of which is incident to precisely r edges. The problem, stated by Klee in a dual fashion, is to determine $\max f_{d-1}(P)$ over all simplicial polytopes P of type (d, ν, r) . Klee places bounds on this number and determines it in some particular cases [3], [4]. We offer the complete solution with the following

THEOREM 2. Let S be a simplicial sphere of type (d, v, r). Then $f_i(S) \le f_i(C(v-1,d)) + f_i(C(r+1,d)) - f_i(C(r,d))$, $0 \le i \le d-1$. Further, there exists a simplicial d-polytope P^* that satisfies all of the above expressions with equality. (Here $f_i(C(d,d))$ is 2 if i=d-1, and is $f_i(C(d,d-1))$ otherwise.)

The bounds are established in the same manner that Stanley uses in [8], relying on the fact that h-vectors of simplicial spheres are 0-sequences. P^* is obtained from a construction similar to that used in the proof of Theorem 1. Here, however, the desired polytope is $conv(C(v-1,d) \cup \{z\})$ for an appropriate z. By a triangulation argument similar to that of pulling vertices of polytopes it can in fact be shown that P^* achieves the maximum number of i-dimensional faces over the class of all (not necessarily simplicial) spherical complexes of type (d, v, r). (Spherical complexes are defined in [6].)

REFERENCES

- 1. B. Grünbaum, Convex polytopes, Wiley, New York, 1967.
- 2. N. Jacobson, Lectures in abstract algebra, Vol. III, Van Nostrand, Princeton, N. J., 1964.
- 3. V. Klee, Polytope pairs and their relationship to linear programming, Acta Math. 133 (1974), 1-25.
- 4. ———, Convex polyhedra and mathematical programming, Proc. Internat. Congr. Mathematicians, Vol. I, Vancouver, 1974, pp. 485-490.
- 5. P. McMullen, The numbers of faces of simplicial polytopes, Israel J. Math. 9 (1971), 559-570.
- 6. P. McMullen and G. C. Shephard, Convex polytopes and the upper bound conjecture, London Math. Soc. Lecture Note Ser. 3, Cambridge, 1971.

- 7. P. McMullen and D. W. Walkup, A generalized lower-bound conjecture for simplicial polytopes, Mathematika 18 (1971), 264-273.
- 8. R. Stanley, *The upper bound conjecture and Cohen-Macaulay rings*, Studies in Appl. Math. 54 (1975), 135-142.
- 9. ———, Cohen-Macaulay complexes, Higher combinatorics, M. Aigner (ed.), D. Reidel, Dordrecht, 1977, pp. 51-62.
- 10. ———, Hilbert functions of graded algebras, Advances in Math. 28 (1978), 57-83.

SCHOOL OF OPERATIONS RESEARCH AND CENTER FOR APPLIED MATHE-MATICS, CORNELL UNIVERSITY, ITHACA, NEW YORK 14853