ON IRREDUCIBLE MAPS

BY R. BAUTISTA

The notion of irreducible map was introduced by M. Auslander and I. Reiten in [3] and plays an important role in the representation theory of artin algebras.

We recall that an artin ring Λ is said to be an artin algebra if its center C is an artin ring and Λ is finitely generated left Λ -module. Now choose a complete set P_1, \ldots, P_s of representatives of the isomorphism classes of indecomposable projectives in $\operatorname{mod}(\Lambda)$, we will denote by $\operatorname{pr} \Lambda$ the full subcategory of $\operatorname{mod} \Lambda$ whose objects are P_1, \ldots, P_s . A map $g \colon X \longrightarrow Y$ in $\operatorname{mod}(\Lambda)$ is said to be irreducible if g is neither a split monomorphism nor a split epimorphism and for any commutative diagram

$$X \xrightarrow{g} Y$$

$$f \xrightarrow{Z} h$$

f is a splittable monomorphism or h is a splittable epimorphism.

We study irreducible maps in $\operatorname{mod}(\Lambda)$ by using properties of the Jacobson radical of $\operatorname{mod}(\Lambda)$. We recall that the Jacobson radical of $\operatorname{mod}(\Lambda)$ is the subfunctor rad of the two variable functor $\operatorname{Hom}: (\operatorname{mod}(\Lambda))^{\operatorname{op}} \times \operatorname{mod}(\Lambda) \longrightarrow \operatorname{Ab}$ defined by

$$rad(X, Y) = \{ f \in Hom(X, Y) | 1 - gf \text{ is invertible for every } g \in Hom(Y, X) \}$$

= $\{ f \in Hom(X, Y) | 1 - fh \text{ is invertible for any } h \in Hom(X, Y) \}.$

It is easy to prove that if X and Y are indecomposables, then rad(X, Y) consists of all nonisomorphisms, from X to Y.

We can prove the following result:

PROPOSITION 1. Let C and D be indecomposables in $mod(\Lambda)$. Then
(a) A map $f: C \to is$ irreducible iff $f \in rad(C, D)$ and $f \notin rad^2(C, D)$,
where $rad^2(C, D)$ consists of all maps of the form t_1t_2 with $t_2 \in rad(C, X)$ and $t_1 \in rad(X, D)$.

Received by the editors July 9, 1979.

AMS (MOS) subject classifications (1970). Primary 16A64.

178 R. BAUTISTA

(b) A map

$$g = \begin{pmatrix} g_1 \\ \vdots \\ g_n \end{pmatrix} : C \longrightarrow D \coprod \cdots \coprod D$$

is irreducible iff $\overline{g}_1, \ldots, \overline{g}_n$, rad(C, D)/rad $^2(C, D)$ are linearly independent over End(D)/rad End(D).

Using properties of rad we obtain the result stated below:

THEOREM 1. Suppose $f \in rad(X, Y)$. Then the following statements are equivalent

- (a) f is irreducible,
- (b) For any splittable monomorphism $u: C \rightarrow X$ with C indecomposable the composed map fu is irreducible.
- (c) For any splittable epimorphism $v: Y \rightarrow D$ with D indecomposable of is irreducible,

If the artin algebra Λ is infinite and of finite representation type then we have rather precise information about irreducible maps between indecomposables in mod(Λ). We are able to prove the following

THEOREM 2. Suppose Λ is an infinite artin algebra of finite representation type and let X and Y be indecomposables in $mod(\Lambda)$. If we denote by d and d' the dimensions of $Hom(X, Y)/rad^2(X, Y)$ over End(X)/rad End(X) and over End(Y)/rad End(Y) respectively, then $dd' \leq 3$.

We also get information about the middle term of any almost split sequence in $\operatorname{mod}(\Lambda)$. We recall that the short exact sequence $0 \to A \xrightarrow{u} B \xrightarrow{V} C \to 0$ is said to be almost split if (a) the sequence does not split. (b) For any $h: X \to C$ nonsplittable epi there exists g with vg = h. (c) For any $h': A \to Y$ nonsplittable mono there exists $g': B \to Y$ with gu' = h'.

Theorem 3. Assume Λ is an infinite artin algebra of finite representation type. Let

$$0 \longrightarrow A \longrightarrow n_1 B_1 \coprod n_2 B_2 \coprod \cdots \coprod n_s B_s \longrightarrow A' \longrightarrow 0$$

be an almost split sequence in $mod(\Lambda)$ with B_i indecomposable, $B_i \not\cong B_j$ if $i \neq j$ and n_iB_i means the direct sum of n_i copies of B_i .

- (a) $n_i \leq 3$ for every $i = 1, \ldots, s$.
- (b) If for some $i n_i \ge 2$, then $n_j = 1$ if $j \ne i$.
- (c) If Λ is a finite dimensional algebra over an algebraically closed field k, then $n_i=1$ for any i.

The idea of the proof is the following:

We can assume Λ indecomposable, denote by C the center of Λ . Then $K=C/\operatorname{rad} C$ is a field. Now consider X and Y in $\operatorname{mod}(\Lambda)$. We define the set $I(X,Y)=\{\overline{f}\in\operatorname{rad}(X,Y)/\operatorname{rad}^2(X,Y)|f$ is an irreducible map $\}$. Now we put $K_X^*=\operatorname{units}$ of $\operatorname{End}(X)/\operatorname{rad}\operatorname{End}(X)$, and the same for K_Y . In some cases I(X,Y) is an affine K-variety and the K-algebraic group $K_X^*\times K_Y^*$ acts on I(X,Y). Then using properties of irreducible maps [4] and the Gabriel-Tits argument [5] we get our theorem.

Following M. Auslander a skelletally small preadditive category C is said to be prevariety if: (a) Any object in C can be decomposed as finite sum of indecomposable objects in C. (b) Any idempotent in C splits. (c) $\operatorname{End}(M)$ for any indecomposable object of C is a local ring. We recall that the Auslander graph A(C) of C is defined as follows:

Choose a complete set of representatives M_i , $i \in I$, of all the isomorphism classes of indecomposable objects in C. Then the vertices of A(C) are the elements of I. We put an arrow from i to j iff there exists an irreducible map f: $M_i \longrightarrow M_j$.

Now we define the Auslander species of C by attaching to each point $i \in A(C)$ the division ring $K_i = \operatorname{End}(M_i)/\operatorname{rad} \operatorname{End}(M_i)$, and to each arrow $i \to j$ in A(C) the $K_i - K_j$ bimodule $M_{ij} = \operatorname{rad}(M_i, M_j)/\operatorname{rad}^2(M_i, M_j)$.

We note that when Λ is an artin algebra and $C = \operatorname{pr}(\Lambda)$ then the Auslander species of C is just the Dlab-Ringel species of Λ (see [6]). As in [7] we can associate to the Auslander species of $\operatorname{mod}(\Lambda)$ a tensor category T_{Λ} .

We define $\operatorname{rad}^i(X, Y)$ in similar way as $\operatorname{rad}^2(X, Y)$ was defined. We put $\operatorname{rad}^\infty(X, Y) = \bigcap_{i \geq 1} \operatorname{rad}^i(X, Y)$. Here $\operatorname{rad}^\infty(X, Y)$ is an ideal in $\operatorname{mod}(\Lambda)$. Then as in [7] we have the following:

PROPOSITION 2. If Λ is either an hereditary artin algebra of finite representation type or a finite dimensional algebra over an algebraically closed field k, then there exists a full functor $G: T \longrightarrow \operatorname{mod}(\Lambda)/\operatorname{rad}^{\infty}$ such that for any indecomposable module M in $\operatorname{mod}(\Lambda)$ there exists M' in T_{Λ} with $G(M) \cong M'$.

Observe that if Λ is of finite representation type than $\operatorname{rad}^{\infty}(X, Y) = 0$ for any X and Y in $\operatorname{mod}(\Lambda)$.

Using properties of hereditary artin algebras proved in [2] we can describe Ker G in terms of almost split sequences.

REFERENCES

- 1. M. Auslander, Representation theory of Artin algebras. I, Comm. Algebra 1 (1974), 177-268.
- 2. M. Auslander and M. I. Platzeck, Representation theory of hereditary Artin algebras, Representation Theory of Algebras, (Proc. Conf. Temple University, Philadelphia, 1976, pp. 369-424). Lecture Notes in Pure and Applied Math., vol. 37, Dekker, New York, 1978.
- 3. M. Auslander and I. Reiten, Representation theory of Artin Algebras. III, Almost split sequences, Comm. Algebra 3 (1975), 239-294.

- 4. Representation theory of Artin algebras. IV, Invariants given by almost split sequences, Comm. Algebra 5 (1977), 443-518.
- 5. I. N. Bernstein, I. M. Gelfand and V. A. Ponomariev, Coxeter functors and Gabriel's theorem, Uspeshi Mat. Nauk 28 (1973), 19-33.
- 6. V. Dlab and C. M. Ringel, Indecomposable representation of graphs and algebras, Mem. Amer. Math. Soc. 173 (1976).
 - 7. ——, On algebras of finite representation type, J. Algebra 33 (1975), 306-394.

INSTITUTO DE MATEMÁTICAS UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, AREA DE LA INVESTIGACIÓN CIENTÍFICA, CIRCUITO EXTERIOR, C. U. MEXICO 20, D. F. MÉXICO