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ON IRREDUCIBLE MAPS 

BY R. BAUTISTA 

The notion of irreducible map was introduced by M. Auslander and I. 
Reiten in [3] and plays an important role in the representation theory of artin 
algebras. 

We recall that an artin ring A is said to be an artin algebra if its center C 
is an artin ring and A is finitely generated left A-module. Now choose a complete 
set Px, . . . , Ps of representatives of the isomorphism classes of indecomposable 
projectives in mod(A), we will denote by pr A the full subcategory of mod A 
whose objects are Pt, . . . , Ps. A map g: X —• Y in mod(A) is said to be irre­
ducible if g is neither a split monomorphism nor a split epimorphism and for any 
commutative diagram 

X~^+Y 
f \ / h 

Z 

ƒ is a splittable monomorphism or ft is a splittable epimorphism. 
We study irreducible maps in mod(A) by using properties of the Jacobson 

radical of mod(A). We recall that the Jacobson radical of mod(A) is the subfunc-
tor rad of the two variable functor Hom: (mod(A))op x mod(A) —• Ab defined 
by 

rad(X, Y) = {ƒ G Hom(X, Y)\ 1 -gf is invertible for every g G Hom(7, X)} 

= {ƒ G Hom(X, F)I 1 - fli is invertible for any ft G Hom(Z, Y)}. 

It is easy to prove that if X and Y are indécomposables, then rad(X, Y) 
consists of all nonisomorphisms, from X to Y. 

We can prove the following result: 

PROPOSITION 1. Let C and D be indécomposables in mod(A). Then 
(a) Amapf\C—* is irreducible iff f G rad(C, D) and f $ rad2(C, D), 

where rad2(C, D) consists of all maps of the form txt2 with t2 € rad(C, X) and 
tx G rad(X, D). 
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(b) A map 

M 
g=\ • :C-*£>II---UZ) 

is irreducible iffgx,...,gn, rad(C, D)/rad2(C, D) are linearly independent over 
End(Z>)/rad End(Z>). 

Using properties of rad we obtain the result stated below: 

THEOREM 1. Suppose f G rad(X, Y). Then the following statements are 
equivalent 

(a) fis irreducible, 
(b) For any splittable monomorphism u: C —• X with C indecomposable 

the composed map fu is irreducible. 
(c) For any splittable epimorphism v: Y —> D with D indecomposable vf 

is irreducible. 

If the artin algebra A is infinite and of finite representation type then we 
have rather precise information about irreducible maps between indécomposables 
in mod(A). We are able to prove the following 

THEOREM 2. Suppose A is an infinite artin algebra of finite representation 
type and let X and Y be indécomposables in mod(A). If we denote by d and 
d' the dimensions of Hom(X, y)/rad2(X, Y) over End(Z)/rad End(Z) and over 
End (F)/rad End(Y) respectively, then dd' < 3. 

We also get information about the middle term of any almost split sequence 
u V 

in mod(A). We recall that the short exact sequence 0 —> A —> B —> C —> 0 
is said to be almost split if (a) the sequence does not split, (b) For any h: X 
—• C nonsplittable epi there exists g with vg — h. (c) For any h': A —> Y non-
spiittable mono there exists g: B —> Y with gu = ti. 

THEOREM 3. Assume A is an infinite artin algebra of finite representation 
type. Let 

0—*A —*nxBxUn2B2U • • 'Un^s —*A' —» 0 

be an almost split sequence in mod(A) with Bt indecomposable, Bt ^ 2?y- if i =£ 
ƒ and niBi means the direct sum ofnt copies of Bt. 

(a) ni < 3 for every i = 1, . . . , & 
(b) ïf for some i nt > 2, then n^ = 1 iff =£ i. 
(c) If A is a finite dimensional algebra over an algebraically closed field k, 

then nt = 1 for any i. 
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The idea of the proof is the following: 

We can assume A indecomposable, denote by C the center of A. Then K = 

C/rad C is a field. Now consider X and Y in mod(A). We define the set I(X, Y) 

= {ƒ E rad(X, Y)/rad2(X, Y)\f is an irreducible map}. Now we put K\ = units 

of End(X)/rad End(Z), and the same for KY. In some cases I(X, Y) is an affine 

^-variety and the ^-algebraic group K\ x K\ acts on I(X, Y). Then using prop­

erties of irreducible maps [4] and the Gabriel-Tits argument [5] we get our theo­

rem. 

Following M. Auslander a skelletally small preadditive category C is said to 
be prevariety if: (a) Any object in C can be decomposed as finite sum of inde­
composable objects in C. (b) Any idempotent in C splits, (c) End(Af) for any 
indecomposable object of C is a local ring. We recall that the Auslander graph 
A(C) of C is defined as follows: 

Choose a complete set of representatives Mi9 i E ƒ, of all the isomorphism 
classes of indecomposable objects in C. Then the vertices of A(C) are the ele­
ments of / . We put an arrow from i to ƒ iff there exists an irreducible map ƒ : 

Now we define the Auslander species of C by attaching to each point i E 
Â(C) the division ring Kt = EndCM^/rad End(Aff), and to each arrow i —• ƒ in 
A(C) the K. - Kj bimodule M(j = rad(Mf, Mf)li&d2(Mi9 Mf). 

We note that when A is an artin algebra and C = pr(A) then the Auslander 
species of C is just the Dlab-Ringel species of A (see [6]). As in [7] we can as­
sociate to the Auslander species of mod(A) a tensor category TA. 

We define rad*(X, Y) in similar way as rad2(X, Y) was defined. We put 
rad°°(X Y) = C\i>i rad'(JT, Y). Here rad°°(Z, Y) is an ideal in mod(A). Then 
as in [7] we have the following: 

PROPOSITION 2. If A is either an hereditary artin algebra of finite repre­

sentation type or a finite dimensional algebra over an algebraically closed field k, 

then there exists a full functor G: T—• mod(A)/rad°° such that for any indecom­

posable module M in mod(A) there exists Mf in TA with G(M) = M\ 

Observe that if A is of finite representation type than rad°°(Z, Y) = 0 for 

any X and Y in mod(A). 

Using properties of hereditary artin algebras proved in [2] we can describe 

Ker G in terms of almost split sequences. 
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