A TOPOLOGICAL RESOLUTION THEOREM

BY SELMAN AKBULUT AND LARRY TAYLOR

We prove a topological analogue of the resolution theorem for algebraic varieties [H]. We show that every compact P.L. manifold M admits a framed stratification (every stratum has a product neighborhood) such that after a sequence of topological blow ups performed along the closed smooth strata we get a compact smooth manifold \widetilde{M} ($\partial \widetilde{M} = \emptyset$ if $\partial M = \emptyset$) and a degree one map (with Z/2 coefficients) $\pi \colon \widetilde{M} \to M$. The map π is a P.L. homeomorphism in the complement of a union of smooth submanifolds of the form $N_i \times W_i$, such that π collapses $N_i \times W_i$ to N_i in some order. This structure can be used to show that every compact P.L. manifold is P.L. homeomorphic to a real algebraic variety [AK]. This also gives a nice way of defining differential forms on P.L. manifolds by pushing down the relative forms from the smooth resolution spaces.

Define an A_0 -structure on a P.L. manifold to be a smooth structure, and call such manifold an A_0 -manifold. Inductively define an A_k -structure on a P.L. manifold M to be a decomposition

$$M = M_0 \cup_{\phi} \coprod_{i=1}^r N_i \times \operatorname{cone}(\Sigma_i)$$

for some r, where M_0 is an A_{k-1} -manifold with boundary; each Σ_i is a boundary of a compact A_{k-1} -manifold and is P.L. homeomorphic to a P.L. sphere; and N_i are smooth manifolds. Finally $\phi = \{\phi_i\}$ are maps describing the identification (as stratified sets) $\phi_i \colon N_i \times \Sigma_i \longrightarrow \partial M_0$ where the union is taken. We say M has an A-structure if it has an A_k -structure for some k.

To describe the blowing up process, let M be an A_k -manifold. Then $M=M_0\cup II_i\ N_i\times {\rm cone}(\Sigma_i)$ and we can choose compact A_{k-1} -manifolds W_i with $\partial W_i=\Sigma_i$. Construct the obvious A_{k-1} -manifold $\widetilde{M}_{k-1}=M_0\cup II_i\ N_i\times W_i$. There is the obvious P.L. map $\pi\colon \widetilde{M}_{k-1}\longrightarrow M$ which is the identity on M_0 and collapses each $N_i\times W_i$ onto N_i . We can iterate this process to get a resolution sequence

$$\widetilde{M} = \widetilde{M}_0 \xrightarrow{\pi} \widetilde{M}_1 \xrightarrow{\pi} \cdots \xrightarrow{\pi} \widetilde{M}_{k-1} \xrightarrow{\pi} M.$$

Received by the editors September 4, 1979.

AMS (MOS) subject classifications (1970). Primary 57C25, 55E15; Secondary 55F40.

Key words and phrases. P.L. mainfolds, A-manifolds, stratifications, resolutions, thickenings, classifying spaces.

 \widetilde{M} is smooth and clearly the composition map $\pi\colon \widetilde{M} \longrightarrow M$ collapses $N_i \times W_i$ onto $N_i.$

Following [L] and [W] we define A-thickenings; the classifying space B_A ; and the natural map $B_A \longrightarrow B_{PL}$. Then we prove the usual structure theorem: Namely that a compact P.L. manifold M has an A-structure if and only if the normal bundle map (thickening map)

$$M \xrightarrow{\nu_M} B_{\rm PL}$$

lifts to B_A . Let PL/A be the homotopy theoretical fibre of $B_A \longrightarrow B_{PL}$.

THEOREM. $B_A \cong B_{PL} \times PL/A$, and PL/A is the product of Eilenberg-Mc Laine spaces K(Z/2, n)'s. The number δ_n of K(Z/2, n) for each n in this product is given to be

$$\delta_n = \begin{cases} 0 & \text{if } n < 8, \\ 26 & \text{if } n = 8, \\ & \text{infinite but countable} & \text{if } n > 8. \end{cases}$$

COROLLARY. Every compact P.L. manifold M has an A-structure and number of different A-structures (up to A-concordance) on M is given by $\bigoplus_{n\geq 8} H^n(M: \pi_n(PL/A))$.

Roughly an A structure on M gives a topological resolution on M and $\bigoplus_n H^n(M: \pi_n(PL/A))$ classifies different ways of resolving M.

Outline of proof. While constructing B_A we also classify A_k -thickenings and prove the usual classification theorem for them. We then proceed to analize B_{A_k} , and $B_A = \lim_{k \to \infty} B_{A_k}$. It is standard that $\pi_i(PL/A_k)$ coincides with concordance classes of A_k -structures on S^i . Since $\pi_i(PL/A) = \lim_{k \to \infty} \pi_i(PL/A_k)$ it follows from definitions that $\pi_i(PL/A)$ maps monically to the i-dimensional unoriented A bordism group η_i^A . Next we construct a Thom spectrum, MA, with $\pi_i(MA) \approx \eta_i^A$.

Since it is clear that an A_k -manifold crossed with a smooth manifold is an A_k -manifold, we can show that MA is an MO module spectrum and it is now a formality that the map $\eta_i^A \longrightarrow H_i(B_A; \mathbb{Z}/2)$ given by

$$\{M \xrightarrow{\nu_M} B_A\} \rightsquigarrow (\nu_M) * [M]$$

is monic. Hence $\pi_*(PL/A) \longrightarrow H_*(B_A; Z/2)$ is monic, hence split. It is now easy to show that PL/A is a product of K(Z/2, n)'s and to construct a map $B_A \longrightarrow PL/A$ splitting the inclusion $PL/A \longrightarrow B_A$.

To compute δ_n is not so hard. To construct B_A one proves along the way that δ_n is countable. For $n \leq 8$ one can explicitly see all the A-spheres so there is no problem. Above 8 things are complicated but it is not too hard to construct

an infinite number of concordance classes in each dimension. The details will appear elsewhere [AT].

REFERENCES

- [AK] S. Akbulut and H. C. King, Real algebraic structures on topological spaces, Bulletin Amer. Math. Soc. (N. S.) 2 (1980),
- [AT] S. Akbulut and L. Taylor, A topological resolution theorem, Bulletin Amer. Math. Soc. (N. S.) 2 (1980),
- [H] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann of Math. 79 (1964), 109-326.
- [L] N. Levitt, Exotic singular structures on spheres, Trans. Amer. Math. Soc. 205 (1975), 371-383.
- [W] C. T. C. Wall, Classification problems in differential topology-IV, thickenings, Topology 5 (1966), 73-94.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME, NOTRE DAME, INDIANA 46556