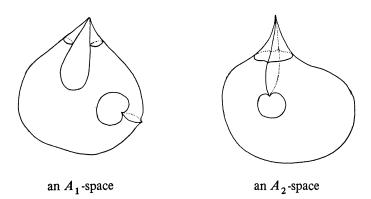
A TOPOLOGICAL CHARACTERIZATION OF REAL ALGEBRAIC VARIETIES

BY SELMAN AKBULUT AND HENRY C. KING

We show that if a smooth locally conelike stratified set admits a certain kind of topological resolution then it is homeomorphic to a real algebraic set, i.e. zeros of polynomial functions (this generalizes $[AK_1]$, $[AK_2]$). We expect that the algebraic resolution of singularities [H] implies that every algebraic set admits such a topological resolution, hence it is reasonable to suspect that we have a complete topological characterization of real algebraic sets.

Examples of some stratified sets admitting such a topological resolution are spaces which we call A_k -spaces, $k=0,1,2,\cdots$. We define A_k -spaces inductively by saying that A_0 -spaces are smooth compact manifolds, and an A_k -space is a compact smooth stratified set X with a trivialization of a neighborhood of each stratum X_i , h_i : $X_i \times \text{cone}(\Sigma_i) \longrightarrow X$ where Σ_i is an A_{k-1} -space which bounds a compact A_{k-1} -space with boundary (h_i required to be compatible with the trivializations of neighborhoods of the strata of Σ_i).



The topological resolution of an A_k -space X is obtained by a sequence of 'blow ups' as follows: take a lowest dimensional stratum X_i (the 'center' of the 'blow ups') with trivialization h_i : $X_i \times \text{cone}(\Sigma_i) \longrightarrow X$ and replace $h_i(X_i \times \text{cone}(\Sigma_i))$ by $X_i \times W_i$ where W_i is a compact A_{k-1} -space which Σ_i

Received by the editors September 4, 1979.

AMS (MOS) subject classifications (1970). Primary 57C05, 14A10, 14E15. Key words and phrases. Algebraic sets, resolutions, A_k -spaces, stratifications, P.L. manifolds.

^{© 1980} American Mathematical Society 0002-9904/80/0000-0005/\$01.75

bounds. We have a map from the new space to X which is the identity outside image (h_i) and which collapses $X_i \times S_i$ to $X_i \times *$ where S_i is a spine of W_i and * is the vertex of $\operatorname{cone}(\Sigma_i)$. After a finite number of such blow ups we obtain a smooth manifold \widetilde{X} and a 'resolution' $\widetilde{X} = Z_n \longrightarrow Z_{n-1} \longrightarrow \cdots \longrightarrow Z_0 = X$. We say X is an A-space if it is an A_k -space for some k. In particular we prove:

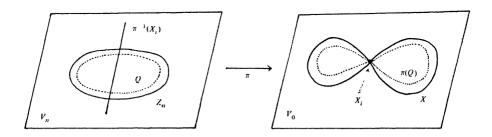
THEOREM. The interior of any compact A-space is homeomorphic to a real algebraic set. Furthermore the natural stratification on this algebraic set coincides with the stratification of the A-structure.

One of the reasons A-spaces are of interest is that Akbulut and Taylor have shown that any compact P.L. manifold has the structure of an A-space [AT]

COROLLARY. The interior of any compact P.L. manifold is P.L homeomorphic to a real algebraic set.

SKETCH OF PROOF. Take a resolution of a compact A_k -space $X: Z_n \to Z_{n-1} \to \cdots \to Z_0 = X$ where Z_n is a smooth compact manifold. Each $Z_{i+1} \to Z_i$ has a certain 'center' a smooth manifold $X_i \subset Z_i$ along which a topological 'blow up' occurs. We construct a tower of nonsingular varieties $V_n \to V_{n-1} \to \cdots \to V_0 = \mathbb{R}^n$ with $X_i \subset V_i$ as a nonsingular subvariety and imbeddings $Z_i \subset V_i$ which commute with projections (i.e. all the above maps given by arrows) and are in some sense 'stable' over the projections.

This means that if Z_n is moved by a small isotopy in V_n the image of Z_n under the composite projection $\pi\colon V_n \longrightarrow V_0$ is isotopic to X. We then approximate the submanifold $Z_n \subset V_n$ by an algebraic set Q; and then 'blow down' Q algebraically to an algebraic set V which is homeomorphic to $\pi(Q)$, which is in turn homeomorphic to X.



Each V_{i+1} and the projection $V_{i+1} \xrightarrow{\pi_i} V_i$ is obtained by a certain algebraic 'multiblowing-up' process from V_i along X_i . X_i is a lowest dimensional stratum of Z_i . Given $Z_i \subset V_i$ the imbedding $Z_{i+1} \subset V_{i+1}$ is obtained roughly as follows: Let $h_i \colon X_i \times \operatorname{cone}(\Sigma_i) \longrightarrow Z_i$ be the neighborhood trivialization of X_i , and W_i a compact A_k -space which Σ_i bounds; imbed $X_i \times W_i$ into V_{i+1} so that

- (a) $X_i \times W_i$ is transverse to $\pi_i^{-1}(X_i)$,
- (b) $\pi_i^{-1}(X_i) \cap (X_i \times W_i) = X_i \times \text{(a spine of } W_i),$
- (c) $\pi_i(X_i \times W_i) \approx h_i(X_i \times \text{cone}(\Sigma_i))$.

Then extend this imbedding to an imbedding of Z_{i+1} into V_{i+1} by simply lifting the imbedding Z_i -image (h_i) ($\approx Z_{i+1} - X_i \times W_i$) to V_{i+1} via π_i so that $\pi_i(Z_{i+1}) \approx Z_i$. In particular, along the way we prove that the A_k -space Σ_i , which bounds, necessarily has to bound an A_k -space W_i , which has a spine consisting of transversally intersecting codimension one A_k -subspaces without boundaries. Choosing such W_i 's enables us to show (a), (b), (c). Details are long and geometric in nature, they will appear in $[AK_3]$. The proof applies to spaces more general than A-spaces, which leads us to believe that a satisfactory topological classification theorem for real algebraic sets is within reach.

REFERENCES

- [AK₁] S. Akbulut and H. C. King, Real algebraic variety structures on P.L. manifolds, Bull. Amer. Math. Soc. 83 (1977), 281-282.
- [AK₂] ———, The topology of real algebraic sets with isolated singularities, Ann. of Math. (to appear).
 - [AK₃] ———, Real algebraic structures on topological spaces (to appear).
- [AT] S. Akbulut and L. Taylor, A topological resolution theorem, Bull. Amer. Math. Soc. N. S. 2 (1980), 174-176.
- [H] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann of Math. 79 (1964), 109-326.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND, COLLEGE PARK, MARYLAND 20742