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Proposition 3.1 on p. 268, is a nonproof as far as I can see-if you know the 
formula, then it is true. It is too central to the theory of integration of forms 
to be treated this way. 

The proof of the divergence theorem on p. 291 would be much simpler and 
clearer if the author used orthonormal moving frames, a topic I feel he does 
not exploit adequately in a number of places. Also, the messy calculation on 
p. 290, needed for the divergence theorem is only the obvious result that 
ƒ = ± * d * a follows from fdV = d * a. 

The discussion of Maxwell's equations on p. 329, as I read it, says that to 
prove Maxwell's equations it suffices to show that a certain 2-form co is 
harmonic (see lines 6*-5*). This means, in harmonic form language, that 
Aco = 0 implies dco = 0 and 8<o = 0, a true statement in compact manifolds 
(p. 320), but not applicable here. What is more, the issue is clouded because 
the Hodge theory (and indeed almost everything else metric in the book) is 
stated for Riemannian manifolds, whereas here we are dealing with a Lorentz 
metric (invariant + , —, —, — ). This is an alert for those attempting the last 
chapter of the book, General theory of relativity. The author sometimes 
assumes that facts about Riemannian manifolds carry over automatically to 
the Lorentz (pseudo-Riemannian) case. Sometimes they do, sometimes they 
don't. 

I conclude that someone who is reasonably familiar with the mathematics 
of this book will be able to get something out of the applications to physics, 
provided he works at it harder than he should have to and doesn't accept the 
author's mathematics at face value. I doubt very much if someone can learn 
the subject from this book without extensive work in other sources. (Also the 
author gives no exercises.) The book may repel rather than attract, exactly the 
opposite of its author's intent. Too much of the book was written without 
adequate organization and care, and I get the feeling that some sections must 
have been written at wide time intervals. It's a pity that the author didn't 
make a more palatable product. The subject will eventually be a standard tool 
in physics, but there is yet little material accessible to nonmathematicians. 
My own short book [1] doesn't begin to compare in its scope of applications 
to the book under review because I didn't when I wrote it and never will 
know physics as Profesor von Westenholz does. 
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Combinatorial group theory: presentations of groups in terms of generators 
and relations by Magnus, Karrass and Solitar was published in 1966. It was a 
careful, leisurely exposition of some of the basic topics in a loosely defined 
area, with close connections to topology and logic, aimed specifically at 
beginning graduate students which has now found a much wider use. The 
book under review by Lyndon and Schupp is similarly entitled Combinatorial 
group theory. In a sense the similarity ends with the title. For in keeping with 
the spirit of the Ergebnisse series, this book is for the most part a fast moving, 
technical exposition, packed with information about a field which has 
mushroomed in the past 30 years. 

The origins of combinatorial group theory can be traced back to the middle 
of the 19th century. With surprising frequency problems in a wide variety of 
disciplines, including the theories of differential equations and automorphic 
functions were distilled into questions about explicit groups. These groups 
took on many forms-matrix groups, discontinuous groups of transformations, 
symmetry groups, groups preserving, e.g. quadratic forms and numerous 
others. The introduction of the fundamental group by Poincaré in 1895, the 
discovery of knot groups by Wirttinger in 1905 and the proof by Tietze in 
1908 that the fundamental group of a compact finite dimensional arcwise 
connected manifold is finitely presented served to underline the importance 
of finitely presented groups. This was followed by a sequence of papers 
between 1910 and 1914 by Max Dehn who explicitly raised (and partly 
solved) a number of fundamental problems about finitely presented groups, 
thereby heralding the birth of a new subject-combinatorial group theory. 
Thus the subject came endowed and encumbered by many of the problems 
that had stimulated its birth. 

These problems were generally concerned with various classes of groups 
and were of the following kind: Are all of the groups in a given class finitely 
generated? Finitely presented? Finite? What are the conjugates of a given 
element in a given group? What are the subgroups of that group? Is there an 
algorithm for deciding for every pair of groups in a given class whether or not 
they are isomorphic? And so on. The objective of combinatorial group theory 
is the systematic development of algebraic techniques to settle such questions. 
In view of the scope of the subject and the extraordinary variety of groups 
involved it is not surprising that no really general theory exists. It is however 
surprising that so much has been accomplished and that so many methods 
and techniques have been developed with such wide application and poten­
tial. Some of these techniques have even found a wider use in e.g., ring 
theory, in logic and even in topology itself. It seems appropriate to discuss 
here in greater detail only those techniques and ideas dealt with by Lyndon 
and Schupp. 

In 1921 Nielsen developed a method for studying the subgroups of free 
groups. His procedure was to transform, in a systematic manner, a given set 
of generators of a subgroup of a free group (equipped with a fixed free set of 
generators) into another set of generators which has the property that very 
little cancellation takes place between these new generators. This method 
yields in particular, a proof that the subgroups of a (finitely generated) free 
group are again free. Its scope, however, is by no means restricted to free 
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groups. Indeed the combination of related ideas and primitive combinatorial 
geometric methods has given rise to so-called small cancellation theory, 
anticipated by Dehn himself. The book by Lyndon and Schupp contains a 
careful, detailed account of this theory, which is today a powerful tool in 
combinatorial group theory, of interest in its own right. It has led to the 
solution of problems which were seemingly intractable only a few years 
before. A stunning illustration is the construction by Shelah of an uncount­
able group all of whose proper subgroups are countable. 

Nielsen used his method to prove, in 1924, that the automorphism group of 
a free group of finite rank is finitely presented. This was followed in 1936 by 
deep work of J. H. C. Whitehead who proved that it is possible to decide 
whether there is an automorphism a of a free group F which takes one finite 
sequence (ax, . . . , an) of elements of F onto another such sequence 
(6j, . . . , bn) (i.e., such that ata = b( (/ = 1, . . . , n)). Whitehead's proof was 
topological. It was not until 1958 that an algebraic proof was obtained by 
Rapaport (= Strasser) which was simplified and improved by Higgins and 
Lyndon in 1974. The importance of Whitehead's ideas has most recently been 
underlined by some very fine work of McCool who proved in particular, in 
1975, that the group of automorphisms of a free group F of finite rank which 
map a finite subset of F onto itself, is finitely presented. This is reminiscent of 
a well-known theorem of Borel and Harish Chandra which asserts that 
rational arithmetic groups are finitely presented. 

Free products with one amalgamated subgroup were invented by Schreier 
in 1927. They have since turned out to be one of the most important 
constructive tools in combinatorial group theory with applications to logic 
and to topology as well as to group theory itself. Indeed Magnus recognized 
their scope in 1932 in his pioneering work on groups with a single defining 
relation. The subgroups of free products, without amalgamations, were de­
termined by Kurosh in 1934. This was followed in 1948/49 by a vastly more 
general but less explicit theorem by Hanna Neumann on the subgroups of 
so-called generalized free products. In 1949 G. Higman, B. H. and Hanna 
Neumann used generalized free products to prove certain embedding theo­
rems and in particular that every countable group is a subgroup of a 
two-generator group. Their proof introduced a new construction, based on 
the generalized free product of two groups with one amalgamated subgroup, 
now termed an #AW-extension, which has found wide application. In view of 
the importance of generalized free products the explicit determination, in 
1970, by Karrass and Solitar of the subgroups of a free product of two groups 
with one amalgamated subgroup represented a major step forward. This was 
preceeded by earlier work of Serre in 1968/69, who introduced a theory of 
groups acting on trees. This work of Serre was amplified and extended by 
Bass. The net result has been the creation of a general theory of quite general 
use. It should be noted that the spirit of Serre's approach is topological, 
motivated by the theory of covering spaces. 

Covering space theory has long been an important contributor to combina­
torial group theory. Various attempts to express the ideas in this theory in 
purely graph-theoretic terms have been made from time to time with varying 
degrees of success. The aim is to replace analytic and topological arguments 
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by combinatorial geometric ones. This was carried out in detail by 
Reidemeister in 1932 who obtained graph-theoretic proofs of the classical 
classification of compact two-dimensional surfaces. These methods have a 
certain elegance yielding clean proofs of, in the main, well-known theorems. 
This approach is taken up in some detail by Lyndon and Schupp leading 
naturally to relationships between presentation theory and cohomology, to 
various geometric representations of groups as well as to a technique of Behr 
for proving that certain groups of isometrics are finitely presented. 

Covering space techniques are particularly useful in the proofs of subgroup 
theorems. There is, however, a simple algebraic way of proving that the 
subgroups of a free group are again free, due to Schreier. Schreier's proof has 
other advantages in that it provides a method for finding generators and 
defining relations for a subgroup of a group given by generators and defining 
relations (the so-called Reidemeister-Schreier method). It was, in part, on this 
technique that Magnus relied to solve the word problem for one-relator 
groups. It has also been extremely useful in many other situations. However it 
is not sufficiently incisive to be able to give really precise information about 
the subgroups of finitely presented groups. In fact, despite the continuing 
demands from other disciplines for more detailed knowledge of the subgroup 
structure, no general results were known before 1960. Then in 1961, in one 
extraordinary stroke, G. Higman explained the reason for this lack of pro­
gress, uncovering a link between finitely presented groups and recursive 
functions. Indeed Higman completely determined the finitely generated sub­
groups of finitely presented groups by identifying them as the finitely gener­
ated groups that can be defined by a recursively enumerable set of defining 
relations. Thus the theory of the finitely generated subgroups of finitely 
presented groups is intimately related to that of recursive functions. Higman's 
theorem then yields easily the existence of a host of finitely presented groups 
with unsolvable word problems. The first example of such a group was 
constructed, with enormous difficulty, by Novikov in 1955. Indeed Novikov 
pointed out also at that time that the existence of such a group implies that 
the isomorphism problem for finitely presented groups is algorithmically 
unsolvable. Indeed Adyan in 1956 was the first to prove that "almost all" 
problems about finitely presented groups are algorithmically unsolvable, 
including for example the triviality problem: there is no general and effective 
procedure whereby one can determine whether any finitely presented group is 
of order one! The proof of Higman's theorem as detailed by Lyndon and 
Schupp is due to Valiev, depending on the characterization by Matiyasevich 
of recursively enumerable subsets of the nonnegative integers as the zeros of 
appropriately chosen diophantine equations. 

Much of this and more is contained in the book by Lyndon and Schupp, a 
book well-worth reading, a book well-worth buying. The proof of 
Whitehead's theorems, and the related theorems of McCool, the proof of the 
Karrass-Solitar theorem on the subgroups of free products with one 
amalgamated subgroups by Nielsen techniques and its obvious promise of 
applications, the discussion of cohomology, the graph-theoretical connections, 
the discussion of HNN extensions, the elegant treatment of one-relator 
groups, the proof of the Higman embedding theorem, the connections with 
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logic, the use of van Kampen diagrams and the treatment of small cancella­
tion theory and its applications represent very fine achievements. Much of the 
material has appeared only in the periodical literature until now; indeed some 
of the material appears here in print for the first time. The book is clearly an 
important contribution to the mathematical literature. But it is only fair that I 
add some words of warning. The authors have followed their personal 
interests a little too closely. As a consequence the broad scope of the subject 
itself is only hinted at. The book was written in two parts, the first by one 
author, the second by the other, and common material was simply repeated as 
it arose. Apparently this was intentional, allowing the reader to read each 
chapter as a separate entity. Nevertheless the arrangement of the material is 
haphazard, the exposition is very uneven, some of it is unnecessarily hard to 
follow, some almost impossible. There are much too many misprints, succes­
sive paragraphs are sometimes unrelated and motivation is almost totally 
lacking. Some of the text has not been well-worked out, the graph-theoretic-
topological parts demand varying levels of topological expertise and no 
attempt has been made to find the general topological principles that govern 
much of this material as well as many of the subgroup theorems. The notion 
of an aspherical presentation is somehow identified with the topological 
notion of asphericity without sufficient justification. In spite of these very real 
criticisms this is still an important piece of work. 
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Bounded integral operators on L2 spaces, by P. R. Halmos and V. S. Sunder, 
Ergebnisse der Mathematik und ihrer Grenzgebiete no. 96, Springer-Verlag, 
Berlin and New York, 1978, xv + 134 pp.,$16.50. 

This slim volume in the Ergebnisse series (to which I shall refer as H-S) 
deals with bounded integral operators on L2 spaces, that is to say, bounded 
linear operators K: L2(Y, v) -» L2(X, fi) of the form 

(Kf)(x) = f k(xyy)f{y)dv{y) 

for all ƒ G L2(Y, v), where (X, JU,) and (Y, v) are a-finite and separable 
measure spaces and the integral is an "ordinary" one with respect to v (no 
principal values; no L2 limits as in the theory of Fourier transforms). 
Restriction to a a-finite separable measure implies (by a well-known isomor­
phism theorem) that for most purposes it may just as well be assumed that v 
is either Lebesgue measure in the interval [0, 1] or counting measure in Z (or 
N) or a finite subset of N. There are two recent books on integral operators of 
a general nature (i.e., not restricted to L2 operators), one by the late K. 
Jörgens ([2, 1970], in German) and one by M. A. Krasnosel'skiï, P. P. 
Zabreïko, E. I. Pustyl'nik and P. E. Sobolevskiï ([3, 1966], in Russian; English 
translation 1976). We may ask, therefore, if it is still possible to say something 
of interest about the simple L2 case that has not been said many times before. 


