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An example or two will give the flavor of the subject. First, let M be an 
rt-dimensional smooth differentiable manifold, thought of as the configura­
tion space of a mechanical system with n degrees of freedom. Each point of 
M has a neighborhood with a local coordinate system (ql,..., qn). When the 
system is in motion we need not only the coordinates ql of a point of M, but 
also the momentum vector (px,... ,pn) at q. Thus we are lead to the phase 
space, or cotangent bundle, of M, denoted T*M. This space already has an 
interesting structure: the differential form of degree one with local expression 

*> = ÜLPidq* 
is really a global quantity on T*M. Its exterior derivative 

J2 = do) = 2 dplr A dq' 

is automatically a global quantity on T*M, an exterior differential form of 
degree two (skew-symmetric covariant 2-tensor). The equations of motion of 
the system are described in the following way by a real function H on M, 
called the Hamiltonian of the motion: 

There is a contraction process, called the interior product, that contracts Ü 
with any vector field Jf on T*M to produce a differential form of degree one 
(one-form for short) XJQ. If ti is thought of as an alternating bilinear 
functional on vector fields, then 

(XJQ)(Y) = ti(X, Y) 

exhibits XAQ as a linear functional on vector fields, that is, a one-form. It 
turns out that X ~* X1Q is an isomorphism on the space of vector fields onto 
the space of one-forms, so there is a unique vector field XH such that 

XHlto = dH. 

A short calculation in the local coordinate system qi,pi yields 

H Z dPi dq' dq' W 

(A vector field here is thought of as a directional derivation on the space of 
real functions.) Therefore, in local coordinates, a curve q' = q'(t),Pi = pt(t) is 
a trajectory of XH, provided that 

dq[=dl£ dPi= %H 
dt dp/ dt dqi' 

These are precisely Hamilton's equations of motion of the system. 
From this example we see that a lot of the structure of differential 

geometry: manifolds, bundles over manifolds, induced structures, vector 
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fields, differential forms, and invariant operations fit hand-in-glove with 
classical mechanics. Indeed, Hamiltonian mechanics is the subject of a 
substantial chapter of the book under review. 

For a second example, we consider the space M of equilibrium states of a 
thermodynamic system, again a smooth differentiable manifold. Important 
real functions on M are the pressure P, the volume V, and the internal energy 
E. The physics implies the existence of an integrating factor T~l for the 
one-form dE + PdV. This means that 

d{T~\dE + PdV)) = 0. 

Then T is called the temperature of the system; it follows that (locally) there is 
a function S9 called entropy, such that 

</S= T~\dE+ PdV). 

This topic is treated on pp. 190-193 and later on pp. 235-239, where the 
existence of the integrating factor is connected to the nonexistence of a 
perpetual motion machine. 

The author's selection of material is much more ambitious than just 
differential forms and their applications. The book could justly be titled 
Differential geometry in mathematical physics. Besides the inevitable pre­
liminaries on topological spaces and multivariable calculus and the standard 
stuff on differentiable manifolds, maps, and tangent vectors, there are sub­
stantial treatments of Lie groups, fibre bundles, tensors, forms, completely 
integrable systems, first order PDE's, integration of forms, de Rham and 
Hodge theory, connections on bundles, and Riemannian geometry. 

The applications to physics cover electrodynamics, classical and relativistic, 
rigid body dynamics, holonomic systems, a touch of particle physics, general 
relativity, relativistic fluid mechanics, and the two topics I mentioned at first. 

The goal of the book is stated in the first paragraph of the preface: 

"The radical change of methods used in mathematical 
physics (quantum field theory and elementary particle 
physics, solid state physics, theory of dynamical systems etc.) 
influenced by the great power of modern mathematics calls 
for a monograph such as this which is aimed primarily at 
making available to physical scientists the mathematical 
machinery related to differentiable manifold ideas relevant 
to physics. The reader will find that the 'geometry spirit' 
working methods provide a new marvellously unified set of 
tools for an alternate description of natural phenomena 
which goes beyond the description obtained in terms of 
analytical methods." 

The choice of topics, high purpose, and obvious knowledge of the author, a 
physicist, would appear to portend a really useful contribution to the litera­
ture. I am sorry to report that, in my opinion, the book will not achieve its 
goal. Why? Briefly, the book makes unreasonable demands on the reader. 
The density of misprints and errors, serious and not-so-serious is high. I 
cannot believe that any mathematician read the manuscript critically, that the 
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author read the proofs with care, or that the editor fulfilled his responsibility. 
Next, hundreds of terms are defined, yet the index is inadequate to the point 
of being useless. Also, hundreds of special symbols are defined, but there is 
no index of notation whatever. Frequently you must remind yourself of a 
term or symbol by searching. Yet the definitions (often not italicized) are 
randomly scattered in Definitions, Remarks, Examples, Propositions, and text, 
so even searching is more tedious than usual. Since many potential readers of 
this book will come to it with previous knowledge of some or most of the 
standard differential geometry and will wish mainly to browse through the 
appealing-looking applications, some way to locate things quickly is 
essential-but missing. 

The student or physical scientist who tries to learn the math from this book 
will have two other problems. First, the references to other books omit page 
numbers. I consider references like Chevalley [7] rather cruel. The reader is 
invited to hunt through terrain perhaps written in a mathematical language 
rather different from the author's. Second, a number of topics, particularly 
applications, are given before all the needed tools are developed, so forward 
references are given. It isn't easy, particularly for a student, to have to 
interrupt a derivation in midstream for material chapters later. 

I hope I will be excused for including some details. Let's start with Chapter 
1, Topological preliminaries. It introduces topological spaces both by open sets 
and by neighborhoods and the usual stuff on closure, interior, boundary, 
continuity, homeomorphism, countability, T2, compactness, local compact­
ness, paracompactness, connectedness, arcwise connectedness, relative topol­
ogy, quotient topology, product topology, metric space, normed linear space 
and more. In 18 pages this is breathtaking, but still there is room for errors 
that already raise doubts about the mathematical reliability of the book. For 
instance in Example 2.3, p. 4, we are told that the set of open intervals in R is 
closed under union. A base is defined on p. 5, but subbase is not, yet in 
Proposition 6.4, p. 15, we are told that the sets making up the usual subbase 
of a product space is a base. Example 5.15, p. 13, offers {(x, sin l/x) E R2\0 
< x < 1} as an example of a nonarcwise connected set. In my opinion this 
chapter should have been omitted; instead, just a couple of precise references 
and a page of topological notation would have been adequate. 

Chapter 2, Differential calculus on Rn, contains what one would expect on 
differentiable functions from an open set in Rn to Rm. Where the line is 
drawn can be judged from the inclusion of proofs of the chain rule and the 
existence of partials of a differentiable function, but statements without 
proofs of the symmetry of the second partials, Taylor's theorem, the implicit 
function theorem, etc. References for omitted proofs are sometimes given, 
sometimes not. A mean value theorem for jR-valued functions on a convex 
open set in Rn is proved (p. 33) then applied (p. 37) as if true for # "-valued 
functions to give an incorrect proof of injectivity of a map with nonzero 
Jacobian. The author might have included on p. 32 some hint at the proof 
that the existence of continuous first partials implies differentiability. 

Chapter 3, Differentiable manifolds, includes charts, atlases, product mani­
folds, partitions of unity, and some examples. Of only 13 pages, one whole 
page is given to a counterexample showing that T2 is not free of charge. Why 
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include such pathology? I think the explanation lies in a highly contagious 
disease carried by mathematicians and caught by nonmathematicians who 
write mathematics. The symptoms are being more complete, more abstract, 
more pedantic, and more functorial than even the mathematicians! (A fre­
quent side effect is finding the nonobvious trivial.) I have felt uneasy in 
reading von Westenholz that at times there are too many V's, too many 
induced mappings and complicated diagrams, too many levels of structure, 
and too much material that he never applies. To his credit, no categories! 
There is too much trouble taken with Ck in Chapter 3 when only C°° will be 
used. 

I suppose one might excuse inaccuracies in the three preliminary chapters 
on the grounds that the author just felt he had to include the material for 
completeness, but his heart wasn't really in it. So now let's see some of the 
difficulties in the heart of the subject. 

The notation is often careless. Sometimes the same symbol is overworked. 
For instance on p. 396, G is a matrix; on p. 407, G is a group; and on p. 412 a 
matrix again, and all this in §2 of Chapter 12. Other times there are too many 
notations for the same thing. If B is a 2-form and X a vector field, then 

Ö(Ar) = iy(fl) = XA2 

(pp. 396, 399, 407). On p. 399 we also have X(ü) introduced as a synonym for 
Lx(tt). I find X(iï) and Q(X) in the same formulas and proofs confusing. I 
warn the unwary that their relation is 

X(Q) = d[Q(X)] + XAdü. 

On p. 407, in the midst of Hamiltonian mechanics, there is a theorem about 
invariant integrals on a symplectic manifold of first Betti number 0. The 
proof is a good example of many in the book that leave the reader not 
knowing where he stands. First, the condition on bx is not mentioned in the 
proof, so the reader must figure out for himself how it is used. Second, a 
vector field X just appears in an equation in the proof-not a word explaining 
where it came from-and the punch line is X{f) = 0. Finally, line 5 of this 8 
line proof is 

yjQ + rf(yjQ) = 0. 

Obviously there is a misprint, but where? Perhaps it should be 

y j s = </(yjfi) = o. 

This is possible because the author does allow equations like a = B = 0, 
where a and B live in different spaces. Actually, the equation should be 

yj</S2 + d(YJQ) = 0. 

A small point perhaps, but the cumulative effect of proof after proof with 
misprints, omissions, nonsequiturs or fatal errors is demoralizing. 

On p. 395, Lemma 2.3, the key step towards an important theorem of 
Darboux, is followed by "Proof omitted". Unfortunately the statement of the 
lemma is incorrect-a correct statement and proof is in Godbillon [2, p. 118]. 

The inaccessibility theorem of thermodynamics is allegedly proved on 
p. 237. The crucial step consists (roughly) in showing that if A is a linear 
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space of vector fields and if A" is the Lie algebra A generates, then any point 
that can be reached by a trajectory of A" can be reached by a trajectory of A. 
This is a subtle point, and by no means easy to visualize or see how to prove. 
Yet the author just states it as if self evident (p. 237, lines 10*-9*). A sketch 
of the proof can be found in Hermann [3, p. 249]. 

As I said earlier, you often just don't know where you stand. On p. 93 it is 
stated as an example that the Lie algebra of GL(/z, R) is M„(R) with 
[A, B] = AB — BA. This is not something you just see, not the first time 
anyhow. There is no mention of whether this is obvious, needs to be proved, 
or is too hard to prove here. Nothing, just the bare statement of fact. Will the 
student who has spent some time puzzling over the assertion be pleased when 
he comes to p. 102 and finds Proposition 8.11 saying the very same thing? 
And will he be pleased when he finds that the author has somehow forgotten 
to prove the main point, the commutator formula? 

As another example of an incomplete proof, on p. 145 we are told we shall 
prove that if A" is a vector field and <o a one-form, then w(X)(x) depends only 
on X(x). What is actually proved is that if X vanishes on a neighborhood of 
JC, then o)(X)(x) = 0. To complete the proof requires something like the 
device that if X(x) = 0, then locally X = 2 ƒ,*), where ƒ (x) == 0. On p. 342, in 
proving a related theorem about connections, the author uses just this device, 
pulling it out of thin air without a word of comment. 

Why does the proof on p. 107 of [X, Y] = (d/dt)0 ad(exp tX)Y use the Lie 
derivative, given first on p. 129? And why on pp. 129-130 is LXY = [X, Y] 
omitted? Why does the definition of the Hodge star on p. 148 use index 
raising as if we know the whole classical tensor analysis in Riemannian 
structures? And why are Riemannian structures used on pp. 128, 147, 195, 
289 and others when we don't officially define them until p. 350 (the only 
index reference)? And why on p. 350 are we told ds2 is a "quadratic 
differential form", an animal never mentioned heretofore? And why can't the 
index include Divergence pp. 153, 290, Thermodynamics pp. 190, 235, Vector 
Field p. 71, Little group p. 112, etc.? 

A few mathematical quibbles arise also. The author omits defining infini­
tesimal transformation in his discussion of homogeneous spaces around 
p. 108. The concept is used on p. 407 without previous mention as far as I can 
see (of course the index doesn't help); the closest thing I can find is 
infinitesimal automorphism defined on p. 399 and meaning something quite 
different. 

The basic relation d<j>[X, Y] = [X', Yf] for ^-related vector fields should 
have been included. It would have been useful on p. 107 and elsewhere. A 
special case is proved on p. 95 for group homomorphisms. 

The presentation of the invariant form of the Maurer-Cartan equations 

do) +![<*>, w] = 0 

on p. 177 misses the point, even though presented in four ways. It appears as 
though [<o, <o] is defined so as to make the formula above a tautology. 
Incidentally, the author should have included something about invariant 
integration in Lie groups. 

The proof of the change of variables formula for multiple integrals, 
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Proposition 3.1 on p. 268, is a nonproof as far as I can see-if you know the 
formula, then it is true. It is too central to the theory of integration of forms 
to be treated this way. 

The proof of the divergence theorem on p. 291 would be much simpler and 
clearer if the author used orthonormal moving frames, a topic I feel he does 
not exploit adequately in a number of places. Also, the messy calculation on 
p. 290, needed for the divergence theorem is only the obvious result that 
ƒ = ± * d * a follows from fdV = d * a. 

The discussion of Maxwell's equations on p. 329, as I read it, says that to 
prove Maxwell's equations it suffices to show that a certain 2-form co is 
harmonic (see lines 6*-5*). This means, in harmonic form language, that 
Aco = 0 implies dco = 0 and 8<o = 0, a true statement in compact manifolds 
(p. 320), but not applicable here. What is more, the issue is clouded because 
the Hodge theory (and indeed almost everything else metric in the book) is 
stated for Riemannian manifolds, whereas here we are dealing with a Lorentz 
metric (invariant + , —, —, — ). This is an alert for those attempting the last 
chapter of the book, General theory of relativity. The author sometimes 
assumes that facts about Riemannian manifolds carry over automatically to 
the Lorentz (pseudo-Riemannian) case. Sometimes they do, sometimes they 
don't. 

I conclude that someone who is reasonably familiar with the mathematics 
of this book will be able to get something out of the applications to physics, 
provided he works at it harder than he should have to and doesn't accept the 
author's mathematics at face value. I doubt very much if someone can learn 
the subject from this book without extensive work in other sources. (Also the 
author gives no exercises.) The book may repel rather than attract, exactly the 
opposite of its author's intent. Too much of the book was written without 
adequate organization and care, and I get the feeling that some sections must 
have been written at wide time intervals. It's a pity that the author didn't 
make a more palatable product. The subject will eventually be a standard tool 
in physics, but there is yet little material accessible to nonmathematicians. 
My own short book [1] doesn't begin to compare in its scope of applications 
to the book under review because I didn't when I wrote it and never will 
know physics as Profesor von Westenholz does. 
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