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parameters. {The actual analyticity statement is more sophisticated since the 
interactions are parametrized by an infinite dimensional Banach space.} The 
proofs in Chapters 1-5 are elegant and complete but sometimes rather 
demanding of the reader. 

In Chapter 6 the formalism of the first four chapters is partially extended to 
compact metrizable spaces with a Z"-action. An interesting wedding between 
the statistical mechanical formalism and topological dynamics is achieved. In 
Chapter 7 the richer formalism of Chapter 5 is extended to certain Z-actions 
on Smale spaces. Most detailed proofs in the last two chapters are omitted 
but complete references are given. Exercises, some of them quite difficult, are 
given at the end of each chapter. There are also complete bibliographical 
notes at the end of each chapter. 

This is a beautiful but austere book. It is very much in the spirit of the 
Bourbaki treatise. We must compare this impression with the statement of the 
editor in the general preface to this Encyclopedia. It states: "Clarity of 
exposition, accessibility to the nonspecialist (italics added), and a thorough 
bibliography are required of each author." If a person can learn a subject for 
the first time by reading Bourbaki, then perhaps that person can learn the 
statistical mechanics of lattice systems by reading this book. In this reviewer's 
opinion most people will most profitably read Bourbaki and/or this book at 
the culmination of the learning process not at the beginning. 
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My first actual conversation with Mordell took place early in the 1960's, 
when we were introduced (by L. C. Young, I believe) in the lounge of the 
Mathematics Research Center in Madison, Wisconsin. Always interested in 
the work of young mathematicians-a phrase that applied to me then-Mordell 
asked about my research interests. To my answer he responded with surprise 
(possibly feigned, it occurred to me later; in any event the point is the same), 
saying in effect-I don't recall the exact words-"modular functions? I thought 
that was all settled years ago!" 

That no mathematician, not even a Mordell in jest, could respond that way 
today is a measure of the extraordinary resurgence of interest that the field 
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has enjoyed during the past ten years. More tangible indications are close at 
hand. In a review published in this Bulletin recently (March, 1976), I was able 
to mention, in addition to the book under review, seven automorphic/modu-
lar (one complex variable) books that had appeared in English, beginning in 
1962, the year of publication of Gunning's brief (but influential) Lectures on 
modular forms. And that list easily could have been doubled in length had I 
made some effort to be comprehensive. 

In the few intervening years, the level of activity in this field has not 
abated, and, indeed, it may well have increased. The research interest con­
tinues as well to be reflected in the publication of books, some intended as an 
introduction for the beginner, others-stressing recent developments and an 
advanced viewpoint-more appropriate for experts and aspirants to that lofty 
station. Of the two books under review here, ApostoFs belongs to the first 
category, Rankin's to the second. Both books restrict themselves to "modu­
lar" (as opposed to the more general "automorphic") functions in a single 
complex variable, and-happily in my view-each is the product of a mathe­
matical sensibility shaped largely by number-theoretic influences. 

The modular group T(l) and its invariants, the modular functions and 
modular forms, arise quite naturally in a variety of mathematical settings-
equivalence theory over Z of binary quadratic forms with rational coefficients 
and the theory of elliptic functions are examples that come to mind im-
mediately-typically with profound consequences. T(l) is the matrix group 
SX(2, Z)-determinant 1; in the theory of modular functions it should be 
viewed also as the group of linear fractional transformations r -> (ar + 
b)/(cr + d), with a, b, c, d E Z and ad — be = 1. (Here, as elsewhere in this 
review, r is a complex variable with values in the upper half-plane %.) 
Beyond T(l) itself, certain of its subgroups, the congruence groups, play an 
important role in applications to number theory and they figure prominently 
as well both in ApostoFs exposition and in Rankin's. 

If q is an integer > 2, define T(q), the principal congruence group of level q, 
to be that subgroup of T(l) whose elements V satisfy the congruence 
condition V = ± I (mod q). (ƒ is the 2 X 2 identity matrix and the con­
gruence is element-wise.) A congruence subgroup T of T(l) is one that contains 
T(q) for some q. Congruence groups of particular interest are the subgroups 
T0(q) of T(l) defined by the restriction c = 0 (mod q), where again q is an 
integer > 2. While every congruence subgroup has finite index in T(l) (since 
T(q) has finite index), the converse is false: subgroups (indeed, infinite classes 
of subgroups) of finite index which are not congruence groups have long been 
known. (This fact sets off strikingly the deep theorem of Bass, Lazard, and 
Serre (1964): every subgroup of finite index in SL(n, Z) is in fact a con­
gruence group, when n > 3.) 

To any subgroup T of T(l)-of finite or infinite index-one can attach, 
though not uniquely, a fundamental domain, a subset <$ of % which contains 
a single point from each orbit { Vr0\ F e T } (r0 fixed in %) of T. Since such a 
set may be topologically bizarre (it may, for example, be totally discon­
nected), we impose additional restrictions upon $, ordinarily that it is 
connected and that the boundary has Lebesgue measure zero. For T(l) no 
problem arises in this connection, since one can take as a fundamental 
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domain the set {r G %\ \r\ > 1 and |Re r\ < - } , with "half of the boundary 
points adjoined. For subgroups of finite index in T(l), and for many other 
discrete subgroups of £X(2, R) as well, an equally satisfactory construction 
exists for 9\ 

Suppose F is a subgroup of finite index in T(l). If ƒ is a meromorphic 
function on 9C, call ƒ a modular function on T9 provided ƒ is invariant under T 
(that is to say, ƒ ° V = ƒ for all VET) and if in addition ƒ satisfies a growth 
condition-to be described below-at the parabolic cusps of F̂, those points 
(necessarily finite in number) in which the topological closure of ^ relative to 
the Riemann sphere meets the extended real line. If k e Z and/, meromor­
phic on 3C, satisfies the functional equation 

f(Vr) = (cr + d)kf{r), F = ( * * ) £ I\ (•) 

we say ƒ is a modular form of weight k with respect to T, provided again that ƒ 
satisfies the appropriate growth condition at the cusps. Note that a modular 
function is simply a modular form of weight k = 0 and that, with ƒ a modular 
function, ƒ' is a modular form of weight 2 on the same subgroup, since 
f(Vr) -fir) implies (CT + d)~J'(Vr) « f\r). (This is not to say, however, 
that every modular form of weight 2 is the derivative of a modular function, 
just as there are meromorphic differentials on a Riemann surface which are 
not exact.) 

Every subgroup T of finite index in F(l) contains a translation, and in fact 
the translations of T form a cyclic subgroup. Suppose r -» T + À, À > 0, 
generates that subgroup. The functional equation (*), with Vr = T + A, 
implies/(r 4- À) = /(r), so that one may expect a Fourier expansion (actually 
a Laurent expansion in the variable e27"T/A) of the form 

Ar)" f a„e^/\ (.*) 
valid when lm r is large. In fact, to derive (**) we must impose the additional 
condition that there is a half-plane lm T >y0 (y0 > 0) containing no poles of 
ƒ; then (**) is valid in this same half-plane. The growth condition needed in 
the definition of modular form is the assumption that (**) is finite to the left: 

/ ( T ) « 2 aHeuu»'x, iiEZ. 

At each of the finite cusps of £F there is a similar condition, the same in 
conception but technically more complicated. The key point is that for each 
finite parabolic cusp P of 3F there is in T a cyclic subgroup of transformations 
fixing P, with parabolic (trace = ± 2) generator. This fact implies the validity 
near P of an expansion having the general form (**), in an exponential 
variable determined by the generator; we demand of a modular form that the 
expansion be finite to the left for each P. If, in addition, ƒ is holomorphic in 
% and no cusp expansion contains a term with n < 0, ƒ is called an entire 
modular form. When ƒ is an entire form in which all of the expansions contain 
only terms with n > 0, ƒ is said to be a cusp form. The vector spaces M% of 
cusp forms and Mk of entire forms, of fixed weight k, are finite dimensional 
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when r is a subgroup of finite index in T(l), and for similar discrete 
subgroups of SX(2, R). (When T is not contained in T(l), the functions and 
forms are called "automorphic" rather than "modular". Apostol adopts the 
unusual practice of using the term "automorphic" for forms on a proper 
subgroup of T(l).) 

Modular functions and Dirichlet series in number theory is a sequel to 
ApostoPs earlier work, Introduction to analytic number theory. Both volumes, 
the author tells us, "evolved from a course . . . offered at the California 
Institute of Technology during the last 25 years." By any reasonable standard 
of measurement, twenty-five years is a long gestation period for a book, yet 
the rewards in careful selection of topics, smooth, accurate statement of 
theorems and definitions and a generous selection of good exercises for the 
reader (somewhat unusual in works on this subject), amply justify the wait. 
Reflecting its genesis and evolution, the book is in fact ideally suited to the 
classroom and to seminars at the graduate-student level. 

The final two chapters, on Kronecker's approximation theorem and Bohr's 
equivalence theorem for general Dirichlet series, respectively, relate-but only 
indirectly-to the first six, which comprise an introduction to the theory of 
modular functions. The connecting thread is the theory of Dirichlet series. 
(One of the two appealing applications of Kronecker's theorem given in 
Chapter 7 is to the calculation of inf|f(^)| and sup|f(^)| on a fixed vertical line 
Re s = a0 > 1, where Ç(s) is the Riemann zeta function.) Long favored by 
number theorists, these functions have enjoyed renewed attention in very 
recent years, as mathematicians have increasingly come to appreciate the 
importance of Hecke's discovery (mid 1930's) of the correspondence between 
an entire modular form/(r) = 2^«0 an

e2tnim o n ^(1) and the Mellin transform 
of /(r) - a0, the Dirichlet series $/*) = (2ir)""T(.s) 2 ^ j ann~s. (Here s is 
restricted to a suitable right-half plane.) Apostol gives a simple, readable 
account of that part of Hecke's work in which the elegant functional equation 

( - l ) * / 2 ( 2 „ r * r ( * - s)9f(k - s) - (2»)-T(*)*,(5), 

analogous to that satisfied by f (s), is derived from the transformation formula 
/ ( - l / r ) = rkf(r% the equation (*) with V replaced by the modular transfor­
mation 7V = - l / r . But, like Rankin (and a number of other authors as well), 
Apostol omits the proof of the converse, despite its intrinsic interest and even 
though it involves little more than a reversal of the steps in the derivation of 
the direct result. 

Apostol succeeds in introducing the classical modular functions rapidly 
and painlessly by first presenting the Weierstrass development of the elliptic 
functions. The differential equation satisfied by the Weierstrass ^function 
gives rise directly to the Eisenstein series g2(

T)> #3(T)> the modular forms of 
weights 4 and 6, respectively, defined by g2(r) = 60 ^(mr + n)~4, g3(r) = 
140 2(wr + n)~6. (Here r is the ratio of the fundamental periods of S ând the 
summation is over all pairs of integers other than (w, n) = (0, 0).) From g2 

and g3 it is but a short step to the discriminant function A(T), a modular form 
of weight 12, and to the basic modular invariant (weight 0) J(r) = gl(T)/A(r). 
The author carries out all of this without wasted motion; by p. 20 he has 
derived the expression for the Fourier coefficients of g2 and g3 in terms of 
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divisor functions and proved the integrality of the coefficients of (2TT) 12A(T) 
and 123/(r). 

Efficiency and clarity mark the further developments as well. Included 
among these is Picard's (little) theorem, whose proof Apostol establishes by 
applying the mapping properties of / (T) , rather than the more usual method 
involving A(T), the fundamental invariant of the principal congruence sub­
group of level 2. This procedure has the obvious advantage that it does not 
require a prior discussion of modular functions on subgroups, a subject which 
is not introduced until two chapters later in the book, and then only for the 
congruence subgroup T0(q). 

In giving the definition of a modular function on T0(q) Apostol omits the 
condition of left-finiteness ordinarily imposed upon the Fourier expansion at 
a finite parabolic point (to guarantee that such a function is meromorphic on 
the compactification of the Riemann surface %/T0(q))9 though he includes 
the corresponding-technically simpler-condition at oo. Whether this is an 
oversight or done intentionally to streamline the exposition, there is a happy 
ending. For the modular functions on T0(q) occur here in two contexts only, 
and in neither one does the omission render the development incorrect or 
misleading. The first of these is the theorem that a modular (Apostol calls it 
"automorphic") function on T0(p),p a prime, which is also bounded in 3C, is 
constant; here the assumption of boundedness subsumes the condition of 
lef t-finiteness at all of the parabolic points, including oo. This fundamental 
theorem, incidentally, is not restricted to T0(p); indeed, it holds for all finitely 
generated Fuchsian groups of the first kind, including the (very large) class of 
subgroups of finite index in T(l). The proof that Apostol gives is valid-virtu­
ally without alteration-for such subgroups of T(l). 

The second context is the explicit construction of modular functions 
belonging to T0(q), in terms of invariant functions on the full group T(l) or 
from the modular form A(r), of weight 12 on T(l). (A(#T)/A(T) is an instance 
of the latter.) In either case, the left-finiteness results from the construction. 
The principle of using functions on the full group F(l) to obtain functions on 
a proper subgroup has long been known and applied to good effect. It is 
illustrated quite simply by observing that if / (T) belongs to (i.e., is invariant 
on) T(l), then f(qr), q G Z+, belongs to T0(q) and to no larger subgroup of 
T(l). The functions which Apostol wants to obtain have a more complex rule 
of formation, based upon the Heche operators (which originated with 
Mordell): 

r(«)/(r) = n-« 2n f{E1i±\ » " + -
b(modd) 

d>0 

It is a simple matter to check that T(n) preserves the space of functions with 
period 1, somewhat more difficult to prove the significant fact that T(n) 
preserves the space of modular functions on T(l). A slight modification of 
T(n) can be made to yield Hecke operators Tk(n) which preserve the space of 
modular forms of integral weight k on T(l). The resulting operators preserve 
both Mh and M® as well. 
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When p is a prime, T(p) takes on the simplified form T(p)f(r) = p " lf(pr) 
+ 2 j£o /{ ( T + *)//>}• Apostol studies the functions fp(r) = T(p)f(r) -

P~lf(PT) — Sx^o/((T + K)/P}-> w^h / a modular function on T(l). Since 
T(p)f(r) belongs to T(l) and/(/?r) to ro(/?),jf (T) belongs to ro(/?)-and to no 
larger subgroup of T(l). The author applies this construction to obtain 
congruences modulo 2U, 35, 52 and 7 for the coefficients of j(r) = 123/(r), by 
deriving an expression for jp(r) as a polynomial, with integer coefficients, in a 
suitable power of A(/?T)/A(T). 

The theory of modular and automorphic forms can be extended to include 
nonintegral weights, and indeed the generalization to arbitrary real weight has 
been carried out in detail, largely by Hans Petersson during the 1930's. 
(Petersson's important, wide-ranging contributions include the introduction in 
1939 of the inner product-bearing his name-which gives M® the structure of 
a Hilbert space.) However, modular forms of half-integral weights arising as 
theta functions, and related series or products, received a good deal of study 
in the 19th century (beginning with the work of Jacobi in the first third of the 
century, long before the formulation of a theory of modular forms per se), 
motivated for the most part by their deep connections with elliptic functions 
and number-theoretic functions. 

The discussion of arbitrary real weights requires a generalization of the 
notion of a modular form that creates some complications, but no essential 
new difficulties. Specifically, if k is an arbitrary real number, replace the 
equation (*) by 

f(Vr) = P(V)(CT + d)kf(r), F = ( * *) £ T, (***) 

where the branch of (cr + df is specified by the condition -m < arg(cr + d) 
< 7T, and \v(V)\ = 1 (hence v is independent of T) for each V E.T. If ƒ then is 
meromorphic in % and satisfies the appropriate left-finiteness condition at 
each parabolic cusp of S', it is called a modular form of weight k, with 
multiplier system v. Of course, if k E Z and v is the trivial multiplier system 
(p(V) = 1 for all V G T) in (***),ƒ is a modular form in the sense of (*), but 
even with k E Z, v need not be trivial, and in fact the greater generality 
introduced with the multiplier systems enriches the theory significantly for 
integral weight. 

The Dedekind eta function 
00 

V(T) = e**/12 II (1 - e2"inT) 

is an important example of a modular form with nonintegral weight, and 
Apostol devotes to it an entire chapter with two distinct derivations of the 
deep-lying functional equation 

Vi-l/r) = e-^V/2^(r). 

(T)(T) is a modular form of weight \ with a complicated multiplier system 
involving the number-theoretically fascinating Dedekind sums.) One of these 
is SiegePs elegant proof based upon the residue theorem. The second, less 
widely known and more general, rests upon Shô Iseki's transformation 
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formula (1957), which amply deserves the attention Apostol gives it here. The 
author ultimately applies the transformation properties of TJ(T) in the "circle 
method" to derive Rademacher's remarkable convergent series representation 
of the partition function p{n\ which arises as the coefficient in the Fourier 
expansion of the modular form i\{r)"x. The reader may well be grateful for 
the excellent "plan of the proof" with which the presentation begins. Intended 
as a guide through the intricate, potentially bewildering labyrinth of details 
inherent in the circle method, this outline is only one striking example of 
Apostol's talent for lucidity and organization. 

Insofar as the theory of entire (bounded at oo) modular forms on T(l) is 
concerned, the heart of the book is Chapter 6, where one finds most of the 
standard topics which belong in a good introductory work: the formula for 
the number of zeros of an entire form; the proof of representability of an 
arbitrary entire form as a polynomial in g2 and g3 (a subject of renewed 
interest in the past several years)-and the resultant elementary calculation of 
the dimensions of the vector spaces Mk and Mk° of entire and cusp (vanishing 
at oo) forms; the Hecke operators, Tk(ri), that preserve Mk and Mk\ multi­
plicative properties and order of magnitude estimates of the Fourier 
coefficients of modular forms. The chapter closes with the discussion-previ-
ously mentioned-of the Hecke correspondence between modular forms and 
Dirichlet series with functional equations. 

If Apostol's is a teacher's book, Rankin's is primarily a scholar's. This is 
not to say that Modular forms and functions is unsuited to the classroom. In 
fact, it can be used with graduate students, but success may depend upon 
their prior familiarity with an introductory book on the level of Apostol's. On 
the other hand, more experienced mathematicians who intend to learn the 
subject in some depth would be well advised to study Rankin's treatment 
carefully. For, as much as any recent exposition of modular functions, this 
book succeeds in getting near the research frontier, and in some instances 
even reaches it-no small feat in this theory. Only someone of Rankin's 
stature as a research mathematician and experience in the classroom could 
aspire to such an accomplishment in a self-contained work-beginning with 
first principles. 

The book, indeed, is informed throughout by insight and perspective of a 
level attained only through long years of persistent creative effort. This is 
nowhere more evident than in Chapters 8 and 9, which deal with a number of 
linear operators acting on the space of modular forms of fixed integer weight 
k, on the principal congruence group T(q). Rankin's achieves coherence and a 
measure of unity in a deep, far-ranging discussion of these operators (includ­
ing the difficult generalization of the Hecke operators to modular forms on 
T(q)), their invariant subspaces and consequences for the Fourier coefficients 
of modular forms on T(q). He integrates material extending from the early 
work of Hecke to the recent influential results of Atkin-Lehner (1970) 
concerning Hecke operators and newforms on T0(q), including as well a good 
bit of his own original work. The achievement is not without its price, 
however: the intrinsic difficulties of the material are unavoidably reflected in 
the style of exposition and in a formidable array of notation. The beginner is 
certain to be daunted-or, at least, discouraged-by these chapters, which 
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nevertheless will handsomely reward the serious attention of those who are 
prepared for them. 

In their restriction to modular forms of integral weight and trivial (identi­
cally 1) multiplier systems, Chapters 8 and 9 deviate from the general practice 
of the book, which for the most part treats modular forms of arbitrary real 
weight with corresponding arbitrary multiplier system. In addition, 
throughout the first half of the book the group in question is an arbitrary 
subgroup of finite index in T(l), while only in the latter half, where rather 
explicit results are sought, is the group restricted either to T(l) itself or to a 
congruence subgroup. As might be expected, there are annoying complexities 
which cannot be avoided in discussing modular forms of arbitrary real 
weight, yet this generality (or, at least, half-integral weight, for which the 
complications are virtually the same) is essential to the most significant 
number-theoretic applications. On the one hand, Rankin could have done 
without the whole of Chapter 3-and a good deal of additional text besides-
had he been content with forms of integral weight and trivial multiplier 
system. On the other hand, a consequence of this would have been the 
necessary reduction of his (rather full) treatment of the important Fourier 
coefficients of #5(r) to a mere shadow of the one presently found in Chapter 
7. 

The very definition of the classical theta function 

#(T) = J e***, Im T > 0, 
n = -co 

reveals it as a natural tool in attacking problems relating to sums of squares. 
Like the Dedekind eta function, #(T) is a modular form of weight 1/2, but on 
a subgroup T# of index 3 in T(l) rather than the full group. Its multiplier 
system v#, related to that of 17(7), is expressible, alternatively, in terms of 
Gaussian sums or the Jacobi quadratic symbol. Furthermore, i>J = 1. When s 
is a positive integer, the Fourier coefficient rs(n) of &S(T)-SL modular form of 
weight s/2 and multiplier system v£ on Tô -counts the number of ways to 
represent n as a sum of s integral squares. Rankin's development of Eisenstein 
series of arbitrary real weight, together with his calculation (without use of 
the Riemann-Roch theorem) of the dimension of the vector space of cusp 
forms on T# of real weight s/2 and multiplier system p£, enable him to get an 
explicit formula for rs(n) when 4 < s < 8. Applying Hecke's estimate for the 
coefficients of cusp forms, he obtains in addition a good asymptotic formula 
for rs(n) when s > 8. Had Rankin developed the theory for integral weight 
and trivial multiplier system only, this unified presentation of results for 
arbitrary real ^-previously known but nowhere gathered together-would 
necessarily have been replaced by one restricted to integral s = 0 (mod 8), 
with dramatically reduced impact. 

Another highlight of Rankin's exposition is his detailed, careful discussion 
of the Petersson theory of parabolic Poincaré series, which furnish a con­
venient mode of representing all modular forms, holomorphic in 0C, of real 
weight k > 2, on a subgroup of finite index in T(l). (Petersson actually 
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developed the theory for any finitely generated Fuchsian group of the first 
kind, but the case of subgroups of T(l) exposes all of its salient features.) 
From the properties of the Poincaré series relative to the Petersson inner 
product, it follows that a finite number of them-the Eisenstein series are a 
special case-form a basis for the space of entire modular forms of fixed 
weight k > 2. Rankin uses the Petersson inner product once again to derive 
interesting symmetry relations between the Fourier coefficients of two Poin­
caré series attached to the same group, weight and multiplier system. Probing 
more deeply into the structure of the Fourier coefficients, he obtains their 
explicit infinite series representations, first discovered by Petersson. These 
formulae are derived from Rankin's useful generalization of the Lipschitz 
summation formula (not identified as such), and they involve Bessel functions 
as well as generalized Kloosterman sums, exponential sums which in special 
cases have a number-theoretic structure. 

In all of these developments the restriction to k > 2 is essential. Imposed to 
guarantee absolute convergence of the Poincaré series, it can be relaxed 
somewhat, but only with great difficulty. Rankin's application of the Hecke 
limiting process to construct modular forms of weight 2 and trivial multiplier 
system on T(q) only begins to suggest the nature and magnitude of the 
problems that must be overcome when k < 2. The Kloosterman sums corre­
sponding to the case k = 2 with trivial multiplier system on T(q) have 
number-theoretic properties from which follows a nontrivial estimate on their 
order of magnitude. Rankin devotes a good deal of attention to deriving this 
growth estimate, which is essential to the successful application of Hecke's 
method. 

The Poincaré series, as noted, can be used to represent any modular form, 
when k > 2. The author gives, in addition, several special representation 
theorems valid for the case of the full modular group T(l). These are: every 
entire modular form on T(l) of even integral weight and trivial multiplier 
system is a polynomial in the Eisenstein series g2 and g3 (proved also by 
Apostol); every modular form on T(l) of even weight and trivial multiplier 
system (allowing poles in % and at oo) is a rational function of g2 and g3. 
There are other interesting special results given for T(l), among them the 
modular equation for J(T), identities involving Eisenstein series of various 
(even integral) weights and a proof that such Eisenstein series are eigenforms 
simultaneously for all the Hecke operators Tk(n) connected with T(l). 

In Modular forms and functions, Rankin has given us a densely written, 
often difficult book, yet one of great importance for advanced students and 
experts. To the main body of exposition, which weaves together standard 
topics and a good deal of material that is hard-if not impossible-to find 
elsewhere, Rankin adds a bibliography of some 170 items, and an historical 
addendum to each chapter, which reveal the depth of his scholarship. Above 
all, however-in these pages one continually feels the guiding presence of a 
first-class mathematical mind. 

MARVIN I. KNOPP 


