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Lattice gases? This sounds very much like physics. And what have they to 
do with convexity? The mathematician may be pardoned if he is puzzled, but 
he could't do better than to look into this book if he wants to find out what 
this is all about. Lattice gases are certain mathematical models that occur in 
statistical mechanics. Statistical mechanics was created a near-century ago by 
J. Willard Gibbs, who conceived the idea of a general explanation for the 
laws of thermodynamics. It was also Gibbs who in two pioneering papers, 
rather neglected ever since, suggested that the proper general formulation of 
the laws of thermodynamics may be made in terms of certain functions, 
called thermodynamics potentials, which characterize the physical systems 
considered, and whose convexity is the mathematical expression of the stabil­
ity of states of thermal equilibrium. Our book under review is actually two 
books in one; the first is an introductory essay by Arthur Wightman, which 
contains the historical motivation, an exposition of the Gibbsian ideas, the 
significance of convexity of the thermodynamic potentials, as well as a brief 
review of the formalism of statistical mechanics as left to us by Gibbs. This is 
far more than an introduction, and it alone is worth the price of the book. 
The reader is advised to come back to it from time to time, when studying the 
more technical proofs of Israel's chapters, to gain motivation, deepen under­
standing, and appreciate interconnections. 

On to the technicalities. First, definitions. A lattice gas is a mathematical 
system determined by five things, v, S20, /XQ, ti and ®. v is a positive integer, 
the "dimension". S20 is a compact Hausdorff space, frequently just a finite set. 
fi0 is a distinguished natural normalized measure on S20, e.g. Haar measure if 
Q0 is a group, uniform surface measure if S20 is a sphere, normalized counting 
measure if £20 is finite. With Z the set of integers, write L = Zv (the "lattice"), 
and think of a copy of (fi0, fx0) attached to each point ("lattice site") of L. Q is 
defined as a closed, translation-invariant (under the natural action of the 
additive group L) subspace of the compact space S2Q î t ' l u s a point ("config­
uration") w G Ö is a function L -» fi0 assigning a "coordinate" cox G fl0 to 
each x G L. A typical example is S20 = (0, 1}, Q = (co G 2%: uxo)y = 0 
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whenever x, y are nearest neighbors in L}. Finally, % is a certain Banach 
space, whose elements ("interactions") are families $ = ($>x) of continuous 
functions $x: £2 -> R, indexed by finite subsets X of L. They are subject to 
three conditions: (a) $^(co) depends on to only through the coordinates cox 

with x Œ X, (b) &x(co) is invariant under the same translation of both X and 
(o, and (c) | |$ | | = S U * ! " 1 sup|$^|: X contains the origin} < oo. One should 
think of a particular $ G © specifying a particular model with all its external 
parameters fixed; as <I> varies over some finite dimensional subspace 91 of © , 
one thinks of a thermodynamic phase diagram with a certain number of 
variable parameters. Incidentally, the idea to consider not just a finitely 
many-parameter family of interactions, but the whole space %, is a rewarding 
one, shown by the interesting general theorems obtained; still it is advisable 
for motivational purposes to think of <3> restricted to a small subspace. The 
heuristic interpretation of $ is this: one imagines a contribution to the energy 
of a configuration GO to come from each part (restriction) to finite subsets X, 
this is just $x(ü)). The sum A^(œ) = ^{\X\"l9x((U)): 0 G X] is then the 
contribution of one lattice site (the origin) to the energy. In statistical 
mechanics a state of the lattice gas is defined to be a probability measure p on 
S; of primary interest are translation-invariant states, corresponding to the 
idea of a spatially homogeneous condition throughout L. The set of transla­
tion-invariant states p on £2 is convex and weak*-compact; its extremals are 
called ergodic states. For a translation-invariant state p the integral, or 
expectation value, f A $ dp is the mean energy per lattice site. 

There are two important functional s and P ("entropy" and "pressure"), in 
some sense duals of each other, s is defined over the set of translation-in­
variant states, s = s(p) = lim{-|A|~1 ƒ pA log pA d^}, where pA is the 
Radon-Nikodym derivative of p with respect to the natural product measure 
IXQ over configurations in the finite set A, and the limit is taken with 
increasing A -» L. s(p) is affine and weak*-upper semicontinuous. This en­
tropy notion is closely related to that introduced into ergodic theory by 
Kolmogoroff and Sinai. The pressure functional is defined over © by 

P = /»(*) = l im( |A | - ' log ƒ e x p ( - 2 {**(«): X ç A}) dtf}, 

the limit as before. P: % -» R is nonincreasing, convex, and Lipschitz-con-
tinuous |P($) - JP(¥)| < | |$ - ¥ | | . The duality of P and s is stated in the 
fundamental theorem ("Variational Principle") to the effect that the supre-
mum of s(p) — ƒ A$ dp with respect to translation-invariant states p is P($), 
and the infinuxm of P($) 4- ƒ A^dp with respect to $ G © is s(p). But more 
is true. An a G © * (the dual space of © ) is said to be P-bounded if 
P(&) — «(<!>) is bounded below on % ; it is said to be tangent to P at ^ (a 
subdifferential of P at ^ ) if the infimum is actually an assumed minimum at 

THEOREM. If a G ® * is P-bounded, then for each $ G % there is a unique 
translation-invariant state p such that a($) = -ƒ A$ dp. If, in addition, a is 
tangent to P at <E>, then the corresponding p also satisfies s(p) = P($) + ƒ A$dp 
(the case of equality in the Variational Principle). Conversely, if 4>, p give 
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equality in the Variational Principle, then a E © * defined by a(ty) = - f Ay dp 
is tangent to P at <£>. (In this case p is called a translation-invariant 
equilibrium state for the interaction <&.) 

In general, there may be more than one equilibrium state corresponding to 
a given interaction, but in any case there is at least one. 

Equilibrium states can be analyzed in greater detail when the interaction 
belongs to a certain subclass % of ® determined by the condition 
2{sup|$^|: 0 6 1 } < oo. In that case, an equilibrium state p satisfies a 
system of linear equations first formulated by Lanford, Ruelle, and, indepen­
dently, Dobrushin (the DLR equations). The precise statement is somewhat 
technical and is omitted here; be it enough to say that it is the precise version 
of the Boltzmann-Gibbs wisdom: The probabilities of different configurations 
are in inverse proportion to the exponential function of the corresponding 
energies. But I cannot resist a beautiful theorem. Two interactions 4>, ^ E % 
are called physically equivalent if a certain linear transformation S annihi­
lates the difference <E> — ¥. S is defined by the double sum 

(S*)x - 2 { 2 {(-l) |rnZ1 ƒ *r *?: Z Q Y } : Y D X }. 

THEOREM. For $, ^ E % the following four conditions are equivalent: (i) 
<3>, ^ are physically equivalent, (ii) P is linear on the line segment $^ , (iii) there 
is a translation-invariant state p satisfying the DLR-equations for both $ and 
SF, and (iv) every translation-invariant state p satisfying the DLR-equations for 
$ also does so for ^ . (This justifies the term "physical equivalence".) 

The set of states, not necessarily translation-invariant, satisfying the DLR-
equations for a given <& is convex and weak*-compact; what about its 
extreme points? 

THEOREM. Every state in this set is the unique convex combination (in the 
sense of Choquet) of extremals. 

THEOREM. A state in this set is extremal precisely when it has "short range 
correlations". 

A state p has this property if for every ƒ: Ü -> R continuous, sup|f\ < 1, 
and e > 0, there is a sufficiently large finite subset A of L such that if g: 
£2->R, sup|g| < 1, and g(co) depends only on the cox with x £ A, then 
I ƒ fs dp — ƒ ƒ dp ƒ g dp\ < €. Another form of this property: If ƒ: Ü -»R is 
bounded, nonconstant, there is some finite A such that if g: Q -> R depends 
only on cox with x £ A, then p{co E Q: /(<o) ̂  g(<o)} > 0. 

What about the inverse problem of finding an interaction for which a given 
state is an equilibrium state? The somehwhat surprising theorem is proved 
that, if p,, p2, . . . , pk are arbitrary ergodic (i.e., extremal translation-in­
variant) states with finite entropy, then there is an interaction $ E % for 
which not only one but all of them are equilibrium states. This theorem 
induces the author to declare that while the Banach space © is in some 
respects very natural, it is too large and a source of pathology. A further 
example of this pathology: There is in % a dense set of interactions which 
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have uncountably many ergodic equilibrium states. Fortunately, all is not as 
bad as that. For one thing, much of the pathology disappears if one restricts 
oneself to the smaller space % of interactions. For another thing, there is the 
classic theorem of Mazur, according to which the set of points $ at which P 
has a unique tangent is a dense Gô-set in $ , so from the point of view of 
Baire-category the occurrence of more than one ergodic equilibrium state for 
the same interaction is an exceptional phenomenon. The last chapter of our 
book discusses a strengthening of this statement. Think of some finite 
dimensional subspace 91 of <35. If 91 is well behaved, one expects the 
majority of points <& E 91 to possess exactly one equilibrium state. Excep­
tionally, there may be two ergodic equilibrium states, but the subset of 91 
where this is the case should be small. Even smaller should be the subset of 
91 where there are three, and so on. Let us say that the Gibbs Phase Rule 
holds in 91 if the set {<E> G 91: <& has k ergodic equilibrium states} has 
Hausdorf f -dimension at most n - k + 1 in 91, where n = dim(9l). The set 
of ^-dimensional subspaces of % can be made into a complete metric space 
§n. The precise version of the statement "The Gibbs Phase Rule holds 
generically" is the theorem that {91 G §n: The Gibbs Phase Rule holds in 
91} is a dense Gô-set in §n. This is quite satisfactory, although conceivably 
one might want to know more, for instance, if dim(9L) = 2 and k = 3 ("triple 
point" or coexistence of three pure phases), one expects only isolated points 
in 91, not merely a set of Hausdorf f dimension 0; similarly for k = 2 
(coexistence of two pure phases) one should have nice curves in some sense or 
other. Perhaps future research will succeed in this direction. 

One more remark on the contents of the book. All definitions and theorems 
have their quantum mechanical analogues. In fact, the material is so 
organized that the two cases, classical and quantum, are discussed side by 
side, so that the investigation proceeds in parallel. In fact, on the level of 
general theory, there is hardly any difference, and the effect of quantum 
modification is present only for specific properties of specific models. 

My own assessment is that this book is a valuable compendium for 
research workers in the mathematical aspects of statistical mechanics, and it 
should also succeed in attracting outsiders from the mathematical community 
to acquaint themselves with a fascinating topic. 
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Thermodynamic formalism: The mathematical structures of classical equilibrium 
statistical mechanics, by David Ruelle, Encyclopedia of Mathematics and 
its Applications (Gian-Carlo Rota, Editor), vol. 5, Addison-Wesley, Read­
ing, Mass., 1978, xix + 183 pp., $21.50. 

The book under review is concerned with the general aspects of classical 
equilibrium statistical mechanics of lattice systems and some generalizations. 
Before commenting on the book we shall describe some of the main mathe­
matical issues which arise in this deep and active area of mathematical 


