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GENERALIZATION OF THE EUCLIDEAN ALGORITHM FOR 

REAL NUMBERS TO ALL DIMENSIONS HIGHER THAN TWO 

BY H. R. P. FERGUSON AND R. W. FORCADE 

ABSTRACT. A construction using integral matrices with determinant ± 1 

is given which has as corollaries generalizations of classical theorems of Dirichlet 

and Kronecker. This construction yields a geometrically convergent algorithm 

successfully generalizing the Euclidean algorithm to finite sets of real numbers. 

Applied to such a set this algorithm terminates if and only if the set is integrally 

linearly dependent and the algorithm gives absolute simultaneous integral approx­

imations if and only if the set is integrally linearly independent. This develop­

ment applies to complex numbers, can be used to give proofs of irreducibility of 

polynomials and yields effective lower bounds on heights of integral relations. 

Let Z = rational integers, R = real numbers, Z" = lattice points C R" as 
row vectors, GLW (Z) C GLW (R) are n by n matrices with entries and invertible 
determinants in Z C R resp. For M = any matrix or vector, Mf = transpose, 
row,.M = ith row, coljM = ;th column, height (M) = max absolute values of en­
tries of M. The entries ofxGR" are Z-linearly dependent iff there exists 0 =£ 
m G Zn such that xmf = 0, m = Z-relation for x For 0 &x E Rn, x determines 
the line xR and orthogonal hyperplane xl ~ {y &Rn: xyt ==0}. A hyperplane 
matrix Q with respect to x is any matrix xQ = 0 such that the columns of Q 
transposed span r1 . The hyperplane matrix is a key idea here in three aspects: 
(I) it permits estimates of heights of relations (Theorem 1), (II) it measures how 
closely the rows of a GLW (Z) matrix are to the line xR (Lemma 1), (III) it un­
derlies the definition of a crucial injection GLw(Z)c* GLW+1 (Z) (Lemma 2). 
We exploit the nonuniqueness of Q. 

THEOREM 1. Let 0 =£ x E R". Then there exists a hyperplane matrix Q 
such that height m > 1/height ylô for m any Z-relation for x and any A G 
GL„(Z). 

SKETCH OF PROOF. The parallelotope /A/ = { Hf-coljA: \fj\ < 1 < ƒ < n} 
has easily characterized lattice points if A E GLW (Z). Let I = identity matrix 
and define Q to be the hyperplane matrix whose columns transposed are the ver­
tices of the convex poly tope //ƒ O x1. 

A GLW (Z)-algorithm is defined to be any construction (usually in response 
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to an x) of a sequence {M k} k > % ,M k^ GLW (Z). If xMk has a zero entry for 
some k then the entries ofx are Z-linearly dependent: the algorithm terminates. 

If the height of Mk
lQ approaches zero as k increases to infinity then the entries 

ofx are Z-linearly independent: the algorithm absolutely approximates x. A 
GLW (Z)-algorithm is split iff the algorithm terminates or absolutely approximates 
for every x G R". 

LEMMA 1. If a GLn (Z) algorithm is split and does not terminate for some 

x then the distance of the rows ofMk
l to the line xR approaches zero as k in­

creases. 

SKETCH OF PROOF. For xxf = 1, set Q = I - xfx to get a line-hyperplane 

decomposition of any matrix A = (Ax*)x -f AQ. 

Define the GL2 (Z) algorithm A2 by the following iteration. For x = (xl9 

x2), let Xf be of largest and x* of next largest absolute value. Replace x( by the 
xt ± Xj of smaller absolute value. Then A2 splits. We will give an uncountable 
collection of GLW (Z) algorithms which split, An(b)9 n>2> l/b> 1. For brev­
ity we describe them by induction on n by defining the injection/: GLW(Z) CL_» 
GL„ + ! (Z), / is also an integer ! < / < « «f 1. L e t x ^ G R " bexGR""1"1 with the 
/th entry deleted. For A G GLW (Z) set Ti = rowf.^l if i < ƒ or 7̂  = rowf_j A if 
i > / , c, = nearest integer to Tfc^yXj/x^x^y Define 7(4) G GLW + 1 (Z) to have 
a 1 in the (j, ƒ) position, zeros in that row, the c's in that column and A the 
minor matrix of the 1. Let Q^ be Q without the /th row and Tt = djtfy) + 
vi orthogonally. 

LEMMA 2. 77*e injection map J : GLW (Z) c-* GLW + j (Z) to rte property 

that row, (/(<4)0 ^ row;- Qifi — j and S, row;. Ö + niQ(j) V ' ^ / w/*ere 16/1 

< 1/2. 

To sketch the construction of An + l(b) from ^4„(è) and the proof that An 

splits, select the map / by choosing / to be the number of the row of Q with 
least height. By induction An splits; if An does not terminate then for 0 < e < 
(b — 1/2) height (row;. Q) there exists a finite number of iterations of An acting 
on Xfj} yielding XyyA~l for a certain A G GL„ (Z) with height (nt) < 

€ I height Ö. By Lemma 2, height (row, (J(A)Q)) < b height (rowy Q) if i # / . 
Define one iteration of An+l by x *~*x(J(A)y~l. 

THEOREM 2. For every integer n and real number b, n> 2> l/b> I, 

the GLW (Z) algorithm An(b) splits, ie.9 for every nonzero x € R " the sequence 

of matrices Mk, k> 1 is such that Termination) There exists a k such that a 

column of Mk is an integral relation among the entries ofx OR Absolute approx* 

imation) For every e > 0 there exists an integer K > 1 such that for each k > 

K the rows of Mk
l give n linearly independent lattice points in Zn, each within 

a distance e of the line determined by x. 
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THEOREM 3. Let x = (xx, x2, . . • , xn) E Rn where xx — 1, x2, . . . , 
xn are Z-linearly independent real numbers. Then for every e > 0 there exists 

an integral matrix P G GLW (Z) with first column N, N* E Zn such that 

height(Nx-P)<e. 

THEOREM 4. A finitely generated spanning Z-module in Rn is dense in 
Rn if and only if every neighborhood of the origin contains a Z-basis for the Z-
module. 

THEOREM 5. (a) The height of any quintic polynomial with integer coef­

ficients having Eulefs constant as a zero must exceed 105 0 . 
(b) If f (3)/7T3 satisfies an integral quadratic equation then at least two of 

the three coefficients exceed one hundred decimal digits in length. 

(c) The first seven imaginary parts of the nontrivial zeros of the Riemann 

zeta function have no integral relations with heights < 65. 

The proof of Theorems 3 and 4 involve applications of the construction 
represented in Theorem 2. The proof of Theorem 5 is given by exhibiting three 
integral matrices, from GL6 (Z), GL3 (Z) and GL7 (Z) for parts (a), (b) and (c) 
respectively. 

It is appropriate to give a very short historical commentary. The problem 
solved by the construction An is rather old. A2 is essentially in Euclid [Book X, 
Proposition 2 ] . The question of generalizing the Euclidean algorithm with an 
iterative process is implicit in Euler [Acta Acad. Sci. Imp. Petro. (1) 14 (1771), 
188-214] and Lagrange [Leçons à l'école norm., 1795]. Hermite [Crelle's J. 
40 (1850), 261-315] raised a related circle of questions. Iterative responses to 
Hermite's letters were made by Jacobi [Crelle's J. 69 (1868), 29-64] and Poincare 
[C. R. Acad. Sci. Paris 99 (1884), 1014-1016] and also a noniterative develop­
ment by Minkowski [Acta Math. 26 (1902), 333-351], the latter subsequently 
improved by Mahler [J. Austral. Math. Soc. 4 (1964), 425-448]. Perron [Math. 
Ann. 64 (1907), 1-76] and Bernstein [Lecture Notes in Math. 207 (1971), 1~ 
161] followed the Jacobi line and Brun [Treizième Congr. Math. Scand. Helsinki 
(1957), 46—64] followed Poincare with counterexamples and improvements. 
Rosser [Proc. Nat. Acad. Sci. 27 (1941), 309-311] gave counterexamples to his 
proposal for dimensions above four. Simple counterexamples show that the 
Jacobi-Perron algorithm applied to an «-tuple can terminate without a relation. 
We have counterexamples to show that Brun's algorithm does not split for n > 

4. We have several examples that suggest Szekeres' [Ann. Univ. Sci. Budapest, 
Eötvös Sect. Math. 13 (1970), 113-140] algorithm does not split for n>5. 
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