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RESEARCH ANNOUNCEMENTS

FINITENESS THEOREMS FOR POLYCYCLIC GROUPS
F.J. GRUNEWALD, P. F. PICKEL AND D. SEGAL

Introduction. A group G is polycyclic if it is built up from the identity by
finitely many successive extensions with cyclic groups, or equivalently if it is
isomorphic to a soluble group of matrices over Z (not obvious!). The second
definition makes it clear that the normal subgroups of finite index in G intersect
in 1, so one may hope that the finite quotient groups of G will carry a lot of in-
formation about the structure of G. The first main result says that in fact they
“almost” determine G up to isomorphism, i.e. they do so up to finitely many
possibilities. (Examples show that there really are finitely many possibilities, not
just one.) The second main result is a sort of “concrete” analogue of this: if G
is contained in GL,(Z), then there are only finitely many possibilities up to con-
jugacy in GL,(Z) for subgroups H in GL,(Z) such that H is “conjugate to G
modulo m” for all nonzero integers m. This is related to classical results in arith-
metic, like the fact that there are only finitely many inequivalent integral quad-
ratic forms with given determinant, and the Hasse-Minkowski Theorem.

Results. Denote by F(G) the set of isomorphism classes of finite quotients
of a group G, and by G the profinite completion of G. For polycyclic-by-finite
groups G and H, F(G) = } (H) if and only if G = A; if this holds we say that G
and H belong to the same ~ -class.

THEOREM 1. Every " -class of polycyclic-by-finite groups is the union of
finitely many isomorphism classes.

A major ingredient in the proof of this is a result about arithmetic groups.
Let G be an algebraic matrix group defined over Q, and denote by m,,,: G(Z)
—> G(Z/mZ) the canonical map. For subgroups X and Y of G(Z), say X ~; Y
if for every m # 0, X, and Yr,, are conjugate in G(Z/mZ).
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THEOREM 2 (F. J. G. and D. S.). Every ~g-class of soluble-by-finite sub-
groups of G(Z) is the union of finitely many conjugacy classes in G(Z)

Special cases of Theorem 1 have appeared in [P1], [P2], [GS1],and a
special case of Theorem 2 in [GS1].

AUXILIARY RESULTS. We state now some further results used in the proofs.

THEOREM 3 [S]. If G is a polycyclic group and d is a positive integer,
then up to isomorphism there are only finitely many extensions of G by a group
of order d.

This is needed for Theorem 1. The next three results are needed for Theo-
rem 2.

THEOREM 4 [S]. If G is an algebraic matrix group defined over Q and X
is a soluble subgroup of G(Z), then the subgroups of G(Z) which contain X as
a normal subgroup of finite index lie in finitely many conjugacy classes in G(Z).

Let G < GL,, be an algebraic matrix group defined over Q, and let m,,, now
denote the canonical map Z" — (Z/mZ)". For Z-submodules 4 and B of Z", say
A ~g B if for every m # 0, Am,, and Bm,, lie in the same orbit of G(Z/mZ).

THEOREM 5 [GS2]. Every ~-class of Z-submodules of Z" is the union of
finitely many orbits of G(Z).

For the next result, let o be the ring of integers in an algebraic number
field and denote by P the set of all nonzero prime ideals of n. Call a subset Q
of P ample if every subgroup of finite index in the units group o* of o con-
tains a subgroup of the form (1 +a) N o* where a is an intersection of members

of Q.

THEOREM 6 [GS3]. If F is a finite subset of Pand P — F is partitioned
into finitely many subsets, then at least one of these subsets is ample.

OUTLINE PROOF OF THEOREM 1. Consider a set C of polycyclic-by-finite
groups, contained in a single ~-class. By Theorem 3 we may assume that for
each G € C, the Fitting subgroup N of G is torsion-free and G/N; is free
abelian. Since [P3] 1\7; is the Fitting subgroup of G, we may apply the special
case of Theorem 1 for nilpotent groups [P1] and assume that the groups N, for
G € C are all isomorphic. We then use Theorem 2, applied to the arithmetic
group Aut(Ny), to reduce to the case where the action of G on N; is the same
for all G € C; i.e. the pairs (G/¢,(Ng), Ng) are all isomorphic. Write Q, for
the hypercentre of G. Using a cohomological result due to Robinson [R] one
can further reduce to the situation where the groups G/Q,; are all isomorphic,
compatibly with the isomorphisms linking the various V.
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The idea is now to form semisimple splittings of the groups in C (see [T]).
For each G we construct an abelian subgroup T; < Aut(G) such that the split
extension G] T is equal to M | T; where M; is the Fitting subgroup of
G]T,. Then G] T, can be embedded in a well.known way into some GL, (Z),
by making M and T; act on a suitable factor ring of the group ring ZM;. If the
groups T; are defined in a sufficiently uniform manner, we can arrange that an
isomorphism from A to G induces an isomorphism from (H] Ty)" to (G1Tg)"
sending 7/";, to f(\; . In this situation it is not hard to deduce that G ~; L, Hin
GL,(Z). A second application of Theorem 2 completes the proof.

Our construction of semisimple splittings differs from those in the literature.
Roughly speaking, we construct a certain canonical family X(G) of nilpotent sup-
plements for Vg in G, G being any polycyclic group. To get the required “uni-
formity”, we then choose Cy;/Q; € X(G/Q) simultaneously for all G € C, using
the isomorphisms between the groups G/Q. The group T is defined to act
trivially on Cg; and to act like the Jordan semisimple component of Inn(Cp)I NG

on Ng; the existence of such a T; is a direct consequence of the fact that Cg
is nilpotent.

OUTLINE PROOF OF THEOREM 2. Consider an algebraic Q-group G and a
set C of soluble-by-finite subgroups of G(Z), contained in a single ~-class. Using
Theorem 4 and induction on derived length, we may assume that C consists of
abelian groups. Now consider some special cases. If C consists of unipotent
groups, the result is an easy consequence of Theorem 5. If C consists of abelian
d-groups and G = GL,, the result is proved with the help of Theorem 6: suppose
X ~; Y in GL,(Z); we diagonalize X and Y over some ring o of algebraic in-
tegers, and then for each prime p of o we find a permutation matrix o() such
that ¥ = X°(P mod . There exists a permutation matrix 7 such that {pla(k)
= 7} is ample, and one can deduce that then ¥ = X7. To deduce the result for
abelian d-subgroups in a general G one uses the conjugacy of maximal tori.

A major part of the proof consists in reducing the problem to the special
cases mentioned; this involves a series of rather complicated arguments which we
cannot go into here. At several points in the proof, and particularly in the proof
of Theorem 5, a key role is played by finiteness theorems of Borel [B] and Borel-
Serre [BS].
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