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but stronger than bounded pointwise convergence. A sequence fn E L00 is 
said to converge strictly to ƒ G L°° if fn -» ƒ pointwise and 2 | fn+l - fn\ E 
L00. Strict convergence is stronger than bounded pointwise convergence so 
any weak * closed subspace of L00 is closed under strict convergence. If 
S C L°° is a weak * closed subspace and A is a linear functional on S, A is 
called strictly continuous if whenever fn -*ƒ strictly then A(ƒ„) -» A(ƒ). It is 
clear that any linear functional A, where A(/) = f f<p dm with <p E L1 is 
strictly continuous. The proof of the Mooney-Havin theorem now follows 
from two key facts, (i) If {An} is a sequence of strictly continuous linear 
functional on a weak * closed subspace SQL00 and if A(f) = 
lim^^^ A(fn) exists for all ƒ E S then A is strictly continuous; (ii) if tn -»0, 
fn > 0, then//(l + /„h) -> ƒ strictly. 

There are many other topics covered in these notes that I have not 
mentioned. For example there is a chapter on imbedding analytic discs and a 
chapter on rational approximation. 

The material is well organized and carefully presented. Many of the proofs 
are extremely elegant. 
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The serious study of partitions probably started when Euler was asked how 
many ways fifty could be written as the sum of seven summands. From this 
modest beginning a beautiful field has grown up that has connections with a 
number of different areas of mathematics. 

Ferrers, in a letter to Sylvester, observed that it was possible to represent a 
partition by an array of dots. For example, 7 = 4 + 2 + 1 is represented by 

A large number of identities can be proved by suitably counting the dots in a 
Ferrers graph. One beautiful example is F. Franklin's proof of the following 
result of Euler. 

Let Pn(D, e) denote the number of partitions of n into an even number of 
distinct parts and Pn(D, o) the number of partitions of n into an odd number 
of distinct parts. Then 

f0, n^k(3k± l) /2, 
Pn(D,e)-Pn(D,o) = \ . 

nK } nK ) [ ( -1)*, * » * ( 3 * ± l ) / 2 , * - 0 , l , . . . . (1) 
This proof is given in Chapter 1 and anyone who is interested in seeing 

how mathematics can be done without having to introduce many definitions 
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should read this proof. There is an identity equivalent to (1) which was given 
by Euler. It is 

I ( .^wo/2 . fl o-«*). (2) 

Combinatorial proofs have been found for many other identities similar to 
(2). Some recent examples of D. Bressoud [11], [12], [13] are particularly 
impressive. However it has been impossible (so far) to prove the deepest 
identities by these methods. 

In the nineteenth and some of the twentieth century these identities were 
thought to live among elliptic functions and their close relations, the modular 
functions. For example, Euler's identity (2) was generalized by Gauss in an 
unpublished work [21] and by Jacobi [31] to 

f 9*x" = A 0 - <72/,+2)0 + xq*+x)(\ + «f2"*1*-1). (3) 

It took Gauss a number of years to find the easiest proof of (3), [22], but he 
never published it. Cauchy [16] published the same proof fourteen years after 
Jacobi published his proof of (3). This proof has been republished often, [7], 
[28], [29], [33], [34a], [39], but it has also been forgotten or never learned by 
many people who wrote on this subject. For example, Bellman [9] wrote that 
there does not seem to be a simple proof of (3). The proof of Gauss and 
Cauchy is simple. First extend the binomial theorem to 

2 ^ T ^ * * - ( « - * ; «). (4) 
*=o (91 <l)k 

where 

(a; q)h - (1 - a\\ - ag) - • (1 - aqk~l)9 k = 1, 2 , . . . , 
= 1, k « 0. (5) 

Then take n « 2m, shift the summation index by m so that the sum goes from 
- m to mt simplify, and let m -> oo. It is very easy to prove (4) by functional 
equations. Formula (3) is harder to obtain directly from functional equations, 
since it is hard to find the term on the right hand side which is independent of 
x. It is possible to find it by using (2), and there are other methods, but there 
are no trivial ones. The reason for this is that there is no value of x which 
reduces the sum (3) to a trivial sum. In (4) the value x = 0 gives 1 = 1. 

The details above were given because this was the first indication that 
polynomials might play a central role in the study of partition identities. The 
best proof of this observation comes in a very important series of papers of L. 
J. Rogers [35], [36], [37], [38]. These papers were completely ignored for over 
twenty years until Ramanujan read [37] in 1917. Two of the identities in this 
paper are 

^ q ~ l (6) 
w = 0 (qiq\ {q;q5)Jq4;q5)0 
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„?o T*Wm
 = («2; f)Jfiq\ ' (7) 

Ramanujan expressed great admiration for this paper of Rogers [25, p. 91] 
and with good reason; for he had been trying unsuccessfully to prove (6) and 
(7) for a number of years. After discovering these identities (but not being 
able to prove them) he communicated them to Hardy. Hardy and others 
Hardy communicated these identities to, including MacMahon and Perron, 
also could not prove them. MacMahon realized these identities had a 
combinatorial interpretation, but no one has yet found a combinatorial proof 
that gives a bijection between the objects being counted. There are many 
proofs of (6) and (7), and most of them are closely related to the original 
proof of Rogers. The idea behind Rogers' proof is important, and still not 
appreciated by most people who work in this area. Partly this is because 
Rogers did not completely understand his own work, and so [37] is hard to 
read, but a more important reason is that a later paper of Rogers [38] has not 
been read carefully (if it has been read at all). To see what these papers of 
Rogers contain we must give some background. 

Most of the work on special functions in the nineteenth century centered 
around elliptic functions, and in the last part of the century dealt with 
modular functions. The results in this field were striking and attracted much 
interest. There was another set of results that progressed slowly, but in the 
end it turned out to be more useful. This was the study of hypergeometric 
series and the extension of them to basic hypergeometric series. A generalized 
hypergeometric series is a series S^L0 % with an+\/an a rational function of 
n. Gauss [20] studied the case 

fl*+i _ (n + <*)(n + b) _ 

an ~ (n + c)(n + l) *' * - ' ' 

and found many important results. Among them are three term recurrence 
relations and continued fractions that follow from these recurrence relations. 
Earlier Euler had studied this function and found an integral representation 
and a differential equation it satisfied. Most of the work on hypergeometric 
series in the nineteenth century dealt with the differential equation of Euler 
and extensions of it. One exception was some of Heine's work [26], [27]. He 
generalized the ideas in Gauss' published paper on hypergeometric functions 
to a more general class of functions. He considered 2£L0

 an with 

*„+i _ (1 - *g")(l - V ) 
«„ (I - cq")(l - q"+i) ° 

When a — qa, b = q1*, c = qy and q -> 1 this reduces to the series Gauss 
studied. 

A generalized basic hypergeometric series 2a„ has a„+1/a„ as a rational 
function of q". Heine's series 

[a* \ ^ («; g),(fr g), . 
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is an example, as is the series in the ^-binomial theorem (4). So is the series in 
(3). For an+l/an = q2n+lx in this case. The terms in the series are labeled 
from - oo to oo rather than from 0 to oo, but this is allowed. 

Heine found a transformation formula 

U,b \ (b; q)Jax; g ) . jc/b,x \ 

He '-''I- <«€).<««>. *( „ -'•")• 
some recurrence relations, continued fractions that follow from these recur­
rence relations, and a number of other important results. Rogers tried to 
understand some of these results of Heine and was ultimately led to a set of 
polynomials that generalize the ultraspherical polynomials Cx(x). Rogers had 
a typical education of the time; he knew about spherical harmonics and so 
had some idea what to look for when considering his polynomials. He found 
many facts about these polynomials. Two were particularly important. To set 
notation, define Cn(x; fi\q) by the recurrence relation 

(1 - qn+l)Cn+l (x; fi\q) = 2*(1 - q"fi)Cm(x; fi\q) 

- (1 - qm-lfi2)CH_t(x; fi\q), 

C o ( * ; j B | 0 - l , C^(x;P\q)^0. 

When /? = qx, Cn(x; qx\q)-+ C„(x) as q-> 1. Rogers found the connection 
coefficients in 

[a/2] 
CH{x;fi\q)~ 2 a(k,n)Cn„2k(x;y\q). (8) 

In [37] he only introduced these polynomials when /? = 0, /$ = q and an 
appropriate limiting case when /?->l. The last two cases were just 
Tchebychef polynomials of the second and first kind respectively, and so are 
independent of q. The case /? = 0 gives a set of polynomials that generalize 
the Hermite polynomials. Rogers used (8) for these values of j8 and y and 
another expansion to find and prove (6) and (7). It is now clear that almost all 
partition identities, and in fact almost all the identities we know for hyper-
geometric and basic hypergeometric series in one variable, can be obtained 
easily from orthogonal polynomials. See [5] and [6] for some examples. 
Rogers was really the first to make a start on this project. 

The second very important result of Rogers was his determination of the 
coefficients in 

min(m,«) 

CH(x; fi\4)Cm(x; fi\q) - 2 b(k, m, n)Cm+n„2k(x; fi\q). 
k = Q 

The case q = 1 was rediscovered by Dougall [18] in 1919, and the case 
q -» - 1 contains a result found by Hylleraas [30] in 1962 while studying the 
Yukawa potential. This gives some indication why Rogers' work was not 
appreciated. He was far ahead of anyone else, but he did not know quite 
enough to be able to see what was really happening. The polynomials of 
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Rogers are orthogonal but the weight function was only found in 1977. See [8] 
and [42]. 

The orthogonal polynomial setting for partition identities is not explained 
in this book, because no one was aware of it when the book was written. 
However, the recurrence relations, or difference equations, that underlie both 
orthogonal polynomials in one variable and most partition identities are 
treated in some detail in a number of chapters. 

For over forty years the Rogers-Ramanujan identities (6) and (7) were 
admired, new proofs were found, and the general feeling was that these 
identities existed in isolation. There were even theorems that seemed to say 
that the combinatorial interpretation of the R.-R. identities could not be 
extended to any modulus other than 5. In 1961 B. Gordon [23] showed that a 
combinatorial result held for all odd moduli greater than 3. Later Andrews [1] 
found a way of translating Gordon's results into multisum identities. He then 
found the multiple basic hypergeometric series identity that was responsible 
for these identities [2] and he (for 4k + 2) and Bressoud (for 4k) finally 
completed the work of Gordon. There are now Rogers-Ramanujan identities 
for all moduli. See [14], [15]. 

This is not the final word on these problems. Macdonald [32] has shown 
that the Jacobi triple product identity (3) is one of an infinite number of 
identities that arise from affine root systems of simple Lie algebras. After the 
first two identities, (3) and the quintuple product identity, the series are all 
multiple series. While we have a fairly good idea of what can be done for 
hypergeometric and basic hypergeometric series in one variable (if one 
ignores the potentially very important results of Gosper [24], some of which 
do not fit into the existing framework) we have no idea what to expect in 
several variables. The Macdonald identities, and some conjectures of his that 
seem even more important than his identities, suggest that a deep theory still 
exists that we need to discover. There are also indications of this in a number 
of branches of physics, from nuclear physics [34], angular momentum theory 
[10] and statistical mechanics [19]. All of these deal with the case q = 1, but q 
extensions exist of many of these results, some as theorems and others as 
conjectures. In any case Hardy was clearly wrong when he said that the great 
age of formulas may be over [25, p. 14]. It would be useful if we had someone 
with Ramanujan's great ability to manipulate formulas to aid us. However, 
we have one legacy of Ramanujan which may help us a bit. Andrews has 
found a large number of pages of identities of Ramanujan which are almost 
surely work from the last year of his life [4]. In working out proofs of these 
identities we may be led to discover new methods that can be used on the 
conjectures that we currently cannot prove. 

There are other sides to the study of partitions. One aspect of partitions is 
related to modular functions. From these functions come asymptotic formu­
las for the unrestricted partition function and some congruences for this 
function. Both of these results started with conjectures of Ramanujan and he 
obtained some of the first results. The Hardy-Ramanujan asymptotic results 
were completed by Rademacher, and Ramanujan's congruence conjectures 
were proved by Watson and Atkin. The asymptotic results have been partly 
extended to another class of functions, the mock theta functions that 
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Ramanujan discovered in his last year of life, and so they are not exclusively 
restricted to modular functions. The congruence theorems have a minor 
combinatorial flavor which was empirically discovered by Dyson and proved 
by Atkin and Swinnerton-Dyer, but even this seems to be controlled by 
modular functions. Other recent results of great interest dealing with modular 
functions are those of Deligne [17] and Serre and Swinnerton-Dyer [41]. 

One further aspect of partitions is intimately tied up with group theory. 
Part of the connection comes from plane partitions and their connection with 
representations of the symmetric group, but there are other connections. 
These include a conjecture of Lusztig and Macdonald which was proved by 
Andrews [3], Macdonald's beautiful group theoretic proofs of MacMahon's 
generating function for plane partitions and MacMahon's conjectured 
generating function for symmetric plane partitions, and a conjecture of 
Macdonald for plane partitions with a further rotational symmetry. All of 
Macdonald's work is still unpublished. 

A further connection with group theory comes from the spherical functions 
on some discrete two point homogeneous spaces with finite classical groups 
acting on the spaces. The spherical functions are orthogonal polynomials 
which can be given as basic hypergeometric series. For a survey of this see 
Stanton [40]. Further references are given there. 

There are other applications mentioned in the book under review. Most 
readers will have very little trouble finding one that is close to their interests. 
This book is a good introduction to a fascinating part of mathematics. Not all 
topics are treated in depth, but references are provided for the reader who 
wishes to study the subject further. With the exception of the unattractive 
look of some of the Ferrers graphs, and more misprints than there should be, 
the book is a very pleasant one to read. 

REFERENCES 

1. G. Andrews, An analytic generalization of the Rogers*Ramanujan identities for odd moduli, 
Proc. Nat. Acad. Sci U.S.A. 7! (1974), 4082-4085. 

2. , Problems and prospects for basic hypergeometric functions, Theory and Application 
of Special Functions (R. Askey, éd.), Academic Press, New York, 1975, pp. 191-224. 

3. , q-series and the Lusztig-Macdonald-Wall conjectures» Invent Math. 41 (1977), 
91-102. 

4. , An introduction to Ramanujan9s "lost notebook", Amer. Math. Monthly (to appear). 
5. , Connection coefficient problems and partitions, Proc. Sympos. Pure Math.,vol. 34, 

Amer. Math. Soc , Providence, R. I., 1978, pp. 1-24, 
6. G. Andrews and R. Askey, Enumeration of partitions: The role of Eulerian series and 

q-orthogonal polynomials* Higher Combinatorics (M, Aigner, éd.), Reidel, Dordrecht, Holland, 
1977, pp. 3-26. 

7. P. Appell and E. Lacour, Principes de la théories des fonctions elliptiques, Gauthier-Villars, 
Paris, 1897. 

8. R. Askey and M. E.-H. Ismail, A generalization of ultraspherical polynomials (to appear in a 
book dedicated to P. Turân's memory). 

9. R. Bellman, A brief introduction to theta functions, Holt, Rinehart and Winston, New York, 
1961. 

10. L. Biedenharn and J. Louck, Angular momentum in quantum physics-Theory and application 
(to appear). 

Î1. D. Bressoud, A new family of partition identities, Pacific J. Math. 77 (1978). 
12. , Combinatorial proof of Schur''s theorem (submitted), 



BOOK REVIEWS 209 

13. , Extension of the partition sieve (submitted). 
14. , A generalization of the Rogers-Ramanujan identities f or all moduli, J. Combinatorial 

Theory Sen A (to appear). 
15. , A functional generalization of the Rogers-Ramanujan identities with Interpretation 

(submitted). 
16. A. Cauchy, Second Mémoire sur les fonctions dont plusieurs valeurs sont liées entre par une 

équation linéaire, Oeuvres, Ve Série, Tome VIII, 50-55, Gauthier-Villars, Paris, 1893, reprinted 
from C. R. 1843. 

17. P. Deligne, La conjecture de Weil. I, Inst Hautes Études Sci Publ Math. 43 (1974), 
273-307. MR 49 #5013. 

18. J. Dougall, A theorem of Sonine in Bessel functions, with two extensions to spherical 
harmonics, Proc. Edinburgh Math. Soc. 37 (1919), 33-47. 

19. F. Dyson, Statistical theory of the energy level of complex systems. I, I. Math. Phys. 3 (1962), 
140-156. 

20. C. F. Gauss, Disquisitiones generales circa seriem infinitum 1 + apx/\ *y + a(a + \)P(fi 
+ 1)XJC/1 • 2 y(y + 1) -f ' > », Werke, vol. 3, Königlichen Gesellschaft der Wissenschaften, 
Göttingen, 1866, pp. 123-162 (originally published in 1813). 

21. , Zur Theorie der neuen Transscendenten. 1% Werke, vol 3, Göttingen, 1866, pp. 
436-445. 

22. , Hundert Théorème über die neuen Transscendenten, Werke, vol 3, Göttingen, 1866, 
pp. 461-469. 

23. B. Gordon, A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. 
Math. 83 (1961), 393-399. 

24. R. W. Gosper, A calculus of series rearrangements, Algorithms and Complexity, New 
Directions and Recent Results (J. Traub, e&), Academic Press, New York, 1976, pp. 121-151. 

25. G. H. Hardy, Ramanujan, Cambridge Univ. Press, London, 1940; reprinted by Chelsea, 
New York, 1959. 

26. E. Heine, Untersuchungen über die Reihe 

(1 - g«)(l - q*) (I ~ qa)(l ~ q«+l)(l ~ qfi)(l ~ g**1) , 

(1 - q){\ -q*) (1 - q){\ - q2)(l - «*)(l - < ^ J ) * + " ' ' 
J. Reine Angew Math. 34 (1845), 285-328. 

27. , Theorie der Kugelfunctionen undder verwandten Functionen, Reimer, Berlin, 1878. 
28. P. Henrici, Applied and computational complex analysis, vol. 2, Wiley-Interscience, New 

York, 1977. 
29. C. Hermite, Oeuvres, Tome II, Gauthier-Villars, Paris, 1908, pp. 153-156; reprinted from 

Calcul différentiel et Calcul intégral de Lacroix, 6e edition, Paris, 1862. 
30. E. Hylleraas, Linearization of products of Jacobi polynomials, Math. Scand. 10 (1962), 

189-200. 
31. C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, Regiomontis, fratrum 

Bomtraeger 1829; reprinted in Gesammelte Werke, Volume 1, Reimer, Berlin, 1881; reprinted by 
Chelsea, New York, 1969, pp. 49-239. 

32. I. G. Macdonald, Affine root systems and Dedekind's i\-function, Invent, Math. 15 (1972), 
91-143. 

33. G. Pólya and G. Szegö, Problems and theorems in analysis, vol. I, Springer-Verlag, New 
York, Heidelberg, Berlin, 1972. 

34. G. Racah, Theory of complex spectra. I, II, III, IV, Phys. Rev. 61 (1942), 186-197; 62 (1942), 
438-462; 63 (1943), 367-382; 76 (1949), 1352-1365; reprinted in Quantum theory of angular 
momentum (L. Biedenharn and H. VanDam, éd.), Academic Press, New York, 1965. 

34a. O. Rausenberger, Lehrbuch der Theorie der Periodischen Functionen einer Variabetn, 
Teubner, Leipzig, 1884. 

35. L. J. Rogers, On a three-fold symmetry in the elements of Heine's series, Proc. London 
Math. Soc. 24 (1893), 171-179, 

36. , On the expansion of some infinite products, Proc. London Math. Soc. 24 (1893), 
337-352. 

37. , Second memoir on the expansion of certain infinite products, Proc. London Math. 
Soc. 25 (1894), 318-343. 



210 BOOK REVIEWS 

38. , Third memoir on the expansion of certain infinite products, Proc. London Math. Soc. 
26(1895), 15-32. 

39. K. H. Schellbach, Die Lehre von den Elliptischen Integralen und den Theta-Functionen, 
Reimer, Berlin, 1864. 

40. D. Stanton, Some basic hypergeometric polynomials arising from finite classical groups, Ph.D. 
thesis, Univ. of Wisconsin, Madison, 1977. 

41. H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of 
modular forms (II), Modular Functions in One Variable V (J.-P. Serre and D. B. Zagier, eds.), 
Springer-Verlag, Berlin and New York, 1977. 

42. J. Wilson, Ph.D. thesis, Univ. of Wisconsin, Madison, 1978. 
RICHARD ASKEY 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 1, Number 1, January 1979 
©American Mathematical Society 1979 
0002-9904/79/0000-0011/$03.00 

Nonlinearity and functional analysis, Melvyn S. Berger, Academic Press, New 
York, San Francisco, London, 1977, xix + 415 pp., $24.50. 

Linear functional analysis evolved as the natural gathering point for a 
number of different investigations into the solvability of linear equations 
which were either in the form of integral equations or in the form of 
countable systems of linear scalar equations in which the unknown was a 
sequence of numbers. As the subject developed much broader areas of 
applicability became evident. These applications, in turn, spawned further 
abstract development, and the abstract results themselves assumed an intrin­
sic interest. The basic approach of functional analysis, where one considers 
functions to be points in a large space of related functions and lets the 
differential or integral operator act on these points, has also been very 
successful in treating nonlinear problems. 

The division between the linear and the nonlinear theory is, of course, not 
so sharp. As we know from calculus, a great deal of information about a 
system of nonlinear equations is obtained from their local linear appro­
ximation. Moreover, it is often possible to glean information about a linear 
problem by considering a related nonlinear problem; this is so strikingly 
demonstrated in Lomonosov's recent results on the invariant subspace prob­
lem for linear operators [5]. 

Berger's aim is to give a systematic treatment of some of the fundamental 
abstract nonlinear results and of their application to certain concrete prob­
lems in geometry and physics. 

The study of nonlinear operators acting on infinite dimensional spaces has 
an obvious starting point-study the finite-dimensional case, a finite system of 
scalar equations in a finite number of unknowns. Even at this step we note 
that a fairly complete description of the solutions would be very difficult; 
when p(x) is a polynomial in a single variable the study of solutions of 
p(x) = 0 is the subject matter of classical algebraic geometry. 

Let n and k be integers, n > 1, k + n > 1 and let 0 be a bounded open 
subset of Rn. Suppose/: 0 ~>RW+A: is continuous. 

If ƒ is one-to-one then k > 0. Moreover, assuming ƒ is 
one-to-one, ƒ (0) is open in Rn+k iff k = 0. (Fl) 


