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Introduction. Simple examples of foliations arise from submersions. Let Mn 

and Nq be smooth manifolds of dimensions n and q respectively, and let ƒ: 
M -* N be a smooth submersion, i.e. rank (dfx) = q < n for all x E M. Then 
the partition of M by the connected components of the inverse images ƒ ~\y) 
for y E N defines a foliation of Af. If the target manifold is further equipped 
with a G-structure in the sense of Chern[CH], where G is a closed subgroup of 
GL(q), then the foliation of M by the components of the inverse images of 
the submersion ƒ is an example of a G-foliation. Since foliations are at least 
locally defined by submersions as explained above, we can think of them as 
relative manifolds. In this view G-foliations are then the corresponding 
relative G-structures. This concept embraces Riemannian, conformai, sym-
plectic, almost complex foUations, etc. In short: the classical geometry of 
G-structures has its relative counterpart in the geometry of G-foliations. 
Much progress has been made in this theory in the past half dozen years 
through the work of Bernstein-Rosenfeld, Bott-Haefliger, Chern-Simons, 
Gelfand-Fuks, Godbillon-Vey, Kamber-Tondeur, Heitsch, Thurston and 
many others. In this lecture we discuss selected topics in the theory of 
characteristic classes which are naturally attached to G-foliations. This theory 
is very much in flux and the present exposition is by no means a survey of 
even this limited field. The aim has rather been to supply a rich variety of 
examples together with the necessary conceptual and computational 
background, so as to show the attractiveness of the subject. 

1. G-foliations and foliated bundles. For surveys on the general theory of 
foliations we refer to Lawson [LI], [L2]. Let M be a smooth manifold. An 

An expanded version of an invited address delivered by the second author before the Meeting 
of the Society in Ann Arbor, Michigan on November 6, 1976; received by the editors 
September 23, 1977. 

AMS (MOS) subject classifications (1970). Primary 57D20; Secondary 57D30. 
'This work was partially supported by grants from the National Science Foundation. 

© American Mathematical Society 1978 
1086 



G-FOLIATIONS AND THEIR CHARACTERISTIC CLASSES 1087 

infinitesimal description of a smooth foliation 5" on M is given by the vectors 
tangent to the foliation. They form a subbundle L c TM of the tangent 
bundle of M which is involutive, i.e. for any two vectorfields X E TL, 
Y ETL(X and Y are (local) sections of L), the bracket [X, Y] e TL. The 
theorem of Frobenius states that any such involutive subbundle L c TM does 
indeed occur as the bundles of vectors tangent to a well-defined foliation, 
namely the f oliation of M by the integral leaves of L. 

The normal bundle Q is the quotient defined by the short exact bundle 
sequence 

0-+L-»TMl>Q^0. (1.1) 

The codimension q of the foliation is the (fiber) dimension of Q. In the case 
of a foliation defined by the connected fibers of a submersion ƒ: M -» N as 
explained in the introduction, the normal bundle Q is the pull-back ƒ* TN of 
the tangent bundle of the target space (q = dim N). It is then visibly a trivial 
bundle when restricted to any leaf. This phenomenon is reflected in the 
general case by the flatness of Q when restricted to any leaf. The flatness of a 
smooth bundle is characterized by the existence of a curvature free 
connection on the bundle. In this vein the partial flatness of Q (flatness when 
restricted to any leaf) is characterized by the existence of a connection which 
is curvature free along the leaves. This is made precise by the Bott connection 
in Q9 defined by 

V ^ =p[X9 Y] for X e TL. (1.2) 

Here s denotes a section of Q and Y a vectorfield projecting to s under/? (see 
(1.1)). The covariant derivative of s is canonically defined only for X e TL9 

i.e. in directions tangent to the foliation. Thus V is a partial connection in the 
sense that it is only defined for certain vectorfields X, but otherwise has all 
the usual formal properties of a connection (see (2.10) in [KT 9]). The flatness 
of this partial connection is characterized by the identity 

VXVY - VYVX - V[XtY] - 0 (1.3) 

for*, Y ETL. 
1.4 DEFINITION. An adapted connection in Q is any (ordinary) covariant 

derivative operator in Q9 which for X GTL reduces to the definition (1.2). 
While the partial connection given by (1.2) is canonically given, an adapted 
connection involves a choice (the existence presents no problem in this 
smooth situation). Thus e.g. the curvature R(X9 Y) defined by the left-hand 
side of (1.3) has no intrinsic meaning for arbitrary vector fields X9 Y on M. 
Its vanishing for X, Y e TL on the other hand is intrinsic. In the same vein 
the holonomy of an adapted connection has no intrinsic meaning. What does 
have an intrinsic meaning is the holonomy of the restriction of Q to any leaf 
F of the foliation. Since Q/F is flat, this holonomy is characterized by a 
representation h: ir^F) -» GL(q)9 the holonomy homomorphism (see e.g. [KT 
I,p.l0]). 

It is convenient to consider the same situation also from the principal 
bundle point of view. An adapted connection in Q corresponds then to a 
connection 1-form <o in the GL(#)-frame bundle F{Q) of Q. The horizontal 
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spaces Hu = ker <ott for u G F(Q) define a subbundle H c T^(Qy If m\ 
F(Q) -» M denotes the projection, then only the subbundle L C TF{Q) 

defined by L„ = Hu n ^"iCZ )̂ for x = TT(W) has intrinsic meaning. ITie 
identity (1.3) translates to the involutivity of L. Thus the intrinsic structure in 
F(Q) is a canonical foliated bundle structure in the following sense. 

1.5 DEFINITION. Let P be a principal G-bundle with projection IT: P-± M.P 
is a foliated bundle if there is_ a G-equivariant foliation L c Tp such that for 
each u G P the intersection Lu n Gtt with the tangent space Gu to the fiber of 
P through u is the 0-space._ 

The G-equivariance of L gives rise to a quotient foliation L = L/G on Af. 
An adapted connection in a foliated G-bundle is then a connection 1-form w 
such that ker <oM D LW for each u G P. This notion again involves a choice 
while the existence poses no problem. The intrinsic structure is also called a 
partial flat connection in P (partial because the direct sum Gu © Lu does in 
general not equal TUP). All this is elaborated in great detail in [KT 9]. These 
concepts were introduced independently by the authors and Molino. 

Let now G be a closed subgroup of GL(q). 
1.6 DEFINITION. A codimension q foliation L c TM on a manifold M is a 

G-foliation, if there exists a G-reduction P of the GL(#)-frame bundle F(Q), 
such that the canonical foliated bundle structure on F(Q) arises from a 
foliated bundle structure on P. 

Recall that P is a G-reduction of F(Q), if F(Q) is the natural extension of 
P under the change of groups from G to GL(q\ i.e. 

F(Q)^PXGGL(q). (1.7) 

A G-equivariant foliation on P gives rise to a GL (#)-equivariant foliation on 
F(Q). The requirement in definition (1.6) is then that the canonical foliation 
L on F(Q) arises in this fashion from a foliated bundle structure on P. Note 
that both foliations on P and F(Q) project onto the given foliation on M In terms 
of adapted connections, this condition means that there is an adapted 
connection with holonomy group in G. 

For the previously discussed example of a foliation defined by a 
submersion/: M-»N, the pullback f*P = P of a G-structure PonJV has 
obviously the desired properties with respect to the bundle F(Q) s ƒ*F(N), 
where F(N) denotes the GL(#)-frame bundle of N. 

To discuss alternate definitions of G-foliations, consider a (l°ca0 
vectorfield X G TL. Any such vectorfield has a canonical lift to a vectorfield 
X G TL on F(Q), its partial horizontal Uft [KT 9, p. 14], characterized by 
TT̂ Â  = Xx for w G i'XôX fl"(") = *• Recall further that a G-reduction P of 
F(Q) is given by a section s: M -» F(Q)/G of the projection F(Q)/G -» M 
in the form P s 5*P(g), the pullback of the G-bundle F(Q)-*F(Q)/G 
under $. 

At this point we need to recall Haefliger's cocycle definition of a foliation 
as follows. A codimension q foliation on M is given by an open covering 
U = m}iei a nd submersions/: Ui ^>Rq for i G ƒ, satisfying the following 
properties. For each / , / G I and x G Uf n Uj there is a local diffeomorphism 
y^ of R* such that fj = yjlft on a neighborhood of x. The cocycle condition 
Y*/ " Y# ° ty? guarantees that the local foliations on the Ut defined by the 
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submersions f piece together to a global foliation. If now Rq is equipped with 
a G-structure, and the local diffeomorphisms y£ are local automorphisms of 
this G-structure, then the corresponding foliation on M is a G-foliation. Rq of 
course has a particular canonical flat G-structure. G-foliations defined by a 
Haefliger cocycle with respect to the local automorphisms of this flat G-
structure are integrable. But every G-foliation (integrable or not) can be 
defined by a Haefliger cocycle with respect to the local isomorphisms of some 
G-manifold. 

Such a G-manifold is constructed as follows (Duchamp [D, 2.4]). Let 
F(Rg) -> R* be the GL(q)-framc bundle of Rq and consider the total space 
N(G, Rq) of germs of C°°-sections of the projection F(Rq)/G-*Rq. Then 
N(G9 Rq) is equipped with a canonical G-structure. 

The following characterizations of G-foliations illustrate then the concept 
from various points of view. 

1.8 PROPOSITION [D]. Let $ be a foliation of codimension q on M, G c 
GL(q) a closed subgroup and P a G-reduction of the frame bundle F(Q). The 
following conditions are equivalent. 

(i) The canonical foliated bundle structure on F(Q) arises from a foliated 
bundle structure of P. 

(ii) There is an adapted connection in F(Q) with holonomy group in G. 
(iii) The section s: M-* F(Q)/G maps leaves of *$ onto leaves of the 

quotient f oliation L/G on F(Q)/G. 
(iv) For every vectorfield X on M tangent to *% the flow of the partially 

horizontal lift X on F(Q) leaves P invariant. 
(v) For every x G M there is an open neighborhood U C M, a q-dimensional 

manifold N with a G-structure P and a submersion f: U-> N with connected 
fibers such that the restriction of ^ to U is defined by the fibers off and such 
that P/U = f*P. Moreover, the transition functions yt* for eachjpair f,fj of 
submersions as above are local automorphisms of the G-structure P on N. 

We explain one more important geometric concept. Let L c TM be a 
G-foliation on M, and co the connection form of an adapted connection in the 
bundle of G-frames P. 

1.9 DEFINITION. An adapted connection is basic, if 

0(*)<o = O for a l l* e TL. 

Here X E TL denotes the partially horizontal lift to P of a vectorfield 
X GTL and ®(X) the Lie derivative along X. 

If the foliation is in particular defined by a submersion f: M-* N onto a 
manifold N with G-structure P, than any connection 05 in the bundle P pulls 
back to a basic connection co in P = f*P, which explains the terminology. We 
have however to point out that this terminology is not universally accepted. 
In fact some authors use the adjective basic for the adapted connections in 
the sense of Definition 1.4. Molino's terminology for these connections is 
protectable, which evokes the same associations as basic. 

In terms of the cocycle description, the existence of a basic connection 
means that the defining pseudogroup consists of local automorphisms of a 
G-structure preserving a connection in that G-structure. The basic connection 
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is locally given as the puUback of that connection via the defining 
submersions. Since the transition functions are connection preserving, the 
connection in P is well defined. 

In the examples of §2, we make use of the following calculus for foliations. 
Let (o be a covariant tensor of degree/? on Q. Then the Lie derivative ®(X)a 
for X E TL is given by the formula 

p 
(@(X)o))(sl9 ...,sp) = Xo)(sv . . . , sp) - 2 <*(s\> • • • > Vxsi> --•>%) 

i * i 

(1.10) 

for $„ . . . , sp E TQ and VXS; as in (1.2). For/? = 1 this formula shows that 
in fact 

(0(*)<o)(s) = Xo>(s) - (o(V^) = (V*<o)(*) (1.11) 

i.e. the dual connection V£ in Q* is given by the Lie derivative. The identity 
@(X) - i(X)d + di{X) implies in view of i(X)u = 0 for X E TL also the 
formula 

V$o) = i(X)dü> for a> E TQ*. (1.12) 

We further need in §2 the Lie derivative of a tensor J on Q which is 
contravariant of degree 1, covariant of degree p. It is given for X E TL by 
the formula 

p 
(®(X)J)(sx, ...,sp) =VxJ(sly..., 5 ) - 2 J(s\> • • • » VA:^ . . . , sp) 

i - i 

(1.13) 

where sl9...9spE. TQ. 

2. Examples. 
2.1 RIEMANNIAN FOLIATIONS. Here the group G = 0(q). These are the 

foliations with bundle-like metrics introduced by Reinhart [RE]. The normal 
bundle Q is equipped with a metric g (fiber metric) such that 

®(X)g = 0 for all X E TL. (2.2) 

Here ®(X)g denotes the Lie derivative of g. This condition is by (1.10) 
equivalent to the identity 

Xg(s91) = g(Vxs, t) + g(s, Vxt) (2.3) 

for X ELTL and s, t E TQ. An equivalent definition of a Riemannian 
foliation is the condition that the transition functions in the cocycle definition 
can be chosen as local isometries of a Riemannian manifold. The metric g is 
locally the puUback of the Riemannian metric on the target via the local 
submersions. A Riemannian foliation obviously admits a basic connection, 
namely the local puUbacks of the Riemannian connection on the target via 
the local submersions (Pasternack [P]). If the model manifold is in particular 
R* with its Euclidean metric, the foliation is an integrable Riemannian 
foliation. 

2.4 SL(Ç)-FOLIATIONS. In this case the natural bundle Q is equipped with a 
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nondegenerate -̂form v E TAqQ* (fiber volume) such that 

Q(X)v = 0 for all X E TL. (2.5) 

By (1.10) this condition is equivalent to the identity 
q 

Xv(sl9..., sq) = 2 v(si> • • > Vxsi> • • • > sq) 

for X E TL and sl9..., sq E TQ. An equivalent definition is that the tran
sition functions in the cocycle description can be chosen as local 
diffeomorphisms preserving a volume on the model manifold. 

2.6 SO (^-FOLIATIONS. These are oriented Riemannian foliations. They are 
Riemannian foliations which are simultaneously &L(?)-foliations. 

2.7 CONFORMAL FOLIATIONS. The conformai group C(q) * 0(q)X R* is a 
subgroup of GL(q) via the map (A, \)^>\A. A conformal foliation is a 
C(^)-foHation. Examples of conformal foliations are e.g. given in [NS] and 
[Y]. 

2.8 SPIN-FOLIATIONS. Here G = Spin(w). Thus it is convenient to allow 
G -> GL(q) to be any homomorphism (not necessarily an inclusion) in the 
definition of a G-foliation. 

2.9 ALMOST SYMPLECTIC FOLIATIONS. These are G-foliations of codimension 
2q, where G — Sp(q) c GL(2q). The normal bundle Q is equipped with 
a 2-form <o E TA ĵg* satisfying 

<ô  ^ 0 , co^+1 = 0 (nondegeneracy), (2.10) 

0(Z)(o * 0 for all X E TL. (2.11) 

By (1.10) condition (2.11) is equivalent to the identity 

Xa)(s, t) « o)(Vxs91) + u(s, Vxt) (2.12) 

for A' E TL and ,̂ / E Tg. An equivalent definition is that the transition 
functions in the cocycle description can be chosen as local automorphisms of 
an almost symplectic manifold. The integrability of an almost symplectic 
foliation is characterized by do) = 0 [D]. 

2.13 ALMOST COMPLEX FOLIATIONS. These are <7-foliations of codimension 
2q9 where G — GL(q9 Q c GL(2q). The normal bundle Q is equipped with 
an almost complex structure J: Q-* Q satisfying 

0 ( * > / » O for all XETL. (2.14) 

By (1.13) this condition is equivalent to the identity 
VxJs = JVxs for X ETL9sE TQ. (2.15) 

An equivalent definition is that the transition functions in the cocycle 
description can be chosen as local automorphisms of an almost complex 
manifold. 

The definition of the Eckmann-Frölicher-Nijenhuis tensor still makes sense 
in the following relative form. For sections s and t of Q9 vectorf ields X and Y 
such that p(X) = s9 p{Y) = t9 and a: Q-+TM a section of the canonical 
projection/?: TM -> Q9 let 

N(s91) = 2p{[oJs9 oJt] -[X9 Y]} - 2Jp{[X9 oJt] +[oJs9 Y]}. (2.16) 
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This definition is independent of the choice of a, and the vanishing of N is 
equivalent to the integrability of the almost complex foUation. Such a 
foUation has a complex structure only in the normal direction. 

2.17 {^-FOLIATIONS. An {e}-reduction of F(Q) is a triviaUzation of 6- Le* 
sl9..., sq be a global frame of Q. L is an {e}-foUation with respect to the 
frame sx,...9sqii 

V ^ - 0 for all XeTL;i-l9...9q. (2.18) 
See e.g. Conlon [CL] for the geometric study of such foUations for q — 2. 

2.19HOMOGENEOUSG-FOLIATIONS [KT9HKT12]. Let G be a Lie group and 
G c G a Lie subgroup. The foliation of G by the (left) cosets of G defines a 
G-foliation with trivial normal bundle QG (trivialized by the (right) G-action 
on G). The G-reduction Pof the frame bundle of QG in this case is the trivial 
G-bundle P = G X G on G. But the canonical foUated bundle structure on P 
is not compatible with this triviaUzation. Namely consider the diagonal 
G-action on P defined by 

( & * ) • * ' - ( « ' , « ' - ! * ) (2.20) 

for (g, g) G G X G and g' G G. The G-orbits of_ this free_action define a 
foliation on G X G, which under the projection G X G-*G maps onto the 
left coset foUation of G. The bundle QG is associated to P via the adjoint 
action of G on the quotient g/g of the Lie algebras of g and g respectively, 
i.e. 

The Bott connection in QG is induced from the foUated structure on P as 
described (see [KT11] for more details). _ 

More generaUy, let J / c G be a subgroup which is closed in G. Then the 
left coset foliation of G by G induces a G-f oliation on the homogeneous space 
G/Hy a homogeneous foUation. The normal bundle of this foUation is 
associated to the G-bundle 

GXHG->G/H. (2.21) 
The canonical foUated bundle structure described above is /f-equivariant and 
passes to this^quotient situation. 

Let T c G in addition be a discrete subgroup operating properly discon-
tinuously and without fixed points onG/H, so that the double coset space 
T\G/H is a manifold. Then the G-invariant homogeneous G-foUation 
induced by G on G/H passes to a G-foliation on T \ G/H> a locally 
homogeneous foUation. The normal bundle of this foUation is associated to 
the foUated G-bundle 

(T\ G) XH G-*T\G/H. (2.22) 

2.23 QUOTIENT FOLIATIONS [KT 9HKT12]. Let P^Xbe a foUated G-bundle. 
The foUation L c Tp defines the foliation I ç = I / G o n J [ = P/G. For a 
closed subgroup G c G there is then defined on Af » P /G a quotient 
foUation LQ = L/G c TM. The projection P-*P/G is itself a foUated 
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G-bundle which we denote P^M. Thus there is a factorization 

P = P - >X = P/G 

\ / 
M = P/G (2.24) 

of the foliated bundle map m into the foliated bundle map m and the 
G/C-fibration m. Let Q, QG and QG denote the normal bundles of the 
foliations L, LG and LG respectively. It is then e.g. clear that QG is an 
extension of QG (lifted to M ) by the bundle tangent to the fibers of TT (see [KT 
12,(2.7)]). 

To interpret the foliation on the normal bundle Q of a foliation on X in 
this fashion, consider the affine frame bundle A(Q) = F(Q) X GL(<7) 4̂ (#). 
The affine group A(q) is the semidirect product GL(q) X R* and A(Q) is 
equipped with a canonical foliated structure. The factorization corresponding 
to diagram (2.24) reads in this case 

A(Q) —+X = A(Q)lA(q) 

\ / 
Q*A(Q)lGL(q) (2.25) 

The quotient foliation on Q corresponds to the leaves defined by the Bott 
connection of Q. 

Another example of interest is the following. Consider an oriented 
Riemannian foliation on X with orthogonal frame bundle P. In the factori
zation 

P >X = P/SO(q) 

\ / 
M = P/SO(q-l) (2.26) 

the fibration w is the sphere bundle of the normal bundle Q with fiber 
SO(q)/SO(q- 1) s Sq'\ 

Returning to the general situation, it is of particular interest when the 
normal bundle QG of the foliation on X js the zero bundle. This occurs 
precisely when the original foliation L on P projects under m onto Tx. This 

means that P^X is a flat bundle, the flat structure being given by the 
foliation L transverse to the fibers. Thus in this case the quotient foliation is 
transverse to the fibers of TT, which is therefore a flat fiber bundle. The 
consideration of such a flat fiber bundle M^X is underlying many of the 
results in [KT 10HKT 12]. If F = G/G denotes the fiber of #, then the flat 
structure is described by the isomorphism 
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M&X XTF, (2.27) 

where X denotes the universal covering of X and V = TT^X) acts on F via a 
homomorphism r -» G. It is clear that this situation can be generalized (and 
it is useful to do so), by replacing G by a or the diffeomorphism group of the 
fiber. We will return to such situations at the end of this paper. 

3. Characteristic classes. The characteristic classes discussed here are all 
defined over the real or complex numbers. The basic underlying observation 
is that the Chern-Weil theory of characteristic classes extends in a functorial 
way to foliated bundles. Applied to the bundle of G-frames, this construction 
produces in particular characteristic classes for G-foliations. The reasons for 
viewing these invariants in the larger context of foliated bundles are the 
following: (i) only in the larger context are these constructions functorial 
(under change of groups, spaces and foliations), (ii) in the larger context 
many more examples are incorporated, which do not fit into the narrower 
framework of foliations. 

To illustrate the second point, consider the following extreme cases of 
foliated bundles. If the foliation L = TM9 i.e. the foliation of the base space is 
the trivial one-leaf foliation of M, then the Definition 1.5 of a foliated bundle 
reduces to the definition of a flat bundle (with flat bundle structure L c TP). 
Our characteristic class construction produces then invariants for flat bun
dles. The other extreme situation is the case where the foliation of M is the 
trivial (0-dimensional) point foliation of Af, i.e. L = 0. The foliation L on P is 
then necessarily also the point foliation of P, and the foliated bundle 
definition reduces to the ordinary (G-bundle) definition. In this case the 
characteristic class construction is the usual Chern-Weil construction. Thus 
the point of the foliated bundle definition is seen to be the fact that the 
foliation on the total space is an extra geometric structure, determining but 
not determined by the foliation on the base space. This extra variable 
provides the flexibility needed for a functorial construction. 

In fact, the characteristic class construction below compares the foliated 
bundle structure on a G-bundle P with another geometric structure on P9 an 
H-reduction P' of P, where H is a closed subgroup of G. We wish to point 
out that this second piece of geometric structure is independent of the foliated 
bundle structure. In fact, the incompatibility of the two geometric structures 
is precisely what gives rise to these characteristic classes. 

The starting point of this theory is the Chern-Weil theory in the form 
presented by Cartan in [CA]. A connection <o in a principal G-bundle P-+M 
defines a Weil homomorphism 

k(ü>):W(Q)^V(P) (3.1) 

into the De Rham complex ti'(P) of global forms on P as follows. On the 
exterior part Afl* in 1V(Q) = Ag* ® Sg* the map k(u>) is simply the multi
plicative extension of the (dual of the) connection form <o: Q* -* Ql(P), 
assigning to a E Q* the 1-form aco. On the symmetric part SQ* the map k(co) 
is the multiplicative extension of the curvature 

fi((o) = dPv> - udA: Q* -> Q2(P). 
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The Weil algebra is equipped with a differential dw (see e.g. [KT 9, pp. 55-57]) 
and k(u) is a homomorphism of Z>G-algebras (differential graded algebras). 
This is not directly of interest in the classical theory, since W(Q) is acyclic. 
The restriction A(co) = &(<o)|I(G) to the Ad-invariant polynomials 

1(G) = (Sf l*)6 

maps into the De Rham complex of Af, viewed in canonical fashion as 
subcomplex of Q'(P). Thus there is a commutative diagram 

W(g) ^ ^ — • n\P) 

U U 

I\G) ^ • Sl\M) (3.2) 

The bottom map h(oi) is the Chern map, assigning to an Ad(G)-invariant 
polynomial $ of degree/? on g* the 2/?-form 

/r(<o)$ = $( Q(<o) A • ' • A Q(<o) ) e Ö^(M) 
* p-factors ' 

where Q A • • • A Q is the S^g-valued/rth exterior product with itself of the 
51g-valued 2-form 2 = G(<o). Since d^$ = 0, the form A(co» is closed. The De 
Rham cohomology class [h(o))<t>] e H$K(M) is the characteristic class asso
ciated to <P. 

If <o is now an adapted connection on a foliated G-bundle, the Weil 
homomorphism k(œ) vanishes on the differential ideal S*+\j*- W(Q) of 
W(g) and thus passes to the quotient 

W(Q)q= W(Q)/S«+1Q* • W(Q). (3.3) 

The integer q is the codimension of the given foliation on the base space. If w 
is a basic connection, q can be replaced by the integer [q/2]. The truncated 
Weil algebra W(o)q (resp. W{ti)[q/2) is not acyclic and thus its cohomology 
H(W(o)q) gives rise to new characteristic invariants. So far only the foliated 
G-bundle structure intervened. If H c G is further a closed subgroup, the 
relative version of this map is a /)G-homomorphism 

k(»)H:W(Q,H)q^V(P/H) (3.4) 

landing in the De Rham complex of the quotient P/H (see [KT 9, Chapter 4] 
for the definition of the relative truncated Weil algebra W(& H)q and more 
details of this construction). An //-reduction P' of P is characterized by a 
section s: M^>P/H of the projection P/H-*M in the form P' a s*P as 
//-bundles. The composition 

A((o) - s* o k{»)a\ W(g, H)q-» Q- (M) (3.5) 

is a Z)G-homomorphism, which on the cohomology level defines the 
characteristic homomorphism A(P)J|e of the foliated G-bundle with its //-
reduction. This construction has the following properties [KT 6], [KT 7], [KT 
9). 
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(3.6) THEOREM. Let IT: P-*M be a foliated principal G-bundle9 H c G a 
closed subgroup and P' an H-reduction of P given by a section s: M-* P/H of 
the induced map it: P/H-> M. 

(i) There is a well-defined multiplicative homomorphism 

A(P),:H(W(&,H)q)->HDR(M) 

where q is the codimension of the foliation on M. A* = A(P)J|t is the generalized 
characteristic homomorphism of P. 

(ii) A* does not depend on the choice of an adapted connection in P. But if P 
admits a basic connection, then 

A(P),: H(W(Q, H)lq/2]) -> HDR(M). 

(iii) A# isfunctorial underpullbacks and functorial in (G, / / ) . 
(iv) Aj is invariant under integrable homotopies. 

This construction applies in particular to G-foliations of codimension q, 
where the bundle P of G-îrames is in addition equipped with an //-reduction. 
For ordinary GL(#)-foliation this additional geometric structure is often 
tacitly assumed to be an auxiliary metric or volume form on Q, i.e. and 0(q)~ 
or SX(#)-reduction. But many other cases of interest occur (see §6). 

It is explained in [KT 9, pp. 71-72] how this construction relates to the 
construction of characteristic classes for foliations by Godbillon-Vey [GV], 
Bott-Haefliger [BH], [H2] and Bernstein-Rosenfeld [BRI], [BR2] on the 
Gelfand-Fuchs complex of formal vectorfields (see also the comments 
towards the end of §7). 

We observe that the ordinary Chern-Weil construction corresponds to the 
situation in Theorem 3.6 when L = 0 and H = G. Since W(& G) s ƒ (G), 
the construction of A(P)J(e reduces to the original definition of Chern. 

The functoriality of A* in (G, H) implies the following. If the foliation of 
the G-bundle P is induced by a foliation of the //-reduction P', then for an 
adapted connection <o in P' and its extension co to P there is a commutative 
diagram 

W(g, M)( 

n(/yzo 

Thus all one possibly recaptures in A* is the ordinary Chern-Weil 
homomorphism of P'. The existence of further non trivial classes in im A* is thus 
a measure of the incompatibility of the two given geometric structures. 

To make this precise, we need besides W(Q, H)q the purely Lie algebraic 
object W(Q9 ï))q associated to the pair (Q, ï)), namely the ï)-basic elements in 
W(&)q (see [KT 9] for more details on these concepts). To compare the two 
algebras for a reductive pair (g, Ï)) of Lie algebras, we assume H c G to be a 
closed subgroup with finitely many connected components. Then the 
component group T of H acts on W(& fyq and commutes with the Weil 
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differential. Thus there is an induced action in the cohomology, and with 
respect to this action we have 

H(W(Q,H)q)^(H(W(Q,D)q))
r (3.7) 

where the superscript T denotes the T-invariant elements in the cohomology 
H(W(Q, fyq). The following statement explains then the obstruction charac
ter of the characteristic classes [KT 6], [KT 7], [KT 9]. 

(3.8) THEOREM. Let P be a foliated G-bundle, H c G a closed subgroup with 
finite component group T and P' an H-reduction of P. Assume (g, ï)) to be a 
reductive pair of Lie algebras. 

(i) There is a split exact sequence of algebras 
K 

0-> 11 T o r f t f l ) ( / ( ô ) , / ^ / ( a V * 0 
- 5 > 0 7(S) 

and the composition A(i>)J|t ° K is induced by the characteristic homomorphism 

h*(P'):I(H)-*HDK(M)ofP'. 

(ii) If the foliation of the G-bundle P is induced by a foliation of the 
H-reduction P', then 

A(P)„| I I Torft8)(/(ï,),/(8)9) = 0. 
- s > 0 

n_J>0Toi/'(fl)(/(ï)), I(o)q) is the algebra of secondary characteristic classes. 

This formulation anticipates the structure theorems for H(W(& fyq) given 
in §5. However before turning to this purely algebraic question, we consider 
in the next section the case q = 0 in more detail. 

4. Flat bundles. A flat G-bundle P -» M is a foliated bundle with L=TM 

on the base space M. The codimension q equals zero. For any subgroup 
H cG 

Wfa H)0^ A(ö/Ï>)*" (4.1) 

is the relative Chevalley-Eilenberg complex of (G, H) with the cohomology 
H(Q, H). The superscript H denotes //-invariant elements under the adjoint 
action. Thus for any closed subgroup H c G and //-reduction s: M-* P/H 
the characteristic homomorphism of the flat bundle is a map 

A(P),:H(Q,H)^HDK(M). (4.2) 

We assume that the group T of components of H is finite. Then we have as 
in (3.7) the formula 

Z f ( ô , / 0 ^ i / ( 8 , ï ) ) r . (4.3) 

The RHS denotes the T-invariant elements in the relative Chevalley-Eilenberg 
cohomology H (Q, fy of the pair (g, ï)). This is the cohomology of the complex 
A(ô/ï))*^ (ï)-invariant elements), on which T obviously acts in differential 
fashion, and thus induces an action in H (g, ï)). 

The determination of H (g, ï)) for a reductive pair (g, ï)) involves the 
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restriction homomorphism /*: /(g)-» 7(g) and the Samelson space P = 
P(g, Ï)) of (g, Ï)). To recall the definition of the latter space, let Pö denote the 
primitive elements of H(Q). Consider the inclusion,/: A(g/ï))*^ c Ag* and the 
induced cohomology mapy*: if (g, ï)) -* H (g). Then 

P = Pfl n imj*. (4.4) 

Cartan pairs (C-pairs) (g, Ï)) are characterized by the identity 

dim P = rank g - rank % (4.5) 

For C-pairs there is a well-known isomorphism (see [CA], [KT 9] and (5.18) 
below) 

#(g , 5) « AP ® 7(Ï))/Id(/*/ (g)+ ). (4.6) 

The factor ƒ (I))/Id(/*7(g)+) is the image of the canonical homomorphism 
7(ï))-*/J(g, ï)). The map A^P)* restricted to this factor in H(Q9H) is 
determined by the usual characteristic homomorphism h+: I(H)-*HDK(M) 
of the H-reduction P'. In case of a surjective restriction /*: 7(g) -» ƒ (ïj) the 
invariants arising from AP are the only invariants occurring. This is the 
situation in several examples below. 

4.7. (G, H) = (GL(m), 0(m)). The restriction homomorphism 

/*: R [ q , . . . , cm] « /(gl(m)) ->R[/?! , . . . ,p[m/2]] C I(Hm)) 

is characterized by 

i*Cy-\ = 0, /*c2y = Pj forj « 1 , . . . , [m/2] , 

where c* and />7 denote the Chern and Pontrjagin polynomials respectively. 
This pair is an example of a Special Cartan pair (see Lemma 5.9 below), for 
which the Samelson space P is the image of ker #* under the suspension map 
a: 7(g)-»Pg. It follows that with the primitive generators yj^oCjE. 
H(Ql(m)) the space P is spanned by yï9y39 •• - ,ym> (m' is the largest odd 
number < m). The group Z2 = ir0(O(m)) clearly does not act on AP. On 
I (3o(m)) it only acts nontrivially on the Pfaffian polynomial em mthp[m/2) — 
e^ in case m = 2n. By (4.3) and (4.6) it follows that for any m 

H(&(m), 0(m)) m A(yx,y39... 9ym). (4.8) 

Since GL(m)/0(m) is contractible, an 0(m)-reduction exists and its 
particular choice does not affect A(P)Jle. The map (4.2) leads then to the 
following result (see [KT 7] and [KT 9, 6.33]). 

4.9 THEOREM. Let P -> M be a flat GL(m)-bundle. There are well-defined 
characteristic classes 

A(P)M e H&1 (M) for i - 1, 3 , . . . , m', nt = 2[m + 1/2] - 1. 

If P is O (myflat, all these classes are trivial. 

Since the flat bundle P is completely characterized by the holonomy 
representation h: n^M)-* GL(m), it would be interesting to determine the 
invariants A ^ , ) from h. For the invariant A^(yx) G H^M) this is done by 
the following formula (see [KT 7] and [KT 9, 6.34]). 
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4.10 PROPOSITION. Let P be a flat GL(m)-bundle with connection form <o. 
Then AJ|t(.Vi) is represented by a closed \-form A(<o)(>>i) on M and 

f*(u)(yx) = - ± log|det A(Y)| for y G ^(M) . 

This formula shows that ^(yx) is nonzero if and only if the holonomy 
representation does not map into the (m X m)-matrices with determinant ± 1. 
In the following situation one obtains a nontrivial realization of the invariant 

4.11 PROPOSITION [KT 10], [KT 9, 6.39]. Let Mm be a compact affine 
hyperbolic manifold. Then for the tangentbundle AJ|t(-v1) is a nontrivial 
cohomology class. 

The hyperbolicity of the affine structure means that the universal covering 
of Mm is affinely isomorphic to an open convex subset of Rm containing no 
complete line (these are noncomplete affine manifolds, see Koszul [K 3]). 

What the formula in (4.10) does is to represent ^(yx) by a cocycle in the 
Eilenberg-Mac Lane cohomology of T = ^i(Af). The question arises how to 
represent more generally characteristic classes of flat bundles as in (2.27) with 
X « BT (classifying space of a discrete group T) as cocycles in the 
Eilenberg-Mac Lane cohomology H(T, R) s HDR(BT). Recently some 
formulas of this type have been found by Dupont [DU] and Bott [B 9], 

4.12 (G, 77) = (GL(m), SL(m)). The restriction homomorphism 

i*: /(fll(m)) » R [ C | , . . . , cm] -» 7(8l(m)) s R [ c 2 , . . . , cm] 

is characterized by i*ct « 0 and P is spanned by yx — acx E H(gl(m)). By 
(4.3) and (4.6) therefore 

H(&(m)SL(m))^A(yx). 

The same formula as above applies for the characteristic class à(P)Jyx) of a 
flat GL(/w)-bundle with an 5L(/n)-reduction. 

4.13 (G, H) - (GL(m, Q, S£(2, Q). Let i: 57,(2, Q -> GL(my Q be an 
injective homomorphism, i.e. a nontrivial representation of SL(2, C) in C". 
Consider the restriction homomorphism 

/*: 7(gl(/n, C)) m C [ c „ . . . , cm] -> 7(81(2, C)) a C[c2]. 

Since 7(81(2, Q)/7(fll(m, Q) + . 7(81(2, Q) is finite dimensional, some 
nonzero power of c2 is hit by i*. Let y be the smallest such exponent, y > 1. 
Then clearly 

i*c2j • \c{ for some A ^ 0. 

Furthermore i*c2k~x = 0 for k « 1 , . . . , [w/2] and for fc >y 

'**2* - h*! - (\t A ) * '*ty * 2̂ "y-

By (5.5) below it follows that oc2k E P for all k ^j and hence the Samelson 
space of the pair (fll(m, Q, /8I(2, Q) is given by 

file:///-form
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where yl is the primitive class corresponding to q. Since 

dim P = rank §l(m9 C) - rank 31(2, C) = m - 1 

it follows that (gl(/w, Q, /êl(2, Q) is a Cartan pair (see (4.5)). It is worth 
noting that if j > 1 and there exists a \k ¥= 0 as above for some k with 
k < 2/, then certainly c2~

j £ im /*. Such a pair is then an example of a 
C-pair which is not a GS-pair (the latter concept is discussed in §5, see 
Lemma 5.9). 

From (4.6) we conclude now that 

H(&(m9 C), fôl(2, C)) « A(yl9... 9y2j9... 9ym) ® C[c 2 ] / {$). (4.14) 

For a flat complex vectorbundle E^>M of fiber-dimension m with an 
5L(2, Q-reduction there are therefore characteristic classes A(£)*0>/) G 
HBR\M) for i ^ 2/. The class A(£,)#(c2) is the second Chern class of the 
SL(29 Q-reduction (its unique nontrivial Chern class), and hence 

c2(E)J= 0. 

Such a situation arises in the theory of deformations of Kâhler manifolds. 
The vectorbundle in question is the cohomology vectorbundle with its flat 
Gauss-Manin connection. 

4.15 (G9 H) = (U(m), 0(m)). With the modified Chern polynomial Cj = 
ijCj we have I{\x{m)) ̂  R[c„ . . . , cm] (see [KT 9, p. 138] for details on these 
normalizations). The restriction map 

ƒ*: I(u(m)) s R [ q , . . . , cm]->R[pl9... 9pim/2]] C /(3o(m)) 

is characterized by 

i*c2J-i = 0, i*c2j - ( - l)y/?y fory - 1 , . . . , [w /2 ] . 

The Samelson space P is spanned by ƒ 1,̂ 3, . . . ,ƒ„,' as before, where now 
yj = a§. Thus by (4.3), (4.6) 

H(u(m)9 0{m)) a A ^ , / 3 , . . . 9ym). 

The map (4.2) leads then to the following result (see [KT 9]-[KT 11]). 

4.16 THEOREM. Let P'-*M be an 0(m)-bundle with aflat U(m)-extension. 
There are well-defined characteristic classes 

A(P)M E HSK1 (M) for i = 1, 3 , . . . , m', m' - 2[(m + l ) /2] - 1. 

This applies e.g. for real vector bundles with a flat complexification. If the 
f/(m)-extension is in particular trivial, the characteristic homomorphism 
A(P)# has the following geometric interpretation. Let g': M-* BO(m) be the 
classifying map of P. The classifying map g: M-+BU{m) of the U(niy 
extension is homotopic to a constant map. Since g is the composition of g' 
with BO(m)-*BU{m)9 it follows that g' factorizes through the fiber 
U(m)/0(m) 
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U(m)/0(m) • BO(m) • BU(m) 

Then A(i>)J|c is the composition 

H(u(m), 0(m)) ^HDR(U(m)/0(m)) ^HDK(M) 

where the first isomorphism is realized by the inclusion of the 0(m)-invariant 
forms into U(U(m)/0(m)). The class A(P)*(yx) of Theorem 4.16 is in this 
case (up to a factor) the Maslov class which enters in quantization conditions 
(see [A] or the appendix to [MS]). 

4.17 PROPOSITION [KT 9]-[KT 11]. Let P'-±M be an O {my bundle with a 
trivial U(m)-extension P, characterized by f: M -* U(m)/0(m). Then the 
Maslov class of P' is the characteristic class — 2AJyx) e H^M). Ifu is the 
connection form of the trivial connection on P, then à+(yi) on M and 

- 2Jtt!>){yx) = deg (det2 • / ( y ) ) for y E *X(M). 

Here y: Sl -» M and/(y): S1 -» U (ni)/O (ni). The map det2 is the map 
det: U(m)-+Sl squared, which factorizes through U(m)/0(m). Thus 
det2 o / (y ) : S1 -» S1 is a mapping of the circle, of which the RHS takes the 
degree. 

4.18 (G, H) « (SO(2m)9 SO (2m - 1)). The restriction homomorphism 

i*: I(Zo(em)) s R [ ^ , . . . fPm_l9 em]->I($o(2m - 1)) s R[Pl,... ,/,„_,] 

is characterized by i*em — 0 for the Pfaffian polynomial em (e\ = pm), and 
thus 

H(%o(2m)9 SO (2m - 1)) s A(aem), 

where aem is the suspension of em. It follows that the only interesting class of 
a flat S'0(2m)-bundle with SO (2m - l)-reduction is &*(oem). The following 
situation illustrates this (see [KT 9]-[KT 11]). 

4.19 THEOREM. Let h: M 2 m ~ l -*R 2 m be an isometric immersion of the 
compact oriented Riemannian manifold M. The SO (2m - 1)-frame bundle P' 
of M has a trivial SO (2myextension. Then the characteristic class à^(oem) E 
#DR~ l(M) can be evaluated on M and 

N(h) = ( - l)m . 22<"-»><A,(aO, [M]> (4.20) 

where N(h) is the normal degree ofh. 

The numerical factor on the RHS of (4.20) was misstated in [KT 9]-{KT 
11]. This formula is to be contrasted with Hopfs formula for the normal 
degree of an immersion h: M2m -*R2" ,+I, which states that N(h) = \x{M\ 
where x(M) is the Euler number of M. Hopfs formula is of a primary nature 
and valid for any immersion, whereas (4.20) is of secondary nature and valid 
only for isometric immersions. Theorem 4.19 is of course very much in the 
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spirit of the invariants defined by Chern-Simons [CS]. 
4.21. A situation of considerable interest is the following. Let K c G be a 

maximal compact subgroup of a Lie group G and consider the flat (7-bundle 
G XKG= G/K XG-* G/K. (4.22) 

The flat structure is induced by the diagonal action of G (see 2.20). This 
bundle is obviously the canonical (^-extension of the ^T-bundle G -» G/K, 
which hence is a ^-reduction of the flat G-bundle. Let Y c G be a discrete 
uniform subgroup operating properly discontinuously and without fixed 
points on G/K, so that the double coset space Y \ G/K is a manifold. By 
Borel [BO] such a Y exists if G is connected semisimple with finite center and 
no compact factor. The flat G-bundle 

P = ( r \ G ) X J f G s G/K XrG-+M = Y\G/K (4.23) 

on the Clifford-Klein form T\G/K of the noncompact symmetric space 
G/K is then canonically equipped with a reduction to the ^-bundle Y \ G -* 
T\G/K. The characteristic homomorphism 

A(P).:H(Q,K)-+HDK(M) (4.24) 

is then well defined. Since G/K is contractible, it follows that the Clifford-
Klein form M is a classifying space BY for the discrete group Y: M ĉ  BT. 
Therefore H(M) s H (BY), which is the cohomology H (Y) of the discrete 
group T. The inclusion a: Y c G induces a map Ba: BY -» BG of classifying 
spaces. The ^-bundle P': Y \ G -» Y \ G/K is classified by a map g': M-» 
BK. Since for compact K the universal characteristic map h+: I(K)-> 
H(BK) is an isomorphism, the map g'*: H(BK) -> H(M) can be identified 
with the characteristic homomorphism of P'. Let similarly hjfi, K): H(BK) 
-» H (g, K) be identified with the characteristic homomorphism of G -* G/̂ T. 
Then there is the following commutative diagram ([KT1, (4.18)]) 

H(BG) 

HÇT) s #(M) • #(fl, tf) (4.25) 

The isomorphism H(BG) -*H(Bk) is a consequence of the homotopy 
equivalence Ko* G. Note that the map A(P)J|{ is induced by the canonical 
inclusion 

(AQ*)K-+V(T\G/K) 

so it really is a tautological map. Diagram 4.25 relates the existence of 
nontrivial classes under A(P)J|t with the existence of nontrivial classes under 
the map Ba*. The following result is in particular useful for the detection of 
nontrivial characteristic classes of quotient foliations as described in 2.23 (see 
e.g. [KT 6\, [KT 7], [KT 11]). Its proof is based on Lemma 4.21 of [KT 1]. 

4.26 THEOREM. Let G be a connected semisimple Lie group with finite center 
and containing no compact factor, K c G a maximal compact subgroup and 
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r c G f l discrete, uniform and torsion-free subgroup. Then the generalized 
characteristic homomorphism 

of the flat bundle 

P = T\G XKG^ G/KXTG-*T\G/K 

is infective. 

We proceed to give a more geometric interpretation of these classes. Let Gc 

be the complexification of G and I / c G c a maximal compact subgroup. 
Then 

H(Q9K)^H(U,K)^H(U9K) 

so that the elements of H (g, K) can be realized by cohomology classes of the 
compact space U/K (whereas G/K is contractible). A typical example is 
G = SL(n9 R) with complexification SL(n, Q . In this case K =* SO (n) and 
U = SU(n). The map A(P)J(e is then realized on the cochain level by the map 

y:(Au*)K-+Q(T\G/K) 

which is exactly Matsushima's map constructed in [MT]: an invariant form 
on U/K is characterized by an element in (Au*)^, which canonically defines 
an element in (Ag*)^, which in turn defines a G-invariant form on G/K, 
hence a form in Ö(r \ G/K). Since both the form we start with and the form 
we end up with are harmonic, this map realizes the induced map on the 
cohomology level, and the injectivity in cohomology is obvious. 

For an interpretation of the map A(i>)Jlt as a generalized proportionality 
map between the characteristic classes of the vectorbundles on T \ G/ K and 
U/K associated to a ^-module we refer to p. 22 of [KT1] and p. 92 of [KT 9]. 

5. Universal characteristic classes. The algebra H(W(Q, H)q) plays the role 
of an algebra of universal characteristic classes for foliated G-bundles P^>M 
with q the codimension of L c TM and equipped with an if-reduction. Its 
role is analogous to the role of the cohomology algebra H(BG) of the 
classifying space BG for ordinary G-bundles. In case a basic connection 
exists, the relevant algebra is H(W(Q, H\q/2])-

The relation between the algebra H(W(Q, H)k) associated to the pair 
(G, H) of groups and the algebra H(W(& i))k) associated to the pair (g, ft) of 
Lie algebras is explained in (3.7). In this section we discuss the purely 
algebraic problem of the computation of H(W(& ï))*) for reductive pairs 
(g, ï)) and any integer k > 0. The algorithm presented here is based on [KT 5], 
[KT 7], [KT 14], [KT 15]. A detailed account in the natural context of 
g-Z)G-algebras can be found in [KT 16]. Applications of these results to 
G-foliations are then discussed in §§6 and 7. 

Let (g, Ï)) be a reductive pair of Lie algebras over the groundfield K of 
characteristic zero, with inclusion map i: ï) c g. The suspension map a: 
J(g)+ -» #(ô) has as image the space of primitive elements PQ c #(g) and 
ker a = (ƒ(g)+)2. Let rg: PQ -> /(g) denote any transgression (a ° T8 * id)* 
Then V * rQPQ c /(g) represents the space of indecomposable elements and 
it is well known that 5 ( K ) ^ 7(g), where S(V) denotes the symmetric 
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algebra over V. We have further for the relative cohomology of (g, ï)) the 
isomorphism [CA] 

/7(g,ï» s # ( A P ® ƒ(*>)). (5.1) 

The differential on the RHS is characterized by d = 0 on ƒ (ï)) and 
d{y ® 1)= - 1 ® i*r%y for y G P - Pg. 

Consider the commutative diagram 

J(B)-^-*JÖ)—*-*«&*) 

(incl)* 

H(AP®I(f))) (5.2) 
This sequence is exact at I Qj) in the sense that 

kerA, = Id(i*/(g)+). (5.3) 

Furthermore 

kery* D V 0 » + - (5.4) 

Using (5.2), the Samelson space P as defined in (4.4) can also be character
ized by 

P - [ y G / y / * V = 2 i*rg^ - fc>% G P , ^ 6 /(ï))+ } . (5.5) 

We will need the following condition on the pair (g, Ï)): 

Pcaker(/*: / (g)->ƒ(!))) . (5.6) 

By (5.5) the reverse inclusion always holds and therefore (5.6) is equivalent to 
P * a(ker /*). Also (5.6) is equivalent to the condition: 

there exists a transgression rg such that 

TeP c ker f*. (5.7) 

It follows from (5.3) that 7(ï))/Id(/*/(g)+) c H (g, \j) and hence 
/(ï>)/Id(i*/(g)+) is finite dimensional. From this one concludes that the 
deficiency 

d = rank g - rank f) - dim P (5.8) 
of (g, Ç) satisfies d > 0. A Cartan pair (C-pair) (g, Ij) is by (4.5) a reductive 
pair satisfying d = 0. A slightly more restricted class of reductive pairs has 
been introduced in [KT 5], [KT 7], [KT 9]. A special Cartan pair (CS-pair) is a 
reductive pair satisfying one and hence both conditions in the following 
lemma. 

5.9 LEMMA. Let (g, ïj) be a reductive pair of Lie algebras. The following 
conditions are equivalent: 
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P = a(ker/*) and d = 0 (5.10) 

Id(rfli
> ) = ker /* for some transgression rQ. (5.11) 

Many of the familiar reductive pairs are CS-pairs, e.g. all the symmetric 
pairs. For an example of a C-pair which is not a GS-pair, see (4.13). 

In the following we denote by Âk, k > 0, the Z)G-algebra 

Âk-AP®I(Q)k (5.12) 

with differential characterized by dj(y ® 1) = 1 ® rQy for y E P and 
d^{\ ® <f>) = 0. If P denotes a complement of P in P, we also have a 
decomposition F = V © F, TQP = V, rQP = K of the space F of inde
composable elements.A Since the canonical̂  map /(g) S S(V) ® S(V)-> 
H(Âk) is zero on Id(F), it follows that H(Ak) is canonically a module over 
7(g)/Id(F) s 5(F). The principal structure theorem for H(W(Q, fyk) can 
now be formulated. 

5.13. THEOREM. Let (g, Ï)) be a reductive pair of Lie algebras over a 
groundfield K of characteristic zero, and k > 0 an integer. 

(i) There is a canonical isomorphism of algebras 

H{W(Q, &)A) « Tor/(8)(/(ö), ƒ (g),). (5.14) 

Moreover, Toi/'(g)(/(ï)), /(g)*) = 0/or — 5 > rank g — rank ï). 
(ii) There is a canonical isomorphism of algebras 

H(Âk)^Torl(a)(S{V),I{Q)k). (5.15) 

(iii) Assume that if k > 0, the pair (g, ï)) satisfies (5.6), i.e., P C a(ker /*) 
(AW assumption is necessary for k = 0). Then there exists a multiplicative 
spectral sequence 

E? = ToiJ^)(/(W, # ( i * ) ) => #* + ' (W(fl, *>)*), (5.16) 

whose nonzero terms E^ are in the range 0 < — s < d. 

5.17 REMARK. For the graded Tor-functor we use the same degree 
conventions as in [BA], i.e. 

Tor = U Tor*' 
s < 0, / > 0 

so that e.g. in (5.14) we have 

H'(W(a,1i)k)» I I Tortf8)(/(I,),/(8),). 

Theorem 5.13 still holds for k = 00 with W(Q, ï))*, = W(Q, t)). In particular 
H(ÂJ s S(V) and H(W(& ï))) « /ft). For Â; = 0 we have W(g, ï))0 « 
A(g/ï))*^ and 4̂0 = A A In this case we obtain the following consequence. 

5.18 COROLLARY. Let (g, ï)) te a reductive pair of Lie algebras. Then 

d 

# ( g , ï ) ) s A / > ® /( ï>) /Id(/*/(g)+ )0 IJ TorJ(0(/( ï)) ,^) 
- 5 = 1 

(5.19) 
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The deficiency d of (5.8) is characterized as the largest integer for which 
Tor5(K)(/ (ï)), K) ^ 0. In particular (g, ï)) is a C-pair (d = 0) if and only if 

Tor£(K)(/(Ï)), K) = 0 / o r - j > 0 . 

This is a well-known result going back to Cartan-Koszul [CA], [K2] and 
Baum [BA]. 

5.20. COROLLARY.//"(g, !)) is a CS-pair, then 

H(W(Q, Ï»J ^ H(Ak) ®m /(*)• (5.21) 

In the remainder of this section we explain how part (ii) of Theorem 5.13 
leads directly to an explicit computation of H(Âk). 

Let r = rank g and choose generators c, (i = 1 , . . . , r) so that /(g) s 
K[cl9..., cr]. For the case g = gl(r, # ) the c/s are the Chern polynomials. 
In the general case we assume that the polynomials c, are ordered by 
increasing degree, i.e. deg c, < deg ck for i < k. 

Let yl9... ,JV be the basis of P such that ƒ/ transgresses to c^ (a, 
< • • • < a,). For Ï) = 0 in particular P = P, r' = r and a7 = / for all /. With 
these notations we have 

Ak = A(yx,...,JV) ® tf[c„..., c,]k (5.22) 

with differential characterized by dyt = ĉ , rfc, = 0. We use the following 
conventions: 

^O) = A A • • ' Ayis for (/) = ( / „ . . . , / , ) , 1 < / ! < • • • < / , < r'(s>0); 

j> ( l )=l for ( / ) = 0 (5 = 0); 

c 0 ) = c{' • • • d; for (J) = (y„ . . . Jr\ 0 < .̂; 
r 

2p = deg c0 ) = 2 7/ deg c,. 

Define the subspace 

Z-* C A ^ i , • • • , JV) ® *[c„ • • •, <|* (5.23) 

as the space generated by the monomials cochains 

*</,/>-.K<0®cU> (5-24) 

satisfying the conditions 
0<2p <2k, 0 < s < r'; (5.25) 

deg c^ - deg^ + 1 > 2(* + 1 - p) if (/) ^ 0 (5 > 0); (5.26) 

^ = 0 for / < / 1 , if ( / ) ^ 0 and (f. 2 ? ) 

y^ = 0 for all/, if ( i ) = 0 . 

It is clear that the z(iJ)
9s are cocycles and therefore dZ ~~' = 0. The sum 

Zk = U^0Z ~s is a subalgebra of Ak. The products of monomial cocycles z(iJ) 

satisfying j > 0 for some 1 < / < r' are zero. Thus we have an induced 
homomorphism of algebras 
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Zk^H(Ak). 

5.28. THEOREM. The subalgebra Zk c Ak induces an isomorphism 

Z* - H(Âk), 

i.e. the monomial cocycles z(iJ) satisfying (5.25) to (5.27) form a linear basis of 
H(Âk). 

PROOF. We filter the complex Âk by the graded subspaces X\m) = 
lÇo*(m) with A-(-J = A,0>„ . . . , ym) ® K[cv . . . , cr]k, and denote Z("J = 
Z ' n Ximy Clearly X{m) is a differential filtration of Ak satisfying X^ = 
K[c» • • • > cr]k, X(m) c X(m+l), X^ - i * and A"(~J * 0 only for 0 < s < m. 
Consider the commutative diagram 

i . i . i 
* Z ( m - l > * Z ( m - 1 ) > Z { m ) ¥ Z(m-1) V ' 

where -c^ denotes multiplication with c^ and the maps i and the vertical 
maps are given by inclusion. The mapym: X^-^X^+x] is determined on 
monomials by 

Jm(yix A • • • A^. t Aym ® cU)) « ^ A • • • An. , ® cw 

if a factor ^m occurs and by 0 otherwise. The top-sequence is exact by 
standard arguments from the homology theory of rings [CE, Chapter VIII, 
§4]. Using conditions (5.26) and (5.27) it is immediately verified that the 
bottom sequence is also exact. Clearly Zf*m) » H°(X\m)) a 
K[cx,..., cr]k/(cai,..., c^). By induction over a lexiographical ordering of 
the pairs (s, m), 0 < s < m, and by the 5-lemma we conclude from (5.29) 
that 

Zfm)^ H~'(X\m)) 

for 0 < s < m, 0 < m < r'. In particular 

Zk « H(X\n) - H(Âk) 

as was to be proved. • 
If the pair (g, ï)) satisfies condition (5.6), we can invoke part (iii) of 

Theorem 5.13. Together with Theorem 5.28 we conclude that the higher 
differentials di9 i > 2, in the spectral sequence (5.16) are zero and obtain the 
following result. 

5.30 THEOREM. Let (g, Ï)) be a reductive pair of Lie algebras satisfying 
condition (5.6). Then there is an isomorphism of graded algebras 

H(W(& *)J » Tors(f>)(/(ï)), Zk). (5.31) 

In particular, (ƒ (g, f)) is a CS-pair, we have 

H(W(Q, Ï))J « Zk ®s(y) ƒ ft). (5.32) 

In the applications of §§6 and 7 we consider only examples of GS-pairs. It 
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might be interesting to find geometric applications involving non-GS-pairs, 
whose higher Tor-classes in (5.31) are realized in a nontrivial way. 

6. Examples. In this section we return to G-foliations of codimension q and 
discuss their characteristic classes. If the normal bundle Q is equipped with 
an //-reduction, the characteristic homomorphism is by Theorem 3.6 a map 

A(g) , : H(W(& H)q) -> HDK(M). (6.1) 

If Q admits a basic connection, then the truncation index q can be replaced 
b y k / 2 ] . 

Since every G-foliation of codimension q is also a GL(#)-foliation, there is 
by the functoriality of A* a commutative diagram 

Up) ^ # D R M (6.2) 

ma, mqr 
where p* is induced by p: G c GL(q). While the kernel of p* consists of 
classes which are trivial for all G-foliations (equipped with an //-reduction), 
the classes not in the image of p* are genuinely new for G-foliations. 

In all examples below, the pair (g, fy is reductive and satisfies the condition 
CS, i.e. one of the equivalent conditions of Lemma 5.9. The component group 
T of H is assumed to be finite and then we have the situation explained in 
formula (3.7), i.e. 

H(W(& H)k) ^ H(W(& Ï)) ƒ • (6.3) 

This reduces the problem of the computation of H(W(Q9 H)k) to the purely 
algebraic problem discussed in §5. The algorithm of §5 is summarized as 
follows; The restriction homomorphism 7(g) -» I (ï)) determines the Samelson 
space P of (g, ï)). Let Ak be defined by (5.2) resp. (5.22). By (5.21) then 

H(W(&i))k)^H(Âk)®IiQ)I$). 

Let Zk c Ak be the subalgebra defined by the cocycles z{iJ) of (5.24) subject 
to the conditions (5.25) to (5.27). Then Zk s H(Ak) which leads to the 
formula (5.32) 

H{W{^)k)^Zk®s{y)I$). 

This algorithm leads in many cases to an explicit determination of 
H(JV(& H)k), as we are now going to show. 

6.4 (G, H) - (GL(q), 0(q)). In this case 

Aq = A(yl9 ƒ 3 , . . . ,yq) ® R[c„ . . . , cq]q (6.5) 

where yt is the primitive generator corresponding to cf and q' the largest odd 
integer < q. This follows from the description of the restriction 
homomorphism in 4.7. For an alternative calculation of Zq in this case by 
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Vey see [GB]. The class yx ® cf is the celebrated Godbillon-Vey class, for 
which the first nontrivial realization was given in [GV]. 

In the absolute case, i.e. (G, H) = (GL(q)9 {e})9 the relevant complex is 

K = A(yl9y2, ...9yq)®R[cl9...f cq]q (6.6) 

i.e. all primitive generators^, occur (P = P). 

6.7 (G, H) = (GL(q), SO(q)). The complex Aq is still given as in formula 
(6.5). The difference with the previous case resides in I(8o(q)). By (5.21) we 
have 

H(W(tf(q),SO(q))q)~ 

and the formula 

H(Aq) for, = 2 . - 1 , 

H{Âq)[er]/{c2r-eî) îorq = 2r 

H(W(Ql(q), 0(q))q) a H(W(Ql(q), SO(q))qf 

with the obvious action of Z2 via er in case q = 2r, and the trivial action for 
q = 2r - 1. It follows that for both parities of q the LHS is given by H(Âq). 

6.9 (G, H) = (GL(q)9 SL(q)). From the description of the restriction 
homomorphism in 4.12 it follows that 

Âq = A(yl)®R[cl,...,cq]q. (6.10) 

The Godbillon-Vey classy, 0 cf comes already from this complex under the 
canonical map induced by (GL(q)9 SO(q)) -» {GL{q)9 SL(q)). It follows that 
the nontriviahty of the Godbillon-Vey class MiQ)J,yx ® cf) G H%£\M) 
for a codimension q foliation with normal bundle Q on M obstructs a 
GL(#)-foliation from being a SX(#)-foliation. This is its geometric signifi
cance. 

6.11 ORIENTED RIEMANNIAN FOLIATIONS (see 2.1). We assume that the 
normal bundle Q is trivial, so that (G, H) = (SO(q)9 {e}). Since there exists 
a basic connection in Q9 the relevant truncation index is [q/2]. Since 

I(SO(2r-l))^R[pi9...9pr„x]9 

I(SO(2r)) s R[Plf... ,/>,_„ e,]9 e
2
r = p, 

we have to distinguish cases according to the parity of q. 
Let yt (i = 1 , . . . , r — 1) be the primitive generators of degree 4/ — 1 

corresponding to the Pontrjagin polynomials pt and assume q = 2r — 1. Then 
H(W($o(2r — l))r_!) is the cohomology of the complex 

A(* , • • • ,JV-i) ® ROi> • • • ./V-i],-i- ( 6 1 2 ) 
For q = 2r there is a further primitive generator x of degree 2r — 1 

corresponding to the Pfaffian polynomial er The algebra / / (W(êo(2r)),.) is 
the cohomology of the complex 

ACvj,.. . 9y,-l9 x) ® R[pl9... ,/>,_!, er]r. (6.13) 

6.14 REMARK. For an oriented Riemannian foliation with trivial normal 



1110 FRANZ W. KAMBER AND PHILIPPE TONDEUR 

bundle the classes arising from the complex A[q/2] for the pair (GL(q), 0(q)) 
or (GL(q), SO(q)) are trivial by functoriality. On the other hand the complex 
A[q/2] for GL(q) is of the form 

A ( ^ i , . . . , j ^ ) ® R [ c l f . . . , c ^ / 2 ] . 

The primitive generators^, G H(Ql(q)) corresponding to the c/s are barred to 
distinguish them from theyt corresponding to them's in (6.12). But clearly p: 
SO (q) c GL(q) induces the map 

p*yn-i = o, f>*yn = ytt P*^2/-I = o, P*^2I - / v 
Thus p*: H(W(Ql(q)\g/2])^H(W(Zo(q))[q/2$ has a large kernel, and is 
certainly not surjective for q = 2r. 

6.15 5L(^)-FOLIATIONS (see 2.4). For the pair (SL(q), SO(q)) we have 

Aq = A(j>3,y5,... ,yq) ® R [ c 2 , . . . , cq]q (6.16) 

where q' is the largest odd integer < q, and by (5.21) 

H{W(èl(q),SO(q))q)* 
rH(Âg)îotq = 2r-l, 

[#(4)[<]/(^-«,2)for* = 2r. (6.17) 

For the pair (SL(q), {e}), i.e. SZ(#)-foliations with trivial normal bundle, 
H(W($i(q))q) is the cohomology of the complex 

Hy^y^ • • • >yq) ® * [ * * • • • > <*]«• ( 6 1 8 ) 

6.19 CONFORMAL FOLIATIONS (see 2.7). For the pair (C(q)9 0(q)) we have 

Aq - A(z) ® R [ ^ , . . . ,p[q/2]] ® R[c]. (6.20) 

Here I(c(q)) » /(3o(#)) ® R[c] and z is the suspension of the Chern 
polynomial c given by the trace function. 

6.21 ALMOST SYMPLECTIC FOLIATIONS (see 2.9). These are foliations of 
codimension 2q. To evaluate H(W(§>p(q), U(q))2q) we need to describe the 
restriction homomorphism ƒ(§£(#))-» I(u(q)). Note first that I(u(2q))2& 
R[cl9..., c2q] with the normalization for the Chern polynomials Cj as in [KT 
9, 6.20]. The symplectic Pontrjagin polynomials ej in I (%p(q)) ss B[el9 ...,eq] 
are given by the formulas e}, » (—iy/*c^, where i* is the restriction 
homomorphism associated to the inclusion §>p(q) c u(2q) (and i*c2j_x = 0). 
With these notations the map 

p*: /(£*)(?)) « R[el9..., eq] -* ƒ (u(?)) s R[cl9 ..., cq] 

is then characterized by 

P**,= 2 (-1)*%. 
#+y*2* 

p* is injective, which implies P = 0 and 

^ = i*I>i> • • • > *2*L*- (6-22) 
From (5.21) it follows finally that 
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( vdeg>2* 

2 <-i)*% (6-23) 

where the divisor on the RHS is the ideal generated by the polynomials of 
degree > 2q of the form indicated. 

For almost symplectic foliations with trivial normal bundle the cohomology 
H(W (%p(q))2^ is the cohomology of the complex 

A(yl9...9yq)®R[el9...9eq]2q (6.24) 

where the y{ are the primitive generators corresponding to the et. 
6.25 ALMOST COMPLEX FOLIATIONS (see 2.13). Here the groundfield is C and 

G = GL(q, Q. The truncation index is the real codimension 2q. Let GR 

denote the underlying real Lie group of G = GL(q, Q with real Lie algebra 
ÖR. Then H(W(Ql(q, QR, U(q))2q ® C) is the cohomology of 

Â2g - A(y", •. • ,y;) ® C[cJ, . . . ,<£; c f , . . . , c%]2q. (6.26) 

To explain the notations, let QR ® C s g+ © g~, so that over C 

I(BR ® C) s ƒ (ô+) ® ƒ (0~) . C[c ! + , . . . , c*; c f , . . . , c" ] . 

Define 

9' = i(9+ + ^)' ï-JiV-'f) (6-27) 
and let yj,yj' be the primitive generators corresponding to cj, cf respectively. 
Since under the restriction I (ol(q9 QR) -> I(u(q)) the <ƒ vanish and generate 
the kernel, the formula (6.26) follows. 

If the almost complex structure on the normal bundle Q is integrable 
(characterized by the vanishing of the relative Eckmann-Frölicher-Nijenhuis 
tensor N of (2.16)), the characteristic homomorphism is defined on 
H((WC(Q+ ® (T)M)tffo))» the cohomology of the complex 

A„ = A(yï,... ,>£) ® C[c+, . . . , c ; ] f « C [ c f , . . . , cq]q. 

These classes measure the incompatibility of the foliated structure of the 
complex frame bundle of Q with a Hermitian metric on Q. 

6.29. For G-foliations it is desirable to incorporate also the affine structure 
into the construction of characteristic classes. This has been done by 
Duchamp in [D]. Consider the affine framebundle of a (7-foliation with 
structural group AG(Rq) = C x R ? (semidirect product). It is a foliated 
bundle and thus the characteristic homomorphism is well defined. The Weil 
algebra WXaG(R*)) is the semidirect product of W(Q) and W(Rq). The Weil 
homomorphism of an adapted affine connection involves on the factor W(Q) 
the connection form and its curvature, and on the factor W(Rg) the torsion. 
The Weil homomorphism has then additional truncation properties allowing 
the definition of additional characteristic invariants. This method is particu
larly successful for G-foliations defined by tensors and leads to a variety of 
new characteristic classes for such foliations. 

A typical application to oriented Riemannian manifolds is as follows. 
There is an invariant, A+(A^), expressible in terms of the curvature and local 
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framings of M, which gives information about complementary foliations on 
M. Suppose % and % a r e t w o transversal, oriented, complementary 
foliations on M and Sj is a regular, codimension-2# foliation with flat leaves. 
Then all leaves of % have the same volume, vol(5j), and the following 
formula holds [D]: 

i ^ ^ A ( A , ) = v o l ( ^ ) - X ( M A ) 

where x(M/^\) is the Euler characteristic of the leaf space M/%. 

7. Homogeneous foliations. In this section we discuss characteristic classes 
of homogeneous <7-f oliations. For the foliation of a Lie group G by the left 
cosets of a subgroup G c G the normal bundle QG is trivial (see 2.19). The 
characteristic homomorphism is therefore a map 

A(QG).:H(W(Q)q)-»HDR(G), 

where the codimension q equals dim g/g. The computation of &(QG)* re
duces then to a purely Lie algebraic problem [KT 11]. For compact G the 
coset foliation is Riemannian and the truncation index can be replaced by 
[q/2]. On a purely Lie algebraic level the property giving rise to this stronger 
truncation is the reductivity of the pair (§, Q). 

Consider e.g. the case (G, G) = (SO (2r + 1), SO (2r)). Here q = 2r is the 
dimension of the quotient sphere. Let yl9..., yr be the primitive generators 
of H(SO(sr + 1)) corresponding to the Pontrjagin polynomials in 
I (eo(2r + 1)). Then we have the following result. 

7.1 THEOREM [KT 9, 10], [KT 11, 6.52]. Let Qsoi2r) be the normal bundle of 
the foliation of SO(2r + 1) by the left cosets ofSO(2r) with quotient S2r. The 
image of the generalized characteristic homomorphism 

KiQsoOry): H(W(Zo(2r)r)) ^H(SO(2r + 1)) s A( /„ . . . , y r ) 

is spanned by the linearly independent classes 
A*(*(o) = 9ix A • • • A n Aiv» C7-1) 

where z(i) = yh A • • • A ^ A x ® er G W(%o(2r))r for 1 < i, < • • • < /, 
< r — 1, 0 < j < r — 1, am/ 

A,(A, A • • • /\yka ® 1) =ƒ*, A • • • A J V 

w/iere [r/2] + I < k{ < > - * < fca < r — 1. In particular 

im A,(ÔW(2r)) - Id(jv) 0 A(JV2]+i , . . . Jr-x) C / / (S0(2r + 1)) 

dim(im A,,) = 2r~x + 2 I ( r" l )/21. 

It follows that A C g ^ ^ * is surjective if and only if r = 1. 
Another example is the case (G, G) = (51/(r + 1), U(r)). Here £/(r) is 

realized in SU(r + 1) by the matrices 



G-FOLIATIONS AND THEIR CHARACTERISTIC CLASSES 1113 

A 
0 

0 
A"1 

with A E t/(r), A = det A. The target of the characteristic homomorphism is 

H(SU(r+l))^A(y29...,yr+l), 

where the primitive generators j ^ •••>£+! correspond to the Chern 
polynomials c2,..., cr+l in 7(êu(r + 1)). The algebra H(W(u(r))r) is real
ized by the complex 

AO>i, ...,JV) ® R [ c ! , . . . , c r ] r 

in the by now standard fashion. The following result holds in this case. 

7.2 THEOREM [KT 9], [KT 10], [KT 11, 6.49]. Let Qu{r) be the foliated 
complex normal bundle of the foliation of SU{r + 1) defined by the right action 
°f U(r) with quotient space PC. Then the image of the generalized characteris
tic homomorphism 

KiQu(ry): H+ (W(u(r))r) -»H+ (SU(r + 1)) ^ A+fo . . . , y r + l ) 

is spanned by the linearly independent classes 

*•(*(/>) - W, A • • • A n A JV+i> 

where z{i) - yx f\yix A • • • A JY ® cf G IF(u(r))r/or 2 < ix < • • • < /, < 
r, 0 < 5 < r - 1 onrf ic - ( - 1 ) ^ 1 • (r + l)r+1. Inparticular 

im A : ( Ö ^ ) ) = Id(/r+1) C / / + (Stf (r + 1)). 

It follows that 

dimimA(Ö(/(r))^=2r""1. 

Note that dim H(SU(r + 1)) = 2'. 
Further example of characteristic classes for Riemannian foliations have 

been calculated by Lazarov-Pasternack [LP 1]. 
Another interesting class of foliations is obtained in the following way. We 

begin with a connected semisimple Lie group G with finite center and no 
compact factor, and a maximal compact subgroup KQ. For a discrete uniform 
and torsion free subgroup r c C w e have then the flat bundle 

P = (r \ G ) X^_ G a G/KQ Xr G (7.3) 

on thê  Clifford-Klein form X = Y \ G/KQ of the noncompact symmetric 
space G/KQ (4.23). Observe that the isomorphism in (7.3) isjnduced by the map
ping <p: G x Gj-* G xG defined by y(gf g) = (g, gg),gf g £ G. 

Let G c G be a closed connected subgroup with maximal compact 
subgroup KG. Assume that the canonical map 

KQ/KQ^G/G _ _ (7.4) 

is an isomorphism. Then the foliated G-bundle P -» P/G = M is isomorphic 
to 

/> = r \ G XJ^G-ÏTXG/KQ. (7.5) 
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We are in the particular case of the situation discussed in 2.23 where P-+X 
is a flat bundle. By (7.3), (7.4) the space M is given by 

Ms G/KGXTG/G^T\G/KG. 

The quotient foliation on M of the foliation on P defined by its flat structure 
is transverse to the fiber G/G of M -* X. Its normal bundle QG is associated 

to P -» Af via the isotropy representation p of G in m = g/g: 

QG-T{7t)^PXGmp. 

Note that the characteristic homomorphism A(P) = s * ° kÇS)^ of the flat 
bundle P is given by the canonical inclusion y ofjhe left invariant forms 
(AQ*)KÖ into the De Rham complex of X = T\G/KG. The characteristic 
homomorphism A((?c) on the cochain level appears then in the following 
commutative diagram: 

W(t\(q)9SO(q))q 

W(P)J 

A(0)J 
(A**)KG

 1 > Sl(T\G/KG) 

'* 1 - M 
(AÎ*)KG 2 > n(T\G/Kö) (7.6) 

In this diagram, A(P) realizes the characteristic homomorphism of the 
foliated G-bundle P with its canonical ^-reduction. QG is associated to P via 
the isotropy representation p: g -> gl(g/g), where # = dim Q/Q. W(p) is the 
induced map on Weil algebras, j and y are induced by the canonical 
inclusion Ag* -» B(G) and y = A(P). The maps j+ and #„ denote integration 
over the fiber KG/KG in the respective fibrations on the left (algebraic) and 
the right (geometric). A(0) finally is induced by a ^-invariant splitting 9: 
g -* g of the exact sequence 0 -> g -» g -» g/g -> 0. It is a map completely 
characterized by 

A(0)a = a0 foraEA'g** 

A(0)â = aK(0) = daO + \a[990] forâeS'g*. (7.7) 

The computation of A(QG)* reduces to the computation of the cohomology 
maps induced by the algebraically defined maps W(p), A(0) by virtue of the 
following result. 

7.8 THEOREM ([KT 9]-[KT 11]). Let G, G an± T be as above. Let q be the 
codimension of the canonical G-foliation onT\ G/KG, with normal bundle QG> 

q = dim Q/Q. Let 0:Q-*Qbea KG-equivariant splitting of the exact sequence 

0-*g^g^g/g-»0. (7.9) 
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Then the generalized characteristic homomorphism A(ÖG) on the cochain level 
factorizes as in the commutative diagram (7.6). The map A(0) is characterized 
by (7.7). The maps induced by y and y in cohomology 

y*:H(Q,KG)-+HDK(T\G/KG), 

y*:H$,KG)^HDK(T\G/KG) 

are both infective. 

A typical application is given by the pair 

G « SL(q + 1) and G = SL(q + 1, 1)0, 

the connected component of the group of unimodular matrices of the form 

[X 
[o 

• 1 

A\ 

with A E GL(q), detA = À l. Some of the computations for this example 
have been carried out independently by Shulman and Tischler [ST]. 

7.10 THEOREM [KT12, 5.37]. Consider the spherical fibration 

M = T\SL(q + \)/SO{q) %X = T\SL(q + \)/SO(q + 1) 

over the Clifford-Klein form X of the symmetric space SL(q + \)/SO(q + 1). 
Then 

M s SL(q + \)/SO(q + 1) Xr SL(q + l)/SL(q + 1, 1)0 

carries a foliation of codimension q defined either by the right-action of 
SL(q + 1, 1)0 on SL(q + 1) or by the flat structure of à: M-+X. This 
foliation is transverse to the fiber Sq and every leaf is a universal covering space 
of X under the projection it. The normal bundle QG of this foliation (G — 
SL(q + 1, 1)0) with its natural foliated structure is given by 

QG - r (# ) - r \ SL(q + 1) X „ ( f ) R* 

a (T\SL(q + 1) Xsoiq) G) XGmp, 

where mp a R* is equipped with the action p: SL(q + 1, 1)0 -> GL(q) sending 

\x 
[o 

* 1 
A\ 

to\~lA,\ = detA-x. 
The characteristic homomorphism 

A(g c ) , : H(W(Ql(q), SO(q))q) -» HDK(M) 

of this foliation has then the following properties (see diagram (7.6) for the maps 
involved). 

(i) Consider in H(W(§\(q\ SO(q))q) the classes of the cocycles 

Z(ij) - y\ AJ ' i / . - i A • • • A.V24-1 ® CU> 
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where 2 < / , < • • • < is < r, 0 < s < r - 1; c^ = c{* • • • c£ with 
deg c0) « 22?. !7/ • / * 2q (z{0J) = >>, ® c^ for s - 0). 77ie/i m HDK(M) 

HQG)*[Z«J) ® $ ] - I*- nCv»,-! A • • • A j ^ - i A ƒ«+! ® $), 

wAere $ « 1 /or q « 2r — 1 A/K/ $ = 1 or er /or ç = 2r, an*/ ji = 
(-iy+I(«f + i)nT.iCi+I)*. 

(ii) Let q = 2r - 1. 7%e/t 

imA(gG)+ - ?*(ƒ>• A(yi, . . . , ƒ> -1 ) ) 

am/ A(g^)« /wa/w *Ae cocycles 

ttAjfy-iA- •• A j ^ - i ®c* 
w///r 2 < i, < • • • < 4 < r, 0 < 5 < r - 1 o/tfo an R-basis of im A(gG)J C 
H£K(M). It follows that 

dimimA(eG)^ = 2r-1 . 

(iii) Letq** 2r. 7%ew 

im A ( S G ) * * Y*(/2r+i ' A(/3 , • • • > J^-i) ® R[* , ] / (e,2)), 

am* ACC^ ma/w fAe coçycles yx A Jfy-i A • • • A ^ - i ® cq and yx A 
Jfy-i A • • • A^2i;-i ® cq ® er >v///z 2 < i, < • • • < is < r, 0 < s < 
r - 1 o/tfo an R-basis of im A(gG)£ c H£K(M). It follows that 

dimimA(0G)* = 2\ 

Concerning the integration over the fiber #* we /wrae the following results. 
(iv) Forq = 2r- 1 

**HQG )*!><«V)] - M * <<*r» 52r"1> ' f*(^2i,-i A • • • A y 2 ^ \ • *) 

where [lis as in (i), y+ is infective\ 

<oe„S2r-l> = (-!)'/2X'-»_ 

and y+(er) is the Euler class of the flat SL(2r)-bundle P-*X. 
(v) For q = 2r 

• • A ( & ) • [ * ( « ] - 0 and 

* • A ( & ) • [*W> ® «r] - M' <*r> S* ) • Y ^ - l A • • • A / 2 4 - l A ƒ * • ! ® 0 

where [lis as in (i), f* is infective and <e,, S2r} «• 2. 

7.11 COROLLARY. Le/ ç = 2r — 1. For the Godbillon-Vey class yx ® cf E 
H(W(Ql(q)9 SO(q))q) we have by (i) and (iv) of the preceding theorem the 
formulas 

A ( Ô C ) * ( ^ ® c f ) - - ( 2 r f y , ( / 2 r ) 

and 

wJ^QaUyx ® cf) - -(2r)2'. <<«„ S*"1) • f,(e,). 

Here y+(er) is the nonzero Euler class of the flat SLÇLr)-bundle 
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SL(2r)/SO(2r) Xr SL(2r) -> T \ SL(2r)/SO(2r). 

For q = 1 in particular the integration map #*: H\M) -» H2{X) s R ƒ$ an 
isomorphism and the Godbillon-Vey class satisfies the formula 

<*A(QG )*(yi ® c,), [*]> = 4<y,(er), [*]>. (7.12) 

yfo f/ie £Wier number (y*(er), [Z]) remains constant under deformations of T in 
SL(2), it follows that b(QG)+(y\ ® cx) satisfies the same property. 

We wish to take this opportunity to point out an error in [KT 9, Remark 
7.28], which is obviously contradicted by the last statement above. The 
formula for (oer, 5

,2r~1> in part (iv) of 7.10 was misstated in [KT 9], [KT 11]. 
There is a similar, but more elementary result for the foliation obtained 

before dividing the whole situation by SO(q + 1). In that case the projection 
M -» X is the trivial spherical fibration. 

T \ SL{q + 1) X SL(q + \)/SL{q + 1, l)0-> T \ SL{q + 1). 

To test the nontriviality of cohomology classes in the total space is then easier 
than in the case of Theorem 7.10. Some of the technical difficulties evaporate 
for this situation. 

We wish to discuss an application to the cohomology H(BT+) of the 
classifying space for codimension q foliations with oriented normal bundle. 
Such a foliation is characterized (up to homotopy) by a map/: M->BT*. 
There is then a commutative diagram 

A ^ i / ( * r + , R ) 

ƒ* 

~ W / * ^HDR(M) (7.13) 

where A(g)1|t denotes the characteristic homomorphism of the (normal bundle 
Q of the) given foliation on M. This is an obvious consequence of the 
functoriality of the generalized characteristic homomorphism. At this point 
we use the fact that the construction of the generalized characteristic 
homomorphism as given applies to singular Haefliger T^-cocycles. This 
defines A* by universality. From diagram (7.13) it follows then that the 
cohomology classes of H(W(Ql(q), SO(q))q) which are realized linearly 
independently under A(g)J|t for one foliation with oriented normal bundle Q, 
are by necessity also linearly independently realized under the universal map 
A*. A similar argument holds for the universal map A#: H(Wj&l(q))q)-* 
H(FTq) and the generalized characteristic homomorphism A(q)* of a 
foliation of codimension q on M with trivial normal bundle Q, classified (up 
to homotopy) by a map ƒ: M -» FTq. In that case there is again by 
functoriality a commutative diagram 

H(W(ll(q),SO(q))q\ 
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H(FTq, R) 

* 

"vv^* ^HDK(M) (7.14) 

By Theorem 7.10 and its corresponding absolute version one obtains then 
the following linear independence results [KT 12]. 

7.15 COROLLARY. 

(i) In H(BTq). Let c^ = c[l • • • cfc be any monomial of deg c^ * 2q. For 
q = 2r - 1 andq = 2r the classes of the cocycles in W($l(q\ SO(q))q 

y\ A ^ / . - i A • • • A ^ 2 , - i ® C(j) (7.16) 

for all 2 < li, < • • • < i, < r, 0 < s < r — 1 are realized linearly indepen
dently in H(BT+) under A* (for s ^ 0 the coçycle (7.16) is yx ® c0)). Far 
q = 2r the union of the classes corresponding to (7.16) and the cocycles 

y\ A^2i,-i A • • • Aj>24-i ® *(/> ® *r (7-l7) 

are realized as a linearly independent set in H(BTq) under A#. The correspon
ding cohomology classes span then in particular a subspace of dimension 2r~x for 
q s 2r — 1 and dimension 2rfor q « 2r. 

(ii) ƒ/* H(FTq). Let c^ — c(» • • • cf Z>e tf/?y monomial of deg c ^ = 2ç. 7%e 
c/awes #ƒ//œ cocycles in W(QÏ(q))q 

V\ /\yix A • • • A ^ ® c0.) (7.18) 

/or arbitrary 2 < i'j < • • • <is<q, 0 < s < q — I are realized linearly 
independently in H(FTq) under Â*. The corresponding cohomology classes span 
then in particular a subspace of dimension 2q~ !. 

Concerning this result, see also the addendum at the end of this section. 
Foliations of the type described have also been considered by Fuchs [Fl] and 
Baker [BK]. In the latter paper A(ÖG)J|C is determined for a wide class of such 
foliations. Linear independence results in the single dimension m = 2q + 1 
have been established by Morita [MR] and Yamato [Y], For many of the 
classes in this dimension m « 2q + 1 it has been shown that they even can 
vary linearly independently in the following sense. A set of classes zv ... >zd 

E Hm(BTq) vary linearly independently, if the canonical map f : Hm(BTq) -» 
Rd defined by £ (x) « (*/(*))*• i,..., d *s surjective. Here the numbers zt(x) for 
a cycle x represented by a (possibly singular) foliation/: Mn -> BTq are given 
by zt(x) « (f*Z;)[M]. Heitsch [HT 3] has established the linearly independent 
variation of many of the classes in dimension m = 2q + 1. These results 
generalize Thurston's theorem on the surjectivity of the map ir3(BTy)-*R 
given by the Godbillon-Vey number of codimension 1 foliations on 5 3 [TH]. 
Such results for holomorphic foliations have earlier been proved by Bott 
[B 2], and for Riemannian foliations by Lazarov-Pasternack [LP 2]. 

It is of interest to return to the evaluation principle embodied in diagram 
(7.6). The essential geometric situation is a fibration #: M-*X, carrying a 

H(W(tl(q))ay 
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foliation transverse to the homogeneous fiber F = G/G » KQ/KG. This flat 
structure is described as in (2.27) by an isomorphism M s X XTF, where T 
acts on F via a homomorphism T = ^ (X) -* G. _ 

It is important to allow one to enlarge the group G from a Lie group acting 
on F to any subgroup G of the diffeomorphism group Diff(F) acting 
transitively on F. We assume that G admits a compact subgroup K still acting 
transitivejy on the compact fiber F. If G and A' denote the isotropy groups of 
G and £_at the basepoint JC0 e_i% then F^K/K^ G/G. For a flat 
principal G-bundle P-*X with a ^-reduction K-+ P->X we have then an 
associated fiber space Af = P Xg F s P/^T s ^ X r F. The fibration #: 
M^>X has again two geometric structures, namely a flat structure and a 
A-fiberbundle structure. The incompatibility of these structures gives rise to a 
characteristic homomorphism 

y*:Hc(Q,K)^HDK(X) 

as constructed by Haefliger [H 2]. Here Q denotes the Lie_algebra of 
vectorfields on F defined by the infinitesimal action of G. For G = Diff(F) 
this is the Lie algebra £(F) of all global vectorfields on F. The A-basic 
continuous cochains (in the C°°-topology) with the usual Chevalle^Eilenberg 
differential give rise to the Gelfand-Fuchs cohomology HC(Q, K) [GF 1], 
[GF 2], [H 3], [H 4]. Heuristically this cohomology algebra plays for the pair 
(G, K) the same role as that played by the relative Chevalley-Eilenberg 
cohomology in the finite-dimensional case. After the first computation of 
such an algebra HC(£(F)) in the case of F - S1 by Gelfand-Fuchs [GF 1], 
[GF 2], Haefliger has given in [H 3], [H 4] a general structure theorem under 
certain assumptions on F. 

Haefliger's construction of y* reduces in the finite-dimensional case to the 
map induced by y in diagram (7.6). The same contruction also induces a map 
Y#: Hc(g9 K) -» HDR(M). These two maps relate via the following commuta
tive diagram corresponding to the bottom square of (7.6) 

Hc(lK) 7* >HDR(M) 

ƒ* k* 

Hc(l K) J* ) HDR(X) (7.19) 

Here J^ and #* denote again integration maps over the compact fiber 
F s K/K. 

The observation in the finite-dimensional case embodied in diagram (7.6) is 
that the characteristic homomorphism of the foliation transverse to the fiber 
of the flat bundle projection m factorizes through y*. This property holds true 
for both the construction of the characteristic homomorphism à la Bernstein-
Rosenfeld [BR 1], [BR 2] and Bott-Haefliger [BH], [H2] with the domain the 
Gelfand-Fuchs complex of the Lie algebra (^(R7) of formal vectorfields of 
R ,̂ and the authors' construction [KT 3], etc., with domain the relative 
truncated Weil algebra (as used throughout this paper). To compare the two 
constructions, it is therefore sufficient to compare them as maps into 
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HC(Q, K) (the actual characteristic homomorphisms are then the compositions 
with y^). 

For the purposes of this comparison let jet: £(F) -» £o(R*) be the map 
assigning to any vectorfield on F its formal jet expansion at the basepoint 
x0 e F. Here q = dim F = dim g/g. Let a: £o(R*) -» Ql(q) be defined by the 
assignment of the linear part to a formal vectorfield. For the subalgebra 

_ jet a ( ö ) _ 
Ô C £(F) we have similarly maps g -* £o(g) -» QX. The corresponding maps 

9 -» £o(fl) -» 81 for the isotropy algebra g at x0 are Lie homomorphisms. It is 
easy to see that for the linear parts of g and g we have QX = QV All these maps 
are related by the commutative diagram 

0 * ^ C 

jet J 

e0(9)^ 

0 
e 
C 

eo(0) jet 

e0(8) 
e0(e) 

a(8) 

8, = = 0i 

£(fD 

|jet 

- £0(
R<?) 

1-
(7.20) 

Note that the counter-clockwise map p: g -» gl(ç) s gl(g/g) around this 
diagram is the isotropy representation. 

As before let 0: g -» g be a A-equivariant retraction of the inclusion g c g 
with induced map £^(9) on the formal jet expansions. The map A(0) of 
diagram (7.6) has an infinite-dimensional analogue A(0): WC(Q, K)q -* 
CC(Q, K). Here the complex WC(Q) denotes the continuous Chevalley-Eilen-
berg cochains CC(Q, SQ*) with the inherited Weil differential. Similarly there 
is a map A(£o(0)): WC(£Q(QÎ), K)q -> Cc(£(,(g), K) of Z)G-algebras. Corres
ponding to ( 7.20), there is then the following commutative diagram 

HcWi,K)q) 

jet* 

A(0), 
•*HJi,K) + 

jet* 

HJt(F),K) 

jet* 
A(£o(0))„ 

# C W Ê 0 ( 8 ) > * V — 2 • #c(e0(8), *) * - /rc(e0<R*), ofo)) 

AWa», 

//(W(01;JO,)-

A(a), 

Wfolfo), 0(«)),) (7-21) 

W(<*(0))* 

The clockwise map 

W(p\: H(W(Ql(q), 0(q))q) -> /fc(W(B, AT),) 

from the lower right to the upper left around this diagram is induced by the 
isotropy representation p. It follows that its composition with A(0)* is the 
characteristic homomorphism as used in this paper (more precisely after 
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further composition with the map y* of (7.19)). On the other hand the 
counter-clockwise map 

e* o jet*: Hc ((^(R*), O (q)) -> Hc (g, K) 

(again composed with the map y+ of (7.19)) is the characteristic 
homomorphism à la Bernstein-Rosenfeld and Bott-Haefliger. The fact that 
A(a)J|{ is an isomorphism is due to Gelfand-Fuchs [GF 1], [GF 2]. A(a) 
also induces an isomorphism H(W(Ql(q))q) -» /fc(£o(R*)). 

Addendum. At the time of completion of this report, Fuchs announced the 
following remarkable results [F 2], [F 3]. Consider the ^-dimensional torus T 
and foliations on products X X T transverse to the projection X X T-±X. 
These foliations are classified by homotopy classes of maps into the 
homotopy theoretic fiber Bt(T) of the canonical map B Diff Td -» B Diff T, 
where Diff Tô denotes the group of diffeomorphisms of T with the discrete 
topology. In the previous notations F = T, K = T and K = {e}. The func-
toriality of y* in (7.19) defines by universality a map 

%:Hc(t{T))^H(BZ{T)), 

and Fuchs establishes the following result. 

THEOREM [F 2]. The composition 

Y,ojet*:^c(Êo(R^))^//(5e(r)) 

is infective. 

By universality there is a map/: Bt(T) -» FTq into Haefliger's classifying 
space for foliations with trivial normal bundle, and a commutative diagram 

'S* 

7* ° jet* 
Hc(t0(R

q)) >H(BZ(T)) 

A(a)* ƒ* 

H(W(Ql(q))q) ^—+H(FTqi R) 

COROLLARY [F2]. A* is infective. 

What still remains of interest in the earlier stated linear independence 
results is of course the fact that they already hold for single specific nonsingu-
lar homogeneous foliations on finite-dimensional manifolds. In fact it has 
been pointed out by Fuchs [F 1] that there are classes in Hc(£(Rg)) which 
cannot be nontrivially realized for homogeneous foliations in the finite-
dimensional context. 

Fuchs similarly announces in [F 2] the injectivity of the relative universal 
characteristic homomorphism A*. In [F 3] there is further an announcement 
of the result that all classes except those which are rigid by Heitsch's theorem 
[HT 1] are in fact variable. 
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