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Wells generalizes the notion of an infinite polyhedron to a 'net' in which 
the only polygons that occur are skew polygons. The most famous case (see p. 
117) is the 'diamond net' [Hilbert and Cohn-Vossen, 1952, p. 49]; its vertices 
have integral coordinates (JC, y, z) where x = y = z (mod 2) and x + y + z 
= 0 or 1 (mod 4). In other words, Wells is looking for graphs, of given 
valency and girth, which can be realized in Euclidean space so as to be 
symmetrical by translations in three independent directions. The number of 
possibilities is so great that complete enumeration seems to be out of the 
question. The search is justified by his observation that such graphs provide 
structural formulae for more than fifty crystals (which he lists on p. 265). He 
illustrates many of them by pairs of stereoscopic photographs, and some by 
very accurate drawings; see especially his pp. 147, 170, 254 and 255. 
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Discrete multivariate analysis: Theory and practice, by Yvonne M. M. Bishop, 
Stephen E. Fienberg, and Paul W. Holland with the collaboration of 
Richard J. Light and Frederick Mosteller, MIT Press, Cambridge, Mass., 
1975. Second printing with corrections, 1976, x + 557 pp., $30.00. 

Categorical data arise whenever counts, rather than continuous measure­
ments, are made. Such data are especially important in the social sciences, in 
which qualitative responses to surveys are frequently a source of information, 
and in medicine, in which classification of patients, treatments, and/or 
symptoms and judgements with respect to outcomes are the variables of 
interest. Analysis of categorical data has a long history, beginning at least 
with Karl Pearson's famous paper (1900). Contributions of major significance 
were made by R. A. Fisher (e.g., 1934, 1936, 1941), Bartlett (1935), and Birch 
(1963). From its inception, the analysis of categorical data has, more than 
many areas of statistics, emphasized multivariate aspects, although many 
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notable developments such as probit and logit analysis deal with univariate 
categorical data, usually the dichotomous or binary case (see, for example, 
Cox, 1970). 

Many books and monographs on multivariate analysis have been published 
over the last two decades since the earliest appeared. In most, the distinction 
between the analysis of continuous data and categorical data, which are 
discrete, has not been emphasized. Nearly all analytical treatments have 
focused on the continuous case, explicitly so, for example, in the case of 
Dempster (1969). 

Discrete multivariate analysis offers a systematic treatment of multivariate 
categorical data primarily, indeed almost entirely, within the framework of 
the so-called log-linear probability model, a model on which we comment 
extensively below. The book is more comprehensive than its competitors, 
which include Maxwell (1961), Good (1965), Lancaster (1969), Cox (1970), 
Fleiss (1973), and Plackett (1974), although Plackett at L 3.50 and 159 pages 
is hard to beat for a cheap, brief, and thorough introduction to the subject. 
What most distinguishes Discrete multivariate analysis is the constant inter­
play between practical examples and the theoretical structure of the log-linear 
probability model, which unifies the discussion, so much so that, since the 
log-linear model is essentially a discrete analogue of the analysis of variance 
for continuous data, one reviewer was moved to remark that the " . . . book 
perhaps would be more aptly titled 'Discrete multivariate analysis of vari­
ance' " (Olkin, 1977). 

Consider the familiar 2 x 2 contingency table describing the joint probabil­
ities of occurrence or nonoccurrence of two random categorical events, Ax 

and Ay. 

A2 

Pu 

P21 

Pxi 

P22 

As is well known, the condition for independence of Ax and A2 may be 
expressed in convenient parametric form as 

0 ) PwPn = PnPiv 
in this simple case; however, the situation is considerably more complex in 
contingency tables of higher dimension. It was the problem of formulating 
the condition for independence in a three-way table which led Bartlett (1935) 
to a first, but incomplete, development of the log-linear probability model, 
later fully developed by Birch (1963) in detail for the three-way table. 
Development for the general case appears in papers by Mosteller (1968), 
Bishop (1969), and many recent papers by Goodman (1968, 1969, 1970, 
1971a, 1971b, 1972a, 1972b, 1972c). 

Let & = {Ax,..., Aq) be a set of categorical random variables, which 
may take on, respectively, ƒ „ . . . , ƒ possible values. If we have a sample of 
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N observations on the q categorical random variables, &9 we might arrange 
these in an ƒ, X I2 X • • • X Iq table of counts corresponding to a similar 
arrangement of the probabilities 

(2) A l f . . . t V i'i = l , . . . , / i , / 2 = 1 , . . . , / 2 , • • • ig = l...,Iq. 

Alternatively, order the logarithms of the 

e=ft /* 
k = \ 

probabilities (2) into a.Q X \ vector by some principle, e.g., lexicographically, 

(3) log/; = 

tog/V-A 

The vectors log/? may be thought of as points in RQ. Let M be a linear 
manifold in RQ of dimension m, 0 < m < g. The class of models for which 
the Q X 1 vector U0 consisting entirely of ones is in M and 

(4) log/? G M such that < p, U0 > = 1, 

where p is the vector of probabilities corresponding to log/? and (x,y) 
denotes the inner product of x and y, is defined as the class of log-linear 
probability models (Haberman, 1974, p. 3). Since M is a linear manifold in 
RQ, there exist m independent vectors, not necessarily orthogonal, which 
span M, one of which may be U0 defined above. Because log/7 is contained in 
M it may be represented in terms of the basis vectors Ul9..., Um_x and 
Um = (70. When m = Q, so that M = RQ, the model is called saturated by 
Goodman (1968, 1970). Essentially, the saturated model is simply a repara-
meterization of the joint probabilities on the assumption that they are all 
strictly positive. While such a reparameterization may be of some intrinsic 
interest (since, for example, the one discussed below isolates different types of 
interaction effects), the model becomes considerably more interesting for 
m < Q, since only then are restrictions placed on the Q probabilities other 
than that they sum to one. 

There are clearly many possible choices of a basis for M. The most 
interesting and useful of these, and the one which leads to the formulation 
underlying much of Discrete multivariate analysis, is the choice, which in the 
saturated case, allows us to represent the logarithms of the probabilities in a 
traditional analysis of variance format: 

logA,,...^ = /x + ax(i{) + • • • + aq(iq) 

(5) +fi\2(h> h) + • • • + Pq-i,q(iq-u iq) 
+ • • • 

where ax{ ) . . . <o„ . . . , ( ) satisfy the usual ANOVA constraints: 
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« i ( - ) - « 2 ( - ) - - - - = <**0) = o, 

(6) £i2(<i>') = 0; i8l2(-,i2) = 0, . . . , ^ _ u ( - , 0 = 0 , 

...fO'l> • • • » <«-l> * ) = °> • • • > <°1,...,*('> '*2> • • • » 0 = °-CO, 

The dot used in place of an index denotes summation over that index. The 
parameters a{(ix%..., <*>,., (il9..., ƒ ) have the usual ANOVA interpre­
tation: //, denotes an overall effect; ax(ii) denotes an effect due to Ax (at 
"level" i,); j312(il9 /2) denotes a second-order interaction effect between Ax 

and A2 (at "levels" i, and i2, respectively); and coj ^(/„ . . . , iq) denotes a 
#-order interaction among Al9..., Aq (at "levels" il9..., i , respectively); 
etc. Note that although log/?, , is constrained to lie on the negative axis, 
/i is not so fixed, and as a result tfie effects themselves are unconstrained in 
sign. 

Note that the condition < p, U0 > = 1 requires that 

(7) / i = - log 2 {« l ( ' l )+ • • • + <^..,«('!>•• •>'*)}• 

Substituting (7) in (5) thus shows that the log-linear probability model in the 
saturated case is equivalent to the multivariate generalization of the discrete 
logistic distribution due to Mantel (1966). 

It is useful to illustrate the basis vectors for the saturated model in two 
simple cases. Other models may be derived from the saturated model by 
deleting some of the basis vectors and the parameters attached to them and 
thus representing the points log/7 in a space of lower dimensionality. Let the 
collection of basis vectors be represented by the matrix 

U=[U0, [/, , . . . , UQ.X] 

when m = Q. Arrange the "effects" parameters in one long vector in an order 
corresponding to the ordering of probabilities, e.g., 

«,(1) 

B = %(0 

CO, , ( / i . • • • > / « ) 

(5) above may be rewritten as 

(8) log/7 = AB, 

where A is a matrix reflecting the ordering of the parameters JU, 
<o, q(Iv . . . , Iq) in relation to the ordering of the probabilities. For 
example in the 2 X 2 case we have 
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log;»,, 
log pn 

l0g/>21 

l0g/>22 

110101000 
110010100 
101100010 
101010001 

«,(1) 
a, (2) 

«2(1) 
«2(2) 

JM1.1) 
0I2(1,2) 
A 2 (2 , l ) 
>8,2(2, 2) 

Of course, the representation (8) neglects the restrictions on the parameters 
imposed in (6). Indeed, there are a great many more parameters in the vector 
B than the number of probabilities; in the 2 X 2 case, for example, there are 
only 4 probabilities (which must sum to one), but 8 elements of B (not 
counting /x which serves to normalize the sum of probabilities to one). To find 
the appropriate basis f or M = RQ, the restrictions (6) must be imposed on 
the vector B to yield a vector of parameters 0 containing exactly as many 
components as probabilities. This is most easily accomplished by repara-
meterizing 

(9) 0 = LB, 
where L is of rank Q. Of course, different choices of L generally result in 
different choices of basis for M. 

Suppose, for example, in the 2 X 2 case we choose 

L » 

1 i 

0 0 

0 0 

I 
2 

2 

0 

0 

t 
2 

0 
t 
2 

0 

1 I 
2 4 

0 \ 
_ 1 ! 

2 4 

0 \ 

Then, given the restrictions (6), we have 

«,(1) 

«2(0 
0 = 

012 0. 1) 
If we know 0, the full set of parameter values B may obviously be 

recovered from the restrictions. A basis for M = RQ may now be easily 
expressed in terms of A and L, for clearly 

(10) log/7 = U0 = VLB = AB. 

Thus 

(11) U = AL'{LUy\ 

(See Bock, 1975, p. 239.) For example, in the 2 X 2 case, 
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1 
1 
1 
1 

1 
1 

- 1 
- 1 

1 
- 1 

1 
- 1 

1 
- 1 
- 1 

1 

£/ = 

A basis such as U in the above example is often called a deviation contrast 
basis (Bock, 1975, p. 242). Bock (1975, p. 300) gives several other examples of 
parameterizations and the corresponding bases. 

Since each basis vector corresponds to one of the parameters in the 
ANOVA representation of the logarithms of the probabilities (omitting those 
which may be determined from the ANOVA restrictions), computations with 
the log-linear probability model are most conveniently carried out using the 
parameters 9 and the basis vectors U. Suppose, for example, we wish to 
eliminate the bivariate interaction effect in the 2 X 2 case (this is equivalent 
to estimating the probabilities in the 2 x 2 contingency table under the 
hypothesis that the events Ax and A2 are independent); it suffices to eliminate 
the final column of U and the least element of 0, thus restricting the vectors 
log/? to lie in the subspace 

1 
1 
1 
1 

1 
1 

- 1 
- 1 

r - i 
i 

- i . 

. 
M 1 

«.(O 
« 2( i ) ; 

The 3 x 3 case is also revealing. Here 

«•(I) 
«,(2) 
a, (3) 

«2(0 

/ML O 

/U3,3) 

The matrix A is lengthy to write out in full but follows in an obvious manner 
if the probabilities are lexicographically ordered in forming the vector log/?. 
The matrix L for the deviation contrast parameterization is 

1/3 1/3 1/3 1/3 1/3 1/3 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/91 

0 2/3 -1/3 -1/3 0 0 0 2/9 2/9 2/9 -1/9 -1/9 -1/9 -1/9 -1/9 -1/9 

0 -1/3 2/3 -1/3 0 0 0 -1/9 -1/9 -1/9 2/9 2/9 2/9 -1/9 -1/9 -1/9 

0 0 0 0 2/3 -1/3 -1/3 2/9 -1/9 -1/9 2/9 -1/9 -1/9 2/9 -1/9 -1/9 

0 0 0 0 -1/3 2/3 -1/3 -1/9 2/9 -1/9 -1/9 2/9 -1/9 -1/9 2/9 -1/9 

0 0 0 0 0 0 0 4/9 -2/9 -2/9 -2/9 1/9 1/9 -2/9 1/9 1/9 

0 0 0 0 0 0 0 -2/9 4/9 -2/9 1/9 -2/9 1/9 1/9 -2/9 1/9 

0 0 0 0 0 0 0 -2/9 1/9 1/9 4/9 -2/9 -2/9 -2/9 1/9 1/9 

0 0 0 0 0 0 0 1/9 -2/9 1/9 -2/9 4/9 -2/9 1/9 -2/9 1/9 
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The vector 0 in this case is found from the vector B by omitting the certain 
values for each effect 

«,(1) 
«,(2) 

«2(0 
0=1 «2(2) 

012(U) 
0,2(1,2) 

0.2(2,0 
0,2(2,2) 

so that o,(3), a2(3), 012(1, 3), Bn(2, 3), /?12(3, 1), ,812(3, 2) and /?12(3, 3) are 
deleted from B to obtain 9. The matrix of basis vectors in this case is 

U = 

1 1 
1 1 
1 1 
1 0 
1 0 
1 0 
1 - 1 
1 - 1 
1 - 1 

0 
0 
0 
1 
1 
1 

- 1 
- 1 
- 1 

1 
0 

- 1 
1 
0 

- 1 
1 
0 

- 1 

0 
1 

- 1 
0 
1 

- 1 
0 
1 

- 1 

1 
0 

- 1 
0 
0 
0 

- 1 
0 
1 

0 
1 

- 1 
0 
0 
0 
0 

- 1 
1 

0 
0 
0 
1 
0 

- 1 
- 1 

0 
1 

0 
0 
0 
0 
1 

- 1 
0 

- 1 
1 

To eliminate the bivariate interaction effect, we delete the last four columns 
of U above. 

More complicated examples can easily be generated but would serve no 
useful purpose here. A general method for finding the deviation contrast basis 
may be derived as an extension of Theorem 1 in Nerlove and Press (1973, p. 
13). This, and several other types of bases, which, however, do not necessarily 
preserve the parameterization in (5), are given by Bock (1975, pp. 528-538). 

As indicated above, many unsaturated models may be generated from the 
saturated case by eliminating one or more basis vectors and suppressing the 
corresponding parameters. For example, to estimate a model, assuming 
complete independence of the events 6E, we may suppress all interaction 
effects. Models involving less restrictive forms of independence arise when 
interactions are selectively eliminated. For example, in the three-variable 
case, suppressing arguments, we have three main effects, a,, a2, and a3, the 
three bivariate interactions, /?12, /?13, /?23,

 a n d one three-way interaction y123. 
If /?12 and y123 vanish, the events Ax and A2 are said to be conditionally 
independent given Ay The notion of conditional independence may be easily 
generalized to sets of events: thus, if two sets of events are conditionally 
independent given a third set, if we classify by the latter we have indepen­
dence in the usual sense, but if we do not so classify, the first two sets of 
events are dependent by virtue of their association with the third classifica-
tory set. (See Nerlove and Press, 1976, pp. 24-25.) An important class of 
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models, called hierarchical, is defined as the family such that, if any main or 
interaction term is zero, all higher-order interaction terms involving the same 
set of variables are zero as well. For example, in the 4-variable case, if /?,2 is 
zero and, say, y123, y124, and 51234 are also zero, the model is hierarchical. But 
if /?12 is zero and, say, y123 is not, the model does not belong to the class of 
hierarchical models. (See Bishop, Fienberg, and Holland, 1975, p. 34.) 
Hierarchical models represent a generalization of the notion of conditional 
independence in a different sense than the result of Nerlove and Press 
referred to above: Clearly, a hierarchical model with a two-factor effect 
absent is a model in which those two variables are conditionally independent 
given the remaining variables; however, higher-order hierarchical models do 
not imply conditional independence but represent a more complicated struc­
tural relationship among variables. 

Why do we wish to estimate, and/or test hypotheses about, unsaturated 
models? Bishop, et al, (1975) answer this question at several points (e.g., pp. 
11, 45, 122); indeed, Chapter 4 is, in a sense, an extended answer. First, we 
want to uncover "structure" in the data. Testing for independence between 
two variables is an elementary example. To do so we set up a model with the 
bivariate interaction of interest equal to zero then fit a second model 
including this interaction; the difference in measures of goodness of fit 
between the two models may be used as a test statistic. Second, models with 
few parameters play an important role in "smoothing" the data, i.e., in 
obtaining cell estimates that are more stable than the observed cell counts 
and, relatedly, in obtaining cell estimates for every elementary cell in a sparse 
array (containing many cells with zero counts which are not a priori empty). 
"Smoothing" is also related to the understanding of structure, since, "When 
we fit a log-linear model to multivariate discrete data, the fitted cell estimates 
provide a smoothed description of the data because the most important 
structural elements are retained and random sampling fluctuations are 
damped" (Bishop, et al, 1975, p. 123). Third, unsaturated models provide a 
means of detecting "outliers," i.e., observations which do not really "belong" 
to the population being described or which are categorized incorrectly. In this 
case, some cells will appear anomalous with respect to the general pattern 
suggested by the model. Finally, models aid in providing summary statistics. 
If, for example, in the three-variable case, events Ax and A2 are conditionally 
independent, the relation between Ax and A3 can be safely described by 
ignoring A2, i.e., looking at marginal tables involving only Ax and Ay This 
device is called collapsing the table (Bishop, et al, 1975, pp. 47-48). 

Tables which contain cells which are a priori zero are called incomplete. 
Such tables are difficult to handle in practice and sometimes are not recog­
nized as such by the investigator. Log-linear models are frequently useful in 
this connection as demonstrated by Bishop, et al, in a long chapter (pp. 
176-228). 

Except for two chapters dealing with basic sampling theory for discrete 
data and the asymptotic results used elsewhere in the book (pp. 435-530) a 
chapter entitled "Other Methods for Estimation and Testing in Cross-Classifi­
cations" (pp. 343-372), and, to a considerable degree, a chapter dealing with 
measures of association and agreement (pp. 373-400), the bulk of this very 
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large book deals with log-linear probability models and their application to 
numerous theoretical problems and empirical applications. It represents a 
collaborative effort on the part of three primary, and two secondary, authors. 

The most senior stimulus came from F. Mosteller of the Harvard Statistics 
Department, whose interests in applying statistics across a very broad 
spectrum of fields are well known in biology, medicine and the social 
sciences. Mosteller's paper (1968) on association and estimation in con­
tingency tables is a classic in this field. Bishop, Fienberg and Light were 
Mosteller's Ph. D. students some years ago (Bishop is now with Harvard's 
School of Public Health, Fienberg is now with the Department of Applied 
Statistics at the University of Minnesota, and R. Light is now with Harvard's 
Graduate School of Education). Paul Holland was formerly a member of 
Mosteller's department at Harvard and is now at the Educational Testing 
Service in Princeton. The diversity of fields of interest represented by the 
authors is reflected in the tremendous variety of empirical examples, discus­
sion of which constitutes a substantial fraction of this book. These examples 
range over Anthropology, the Bible, Biology, Education, Linguistics, Political 
Science, Sociology, and Sports to Zoology. Fifty-eight data sets are listed in a 
special index at the end of the book. 

The book contains 14 chapters, the last two of which give background 
material. The treatment of discrete multivariate analysis is virtually entirely in 
the context of cross-classifications. Rectangular tables are discussed in 
Chapter 2, first for 2 x 2 tables, with examples, and then in general. Chapters 
3 and 4 discuss maximum likelihood estimation and goodness-of-fit. Chapter 
5 deals with the corresponding problems for incomplete tables (i.e., those 
containing structural zeros). Chapter 6 shows how contingency tables and 
log-linear models can be used to estimate the size of a closed population. 
Chapter 7 demonstrates how the same methods may be applied to Markov 
chains. Chapter 8 treats the special problems of symmetry and marginal 
homogeneity in square tables. Chapter 9 contains many examples and 
illustrates how models are built. Chapter 10 is a catch-all for methods of 
estimation and testing in cross-classifications different from those based on 
the log-linear model. Chapter 11 summarizes the sequence of four well-known 
papers of Goodman and Kruskal (1954, 1959, 1963, 1972) on measures of 
association in contingency tables. The chapter treats only the case of two-di­
mensional tables with no structural zeros. Chapter 12 adopts a "pseudo-Baye-
sian" viewpoint of how to deal with sampling zeros (nonstructural zeros) in a 
contingency table. Chapter 13 is a survey of some of the properties of the 
basic (generally univariate) discrete distributions, while the final Chapter 14 is 
a summary of large sample theory including the use of o and O notation, 
convergence in probability and in distribution, the delta method, and vari­
ance stabilizing transformations. 

While Bishop, et ai, is considerably more comprehensive than its competi­
tors mentioned above, it is not yet the definitive treatment of discrete 
multivariate analysis its title suggests. Such a book has not been written. 
Among other things, a truly all-encompassing treatment would include an 
extensive discussion of logistic models, with all of the log-linear model effects 
of the basic jointly dependent qualitative variables being permitted to depend 
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upon explanatory variables, so that typical multivariate regression relation­
ships result. It would include analysis of empirical cdfs, empirical moments 
both marginal and joint, an extensive treatment of the multivariate discrete 
distributions and their properties, mixed discrete and continuous distribu­
tions, a treatment of how to handle ordered discrete data, how to handle 
missing observations other than in a cross-classification context, and availa­
ble computer programs for analyzing cross-classified data. (There is regrett­
ably almost no discussion of computer programs in the book.) It would also 
present the Bayesian method of making inferences about discrete data in a 
unified way. Bishop, et al.9 mention Bayesian methods almost as an 
afterthought in Chapter 12, after 400 pages, and then the authors advocate 
using prior distributions arrived at by first studying the sample data (a 
practice totally inconsistent with the application of Bayes' theorem). Strictly 
Bayesian methods of inference are given short shrift, a total of three pages 
(pp. 405-407) in a book of 557 pages! 

Although Bishop, et al.9 is an excellent book on the log-linear model and a 
major contribution, it is definitely not a "cook book," in the sense that a cook 
book is generally arranged in a functional or utilitarian way. Suppose, for 
example, you are a practitioner and you have collected sample survey data 
from a control group and an experimental group on a vector of characteris­
tics. You want to know how to test whether there is an effect on the 
experimental group of various characteristics. That is, you want to do a test 
of independence in a rectangular 2 X K table. First, you must recognize it is 
a test of independence that you wish to do. Then, you go to the book and you 
look up independence in the Subject Index (there is hardly any way to find it 
in the Table of Contents). We are informed that on pp. 28-29 we can find 
"independence in a rectangular array" discussed. But on those pages we are 
not told how to carry out a test. So we go back to the Index and try 
"independence-as lack of association," pp. 374-380. Now, on page 375 we 
are told that (/ - l)(J - 1) degrees of freedom are available in a two-dimen­
sional contingency table; still no test. Indeed, there is no one place to which 
we are directed, as we would be in any elementary text, as to what test to use 
when parameters are known; what test to use when they are unknown but 
estimated from grouped data by MLE; and what test to use when parameters 
are estimated from individual observations by MLE (we must wait until p. 
523 to find out what to do in this case). In fact, nowhere in the book can we 
even find a proof of the simple fact that in a 2 X 2 table, independence 
implies and is implied by the equality of the cross products. 

In short, it helps to know a good deal of what Discrete multivariate analysis 
is about, before reading the book! 
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