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In a storage room of the University of Minnesota, there used to be (and 
probably still are) four large isosceles triangular mirrors, with edges propor­
tional to 2 : y/3 : y3 , relics of an abandoned film project. If they were put 
together as faces of an 'isosceles' tetrahedron (with some device to prevent the 
sloping mirrors from sagging under their own weight), and if you could look 
in through a hole in one of the edges, you would see a remarkable array of 
images. For this tetragonal disphenoid is one of the three kinds of tetrahedron 
that can serve as a fundamental region for a reflection group [Coxeter 1973, 
p. 84; Shubnikov and Koptsik 1974, p. 201]. It (or the group) is denoted by a 
'Dynkin symbol' 

in which the four dots represent the four mirrors while the four links indicate 
dihedral angles 7r/3 between pairs of mirrors. The mirrors represented by 
'opposite' dots are at right angles because those dots are not directly linked. A 
plane that bisects one of these two right angles dissects the disphenoid into 
two congruent pieces, each of which is a trirectangular tetrahedron 

The link marked 4 indicates that the cutting plane, which we naturally replace 
by a mirror, forms a dihedral angle 7r/4 with its neighbor. (Instead of a link 
marked 4, Witt [1941, p. 301] prefers a double link.) This smaller tetrahedron 
still has a plane of symmetry, bisecting one of its right angles, and this can be 
used to dissect the tetrahedron into two enantiomorphous pieces, each of 
which is an orthoscheme 

m m • 0 
4 4 

This is the remaining kind of 4-mirror kaleidoscope. It is marked CMIO in 
the reviewer's Fig. 2.2A [Coxeter 1974, p. 13]. It combines with its image in 
the vertical plane MIO to form the trirectangular tetrahedron CBIO. This, in 
turn, combines with its image in the horizontal plane CBI to form the 
disphenoid CBOO', which is where this discussion began. 

By inserting rings round one or more of the dots, we symbolize a 'uniform 
honeycomb' whose vertices are all the images of a point that lies on all the 
'unringed' mirrors, in a position equidistant from all the 'ringed' mirrors 
[Coxeter 1940, pp. 390-404]. In particular, if only one dot is ringed, the 
chosen point is one vertex of the tetrahedron; and if all four dots are ringed, 
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it is the incenter of the tetrahedron» This notation has the advantage of 
showing at a glance the nature of the various cells of the honeycomb: we 
simply suppress each dot in turn and see what uniform polyhedron (or 
polygon) is symbolized by the rest of the graph [Coxeter 1974, pp. 16-18, 
164]. This happens because any three of the four mirrors form a Fedorov 
kaleidoscope [Shubnikov and Koptsik 1974, pp. 68-69]. For instance, there is a 
honeycomb, denoted by q84> whose graphical symbol 

-<3> 

indicates that its typical vertex is the midpoint of one of the four short edges 
of the disphenoid (say, the midpoint of CO). Suppressing each dot in turn, we 
obtain the 'subsymbols' 

<?> ® @h <$ ®- -® 

The first two represent tetrahedra; the last two, truncated tetrahedra. The 
truncated tetrahedron [Ball and Coxeter 1974, p. 140] is bounded by four 
triangles j and four hexagons ® ®. Thus qô4 is a honeycomb whose 
cells consist of these two solids, occurring with equal frequency. 

Symbols such as q84 seem rather artificial till one realizes that they remain 
valid in higher spaces [Coxeter 1968 p. 46]: 5n+I is the n-dimensional cubic 
lattice whose vertices have as vertices all combinations of n integers; hôn+x 

has half these vertices, and qÔn + } (q for 'quarter') has half the vertices of 
A5rt+,. These symbols, with suitable subscripts after the h or q, are a 
convenient adaptation of the 'contraction' and 'expansion' symbols invented 
by Mrs. Stott [see Coxeter 1978 ], who was the middle one of George 
Boole's five daughters. She wrote c{\e0) for h, c{\ e0)(j e3) for q, c(\e0)e2e3 

for hly and so on. 
The occurrences of these uniform honeycombs in Wells's book, and in 

other related works, are summarized in the accompanying Table on p. 469. 
The graphical symbols in the first column are followed by the abbreviated 
symbols (such as fi4) and the 'point symbols' (such as 412) which indicate the 
plane faces (interfaces between pairs of solid cells) that occur at each vertex. 
The fourth column refers to Andreini [1905], the fifth to Wells, and the 
remaining two to Wachman, Burt and Kaufmann [1974], who, following 
Wells's example, extracted from the set of plane faces (of all except h3S4) a 
polyhedral surface in which every edge belongs to just two faces. As a trivial 
instance, we may extract from the cubic honeycomb 412 = S4 all the squares 
that lie in one plane; they form the 'squared paper' tessellation 44 = S3. What 
happens at each vertex may be described in terms of the vertex figure of the 
honeycomb. The vertex figure of S4 is an octahedron whose twelve edges lie in 
the planes of the twelve squares that surround the typical vertex. The 
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extracted polyhedral surface has for its vertex figure a polygon (usually a 
skew polygon) whose edges occur among those of the vertex figure of the 
honeycomb: in the present case, an 'equatorial' square of the octahedron. 

More interestingly, John Flinders Pétrie (when he was nineteen) extracted 
from the same cubic honeycomb 412 an infinite skew polyhedron or 'regular 
sponge' 46 = {4, 6 | 4}, whose vertex figure is a skew hexagon: a 'Pétrie 
polygon' of the octahedron [Coxeter 1939, p. 242; 1968, pp. 76-77; 1973, p. 
32]. Pétrie noticed that this regular sponge 46 (with square 'holes' or 'tunnels') 
has a dual 64 = {6, 4 | 4}. This 64 is extracted in an analogous manner from 
the honeycomb 4264 = tl284, whose vertex figure is a tetragonal disphenoid 
having edges of various lengths representing the 2 squares and 4 hexagons 
that meet at one vertex of 4264. This disphenoid yields a skew quadrangle 
when any two opposite edges are removed. If these are the edges representing 
the two squares, the skew quadrangle is regular and the sponge is the 
above-mentioned 64. If instead the removed edges represent two of the four 
hexagons, the skew quadrangle is kite-shaped, and the sponge (no longer 
'regular' but only 'uniform') has the point symbol (4.6)2, indicating that the 
cycle of four faces round each vertex consists of a square, a hexagon, another 
square, and another hexagon; in other words, each hexagon is surrounded by 
six squares, and each square by four hexagons. [Compare Ball and Coxeter 
1974, p. 136, where the cuboctahedron is denoted by (3.4)2.] 

A third regular sponge, 66 = {6, 6 | 3}, can be extracted from the honey­
comb 3666 = q84, whose vertex figure is a tall triangular antiprism. The lateral 
edges of this antiprism form a regular skew hexagon which is the vertex figure 
of the sponge 66. (The remaining edges of the antiprism yield the triangular 
holes which are indicated by the 3 in the symbol {6, 6 | 3}.) 

The honeycomb qS4 may be described as having integral Cartesian coor­
dinates whose residues modulo 4 are (0, 0, 0) or (0, 1, 1) or (0, 2, 2) or (0, 3, 3) 
or (1, 2, 3), in any order [Coxeter 1968, p. 47]. If each of the tetrahedral cells 
is dissected into four congruent triangular pyramids (with their common apex 
at its centre), and four such pyramids are stuck onto the triangular faces of 
each truncated tetrahedron, we obtain a honeycomb of congruent cells each 
having 16 faces. Michael Goldberg has conjectured that this 16-hedron, 
unhappily named 'snub-tetrahedron' by Keith Critchlow [1969, p. 54], has the 
greatest possible number of faces for a convex space-filler. 

The attentive reader, looking at the Table, may wonder why the 'square' 
Dynkin symbol does not appear with one or three or four rings, or with two 
opposite dots ringed. The answer is that the honeycombs so indicated merely 
repeat those already listed: one ring yields h84, two opposite rings t{84, three 
rings h284, and four rings tx284 [Coxeter 1940, pp. 402, 403]. Such duplications 
are no more surprising than the fact that the regular hexagon is equally well 
denoted by®—-—• or ® ® 

The Table continues with further infinite uniform polyhedra whose faces 
do not belong to any uniform honeycomb. This list is certainly not complete. 
For instance, Branko Grübaum has extracted from 84 a new 45, different from 
all Wachman's eleven. Also J. R. Gott [1967, p. 498] found four new 
'pseudopolyhedrons' 38, 310, 45, 55, the last of which makes a particularly 
interesting model. 
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TABLE OF UNIFORM HONEYCOMBS AND INFINITE POLYHEDRA 
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Wells generalizes the notion of an infinite polyhedron to a 'net' in which 
the only polygons that occur are skew polygons. The most famous case (see p. 
117) is the 'diamond net' [Hilbert and Cohn-Vossen, 1952, p. 49]; its vertices 
have integral coordinates (JC, y, z) where x = y = z (mod 2) and x + y + z 
= 0 or 1 (mod 4). In other words, Wells is looking for graphs, of given 
valency and girth, which can be realized in Euclidean space so as to be 
symmetrical by translations in three independent directions. The number of 
possibilities is so great that complete enumeration seems to be out of the 
question. The search is justified by his observation that such graphs provide 
structural formulae for more than fifty crystals (which he lists on p. 265). He 
illustrates many of them by pairs of stereoscopic photographs, and some by 
very accurate drawings; see especially his pp. 147, 170, 254 and 255. 
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Discrete multivariate analysis: Theory and practice, by Yvonne M. M. Bishop, 
Stephen E. Fienberg, and Paul W. Holland with the collaboration of 
Richard J. Light and Frederick Mosteller, MIT Press, Cambridge, Mass., 
1975. Second printing with corrections, 1976, x + 557 pp., $30.00. 

Categorical data arise whenever counts, rather than continuous measure­
ments, are made. Such data are especially important in the social sciences, in 
which qualitative responses to surveys are frequently a source of information, 
and in medicine, in which classification of patients, treatments, and/or 
symptoms and judgements with respect to outcomes are the variables of 
interest. Analysis of categorical data has a long history, beginning at least 
with Karl Pearson's famous paper (1900). Contributions of major significance 
were made by R. A. Fisher (e.g., 1934, 1936, 1941), Bartlett (1935), and Birch 
(1963). From its inception, the analysis of categorical data has, more than 
many areas of statistics, emphasized multivariate aspects, although many 


