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1. Introduction. The early work of Klein [28] and Poincaré [53] on the 
uniformization of algebraic curves (compact Riemann surfaces) was based on 
the so-called continuity method. After a few years, however, some serious 
objections were raised regarding both of these papers. Cf. [Il, pp. 408-414, 
438], [29, pp. 731-741], and [53, pp. 233-236]. 

Partly for this reason, mathematicians sought to develop a more direct 
approach to the uniformization theorem. Such an approach was finally 
carried out by Koebe [32] and Poincaré [56] in 1907. Suffice it to say that the 
direct approach is based on potential theory, not on the continuity method. 
Some additional references are as follows: [27, pp. 73, 323], [33], [52], [69, pp. 
159-179]. 

Although the continuity method ran into trouble (and was later 
abandoned), the underlying idea is still very tempting. Poincaré's approach 
[53] is of particular interest here, because of its connection with ordinary 
differential equations. 

When viewed in its most primitive form, the inter-relationship between 
conformai mapping and differential equations certainly goes back to Riemann 
[59]. Compare: [28, pp. 214-216] and [64]. These techniques were first applied 
to uniformization problems around 1880, when Poincaré [53] showed that the 
differential equations characterizing uniformization depend upon 3g — 3 
complex parameters. Cf. equation (10) below. If these parameters could be 
determined, it would then be possible to compute the desired uniformization 
explicitly. Unfortunately, these parameters (known in the literature as 
accessory parameters) are notoriously difficult to get hold of. In fact, part of 
the difficulty with the original continuity method arose from trying to 
understand what happens to these parameters when the Riemann surface 
degenerates; see [53, §§8-14]. Cf. also [6], [29, pp. 731-741, 774], [41], and [61, 
pp. 215-304]. 

Since no one has succeeded in writing down explicit formulas for the 
accessory parameters, it seems perfectly reasonable to compromise and try to 
obtain variational formulas instead. The obvious hope is that such formulas 
will offer some insight into what is going on. Part 1 will be devoted to this 
problem. 

At first glance, our results would seem to be rather disappointing; the 
variational equations are so messy that they appear to be useless. However, 
after staring at the formulas for a few minutes, one discovers some very 
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curious integrals (involving quadratic differentials). These integrals lead to a 
new technique for studying Poincaré series. 

This technique is surprisingly effective when it comes to testing whether or 
not a given Poincaré series is identically zero. In fact, under certain 
conditions, we are able to reduce this well-known problem to a finite 
computation. Cf. [51, p. 249]. A brief survey of our results (in this ongoing 
investigation) will be given in Part 2. 

PART ONE 

2. The basic differential equations. The results described in this and the next 
two sections are taken from [18], [21]. To begin with, let F be a compact 
Riemann surface having genus g > 2. We can represent F as an algebraic 
curve {P(x,y) = 0); the polynomial P(x,y) is naturally assumed to be 
irreducible. By considering y as a function of x, we are able to interpret F as 
a ramified covering of the Riemann sphere C. 

Let F00 denote the universal covering surface of F (in the sense of 
topology). The classical uniformization theorem guarantees that F00 is 
conformally equivalent to the upper half-plane H. Cf. [2, p. 181] and [69, p. 
171]. We can therefore form the universal covering map <p: H -> F. 

Let T denote the associated group of cover transformations [2, pp. 37-38]: 

(1) T = {self-mappings T: <p(7z) = <p(z) for all z G H } . 

We recall that there is a well-known isomorphism between T and the 
fundamental group 7r,(F, 0). Using equation (1), we immediately see that T is 
a Fuchsian group [i.e. a discrete subgroup of PSL(2, R)]. By definition, 

PSL(2, R) = (the group of Möbius transformations over R} 
( 2 ) = S L ( 2 , R ) / ( ± 7 ) . 

It is a theorem that T can be faithfully realized as a discrete subgroup of 
SL(2, R); cf. [18, pp. 217-218, 245]. This realization will be used throughout the 
rest of the paper. 

Since F is compact, Y has a compact fundamental polygon (S'. The family 
(L(9r): L G T} will then form a tessellation of H; note that the matrices in 
T — {/} are strictly hyperbolic. By identifying the sides of 5 , we can now 
represent Fas a quotient space H/T. In other words: 
(3) F = H/T. 

For obvious reasons, we would like to determine the covering map <p as 
explicitly as possible. To do so, it is enough to study w = <p-1. The function 
<p_1 lives on F, but is not single-valued. In fact, under the action of 7TX(F, 0), 
we find that: 

(4) w -» L(w) with L G T. 

Since L is a Möbius transformation, it is natural to consider the Schwarzian 
derivative of w. But, as is easily seen, {w, x} is a single-valued meromorphic 
function on F. Consequently: 

(5) { H>, x) = 2R (x, y) for some rational function R. 

The Schwarzian derivative is of course nonlinear. To linearize equation (5), 
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we apply a well-known change of variable: 

(6) «--7=t=-. * -—^= - , ^ -5 -
Vdw/dx Vdw/dx u 

The functions w and t> will now satisfy 

(7) dhi/dx2 + R (x, y)u = 0. 

We must try to find R (x9 y). 
To cut down on the number of possibilities, we can obviously limit 

ourselves to those cases where w = v/u is locally 1-1. This restriction leads to 
the decomposition 

(8) R(x9y) = R0(x9y) + Q(x9y)9 

where RQ is some explicit function on F and Qdx2 is a regular quadratic 
differential. Cf. [17], [18], and [63, pp. 265-272]. Loosely speaking, R0 is just 
the second derivative of an Abelian integral of the third kind. For notational 
convenience, we let &n (F) denote the set of regular nth order differentials on 
F. It follows from the Riemann-Roch theorem that: 

(9) dime &H(F) = (2n - l)(g - 1) for n > 2. 

Cf. [26, p. 507]. Taking n = 2, we immediately obtain: 
3g-3 

R(x,y) = R0(x,y)+ 2 *,-Qj(x9y)9 
7 = 1 

where ^ G C and {Qjdx2}jt'\3 is some basis for &i{F). Equation (7) can now 
be rewritten as follows: 

(10) ^ + 
dx2 

3g-3 
R*{x9y)+ 2 ^Qj(x9y) W = 0. 

In some sense, the computation of <p has been reduced to solving for the 
accessory parameters ^ . Compare: [3, pp. 272-379], [11, pp. 233-240], [17, pp. 
9-10], [18, pp. 215-216], [30], [31], [53], [59], [62], [63]. 

As mentioned in §1, it seems rather difficult to get hold of the Xj which give 
rise to the Fuchsian uniformization <p. To avoid possible confusion, we shall 
call these special values of Â  the Fuchsian parameters. [These parameters 
should be regarded as functions of the underlying Riemann surface F.] 

Later on, it will be necessary to consider certain vector spaces over R 
instead of C. For this reason, we shall use real accessory parameters Xj in a 
slightly modified differential equation: 

(11) ig + d^u 
dx2 

6g-6 
R0(*>y)+ 2 hQj(x,y) 

7 - 1 

w = 0 

the quadratic differentials Qj(x9y) dx2 correspond to a basis over R. 
Consider equation (11) with arbitrary Xj E R; let u and v be any two 

linearly independent solutions. The quotient z — v/u will then be a linearly 
polymorphic function on F. More precisely, after travelling around the loop 
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M E 7T,(F, 0), we immediately see that: 

(12) ( £ ) ^ M ( £ ) wi thMeSL(2,C) . 

The mapping M-* M is called the monodromy homomorphism; the image set 
{M} is called the monodromy gr014p. 

When the Fuchsian parameters are substituted for A,, the monodromy 
group obviously reduces to T (apart from a possible conjugation). This fact 
suggests that variational equations for the Fuchsian parameters can be 
formulated by writing down the condition that {M} is conjugate to a 
subgroup of SL(2, R). The extra conjugation causes a technical problem 
which can be eliminated by working with the (seemingly) weaker condition 
that Tr(M) be real 

REMARK. There exist non-Fuchsian parameters X, for which {M} looks just 
like a Fuchsian group. This phenomenon is explained in [17] and can always 
be avoided by working locally. Since variational equations are local by 
definition, there is no need to worry about pathologies of this type. 

3. The variational formulas. In order to obtain variational equations for the 
Fuchsian parameters, it is very tempting to work with the condition that 
Tr(Mk) be real for enough Mk. The underlying idea here is rather obvious: if 
enough traces are real, then {M} should be conjugate to a subgroup of 
SL(2, R). Under these circumstances, the local results in [17] will guarantee 
that the accessory parameters are really Fuchsian parameters. 

To illustrate the necessary computations, it is sufficient to consider a closed 
curve M C C Let x0 be its initial point; suppose that E0 and Q0 are 
holomorphic functions near M. We want to study the following differential 
equation for small values of e: 

f d2u/dx2 + [ £ 0 + eQ0]u = 0 

O3) j K(*o)-l> tf(*0) = 0 
( u'(x0) = 0, t / (*o)= l 

Let Q) denote the obvious solution vector [defined by analytic continuation 
along A/]; use equation (12) to define the corresponding monodromy matrix 
M(c). By means of a straightforward perturbation expansion, we find that: 

<»> (»:H / + ' />(:^ ;I)+ ) + 0 ( e 2 ) ; 

JM \-U* UVJ J 

As an abbreviation, we have written 

C)-(î) - *-*m-
For later use, we define: 

(16) 9lt(t/;«) = ( - ^ v2\ 

(15) M(s) = 
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There are obvious analogs of equations (14) and (15) on the surface F 
provided that M stays away from the branch points. 

Using equation (15), it is now very simple to formulate some (necessary) 
variational conditions for the Fuchsian parameters. To begin with, let 
{F(b): - 8 < b < 8} be any C00 family of compact Riemann surfaces 
{P(x,y, b) = 0} passing through JF(0) = F. The number 8 is assumed to be 
very small. The functions R0 and Qj in equation (11) can then be chosen so as 
to be C00 with respect to b. With a suitable interpretation, the same can be 
said about the branch points. To obtain the desired variational conditions, we 
merely combine the trace of equation (15) with the obvious restriction: 

(17) 6ImTr(M*)/3Z> = 0. 

THEOREM 1. Letfj(b) denote the Fuchsian parameters for F(b). Then: 

2 g£ Im<£ QjTT[<m,(u;v)Mk]dx 

-Im(f) 
9 ^ 6,-6 3 ^ 

96 jTi j 3* 
Tv[^l(u; v)Mk] dx9 

where the derivatives are evaluated at b = 0 and (v
u) corresponds to the Fuchsian 

uniformization ofF. The paths Mk E ^ ( F , 0) are completely arbitrary. 

Since the solution vector Q depends upon fp this system of equations is 
quasi-linear. To solve for the derivatives 3jÇ/36, one must try to select 6g — 6 
paths Mk so that the functions Tr(M^) are [in some sense] independent. 

To make this selection process more precise, we proceed as follows. First 
of all, choose a canonical dissection {ak, Pk}k=\ for F; see [65, p. 113]. The 
fundamental group ^ ( i s 0) is freely generated by these paths except for the 
commutator relation 

(18) ( a 1 , ^ ) . - - ( ^ , i S g ) = / . 

Applying the isomorphism TT\(F, 0 ) a T and the monodromy 
homomorphism, we immediately obtain: 

(19) *r,(F, 0) = [ « „ . . . , a,; fil9..., Pg]; 

(20) T=[Al9...9Ag;Bl9...9Bg]; 

(21) monodromy group =[Xl9...9Xg; Yl9..., Yg]. 

In each case, the obvious commutator relation holds. The groups (19)—(21) 
are now said to be marked. Compare: [17, pp. 14-19]. 

The marked monodromy groups obviously belong to the following 
algebraic variety: 

(22) * = {[Xa; Yp] e SL(2, C)2g: (Xv 7, ) • • • (Xg, Yg) = I}. 

By counting the constants, we immediately see that dimc(A/r) = 6g - 3. Since 
the monodromy group of equation (11) is determined only up to a 
conjugation, it is natural to consider the quotient variety 
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(23) N/SL(2, C) = Af [modulo inner automorphisms]. 

This variety has complex dimension 6g — 6. 
The varieties N and N/SL(2, C) have been studied by Teichmüller [66] 

and Gunning [13], [14]. Both varieties are known to be nonsingular near the 
Fuchsian group T. 

Return to equations (19) and (21) for a minute. Under the monodromy 
homomorphism, each element of irx(F9 0) corresponds to a word involving 
the letters {Xk9 Yk}

8
kxX. This lexicographic correspondence mil be denoted by 

M^>M. Cf. equation (12). It is rather obvious that Tr(M) is a single-valued 
holomorphic function on N/SL(29 Q. 

FACT (near T). One can always select paths {Mk}
6^Z\ so that the functions 

Tr(M^) are local coordinates on N/SL(29 C). In this context, Fuchsian 
groups are characterized by the condition (Im Tr(M^) = 0}. 

Knowledge of Tr(Mk) will thus determine [Xa; Yp] up to conjugation. Since 
Fricke [10, pp. 284-398] has used similar traces to provide a global characteri­
zation of Fuchsian groups, the Mk will be called Fricke paths. These paths are 
written down quite explicitly in [18, p. 247]. For g = 2 and generic T, we 
have: 
(24) 

f Mx = al9 M2 = fil9 M3 = a2, M4 = /?2, M5 = (a{9 (ix ), M6 = axa2 ) 
\ Mx = Xl9 M2 = F,, M3 = X2, M4 = y2, M5 = (Xl9 Y{ ), M6 = XXX2 ) ' 

Compare: equation (66). 

THEOREM 2. Let {Mk}^~x be the Fricke paths. The coefficient matrix 

Im(f) QJTT[^\1(U; v)Mk] dx 

which appears in Theorem 1 will then have maximal rank 6g — 6. 

This theorem is proved in [18, p. 255] using the general theory of 
monodromy groups. Roughly speaking, the idea of the proof is as follows. If 
the rank were less than maximal, the quasi-linear equations in Theorem 1 
could be solved to obtain two distinct families of differential equations (11), 
both^ characterized by (17). Since the corresponding Fricke coordinates 
Tr{Mk) are real, these differential equations will yield two distinct Fuchsian 
uniformizations for certain F(b). This is a contradiction. 

Notice that Theorem 2 permits us to solve for dfj/db [in Theorem 1]. The 
resulting formulas are obviously very messy and appear to be quite useless. 

4. Another look at the variational equations. Before giving up on those 
formulas for dfj/db9 it makes sense to ask: what is the significance of the 
coefficient matrix in Theorem 2? 

In this way, we are led to consider the integrals: 

(25) $ ö T r ( ~ w < ^ v
 JML/JC for M G TT,(F, 0). 
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These periods are hard to interpret [on F] because they involve the Fuchsian 
uniformization z = v/u. But, remember that F = H /T. When computed on 
ƒƒ, the above integral becomes: 

(26) jT f c»«(2)Tr[ ( - * ^dz, 

where Qdx2 = q(z) dz2 and MET. Cf. equation (6) and recall that T & 
^ ( F , 0 ). It should also be noted here that q(z) dz2 is a regular quadratic 
differential on H/T. 

The periods defined by (26) seem rather curious. They obviously live on 
H/T. But what do they mean? And what are their properties? 

To start off with, we define: 

(27) ^w = (:z
1
 zl\ 

For any matrix T E SL(2, C), it is easily verified that: 

(28) 9ti( rz) = T\Z) • T^L(Z)T~1. 

This trivial identity will turn out to be quite important. For example, by using 
(28) and the fact that q{Kz)K\zf = q{z) for K E T, we immediately see 
that: 

1 (26) is independent of z0, ) 

(26) is unchanged when M is replaced by KMK ~l (with K ET) J " 
The identity q{Kz)K\z)2 = ?(z) simply reflects the fact that Qdx2 = #(z) dz2 

= q(Kz)d(Kz)2. 
Since (26) is a scalar, we are not dealing with an Eichler period. Cf. [9] and 

equations (104M106). 
Fortunately, it is not difficult to find a variational interpretation for (26). 

To do so, we consider the differential equation 
(30) d2u/dz2 + eq(z)u = 0 on H/T 

subject to 

(3D 

Let 

u(z0) = 1, v(z0) = z0 

u\z0) = 0, i/(z0) = 1 

% «-(Î) 
be the obvious solution vector; by construction %)(z) = (fY). For M = (" £) E 
T, we easily see that: 

(32) %(Mz) - M(e)9lc(z) • (cz + d)~l with M(e) E 5L(2, C). 

Compare [23]; equation (32) is an obvious analog of (12). Using a 
perturbation expansion as in (14)-<15), we discover that [18, p. 223]: 
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(33) 

(34) 

3M(«) 

J«=o z° 
ÇMz° q(z)<$L(z)M dz; 

£TrA#(.) = [M20q(zyTT[yt(z)M]dz. 

Equation (34) makes fact (29) seem rather obvious. More importantly, 
however, the coefficient matrix in Theorem 2 can now be regarded as a 
Jacobian matrix: we merely take u" + [2A,^(z)]w = 0 and look at the 
equidimensional mapping (A,) -» (Im Tr(M^)). Equations (33)-(34) will 
reappear later in a more general context [cf. Theorems 8 and 11]. 

Finally, observe that Theorem 2 can be reformulated as follows. 

THEOREM 3. Given any regular quadratic differential Q{z) dz2 on H/T. 
Then: Q(z) = 0 if and only if 

Im fMkZo Q(z)TT[<Dl(z)Mk] dz « 0 

for 1 < k < 6g — 6. The elements Mk in T correspond to the Fricke paths. 

PART TWO 

5. Poincaré series. When looking for possible applications of Theorem 3, it 
seems natural to consider those regular quadratic differentials Q (z) dz2 which 
can be written as Poincaré series; i.e. 

Q(z)-9[z,R]~ 2 R(Tz)T'(z)2. 

[We refer to equations (40)-(41) for a more careful description.] 
Motivated by my earlier work with Schottky groups [19], [20], I immediately 

asked myself if Theorem 3 could be used to test whether 8[z, R] = 0 on H. 
This possibility will be examined in §6; compare [21], [22]. The corresponding 
results for nth order differentials will be given in §7. 

To set the stage, we need a few preliminaries. First of all, fix any integer 
n > 2 and recall that F = H/T. The concept of an nth order differential on 
the Riemann surface F is well known and needs no further explanation [cf. 
6Ln{F) in §2]. When these n\h order differentials are transferred over to Hy 

they become automorphic forms of weight n. In particular, the automorphic 
forms corresponding to regular nth order differentials comprise a family 

1<p: <p is holomorphic on H, \ 

<p(Tz)T'(z)n - <p(z) for T E T and z G H J * 
Since the Fuchsian group T also acts discontinuously on the lower half-plane 
L, we define: 
(36) D « H U L ; 

{ <p is holomorphic on D, 1 

*:
 ç(7i)r(z),i-v(z)forrerandze/)j-The vector space &n (D, T) can obviously be written as a direct sum: 
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(38) #„(/>, T) = #„(//, r) e an(L9 ry 
Using equation (9), we immediately see that: 

(39) dime &n(H, T) - din^ &n(F) = {In - l)(g - 1). 

Compare: [34, pp. 328-330]. 
We can now introduce the Poincaré series of weight n [51]. Let R denote the 

extended real axis and 

_ [ R (z) is a rational function, the poles of R (z) dzn are 1 
(40)&„ = (R: W

 A
 F W 

( situated along R and have multiplicity < n - 1 J 
For each R E St„, we define a Poincaré series 0[r, ƒ?] as follows: 

(41) *[* , /? ]= 2 R{Tz)T{z)\ 
r e r 

By means of a formal computation, we immediately see that 0[z, R] E 
(£„(/>, r). This assertion is easily justified, because the definition of $ln 

guarantees that 0[z, R] is absolutely convergent on D; see [34, pp. 91, 99, 
113]. On the other hand, if we restrict ourselves to &n(H, F), then (40) can 
obviously be modified to allow R (z) to have poles in L. 

Many people have studied the problem of trying to represent arbitrary 
elements of &„(H, T) as Poincaré series Q[z, R0]. The earliest work in this 
area is due to Poincaré himself [51]. He proved that such representations are 
possible, at least when R0(z) is allowed to have poles in L. Petersson [47], [48] 
later clarified and extended this work by using his inner product: 

(42) (ƒ„ f2) = ƒƒ A (z)7&)y2n~2 dx dy. 

Loosely speaking, the crucial idea in Petersson's work is the construction of 
certain Poincaré series Em such that: 

(43) ( / , £ m ) = / m ) ( z 0 ) for al l / E â„(H, T). 

Automorphic forms ƒ in the orthogonal complement of {E& E}9 . . . , EN) must 
therefore possess a zero having multiplicity at least N + 1. Since the total 
number of zeros cannot exceed 2n(g — 1) [when ƒ a* 0], we immediately see 
that {£o, £ „ . . . , EN) spans &n(H9 T) whenever N > 2n(g - 1). We also 
note that: 

(44) 2n(g - 1) + 1 - dime <£„(#, T) + g. 

To obtain representations of the form 0[z, R] with R E &„, one can now 
apply an approximation argument. See [5] and [34, pp. 91, 130-141]. 

The analogous problem for D was first studied by Bers around 10 years 
ago in the context of Kleinian groups; see [34, pp. 186, 383]. Bers proved that 
any element of &n(D9 T) can be represented in the form 0[z, R] with 
R E %t. The fact that the same R can be used for both H and L is not too 
surprising in view of certain well-known theorems about rational approxi­
mation [68, p. 15]. 

The results considered above are examples of completeness theorems. Such 
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theorems do not tell the "complete" story about Poincaré series [even if they 
do provide a semi-explicit basis for &n(H9 T) or &n(D9 T)]. For example, 
consider &n (D9 T). Since 

d i m c ^ ) = oo and d i m ^ A T) = 2(2n - l)(g - 1), 

Bers' result shows that there must exist many rational functions R E %, for 
which 0[z9 R] = 0 (on D). Completeness theorems offer very little insight 
into this situation. We know that such R exist, but we cannot write them 
down explicitly. 

The problem of finding (explicit) necessary/sufficient conditions for 
0[z9 R] = 0 was first raised by Poincaré [51, p. 249]. This problem can be 
posed for both &n(H9 T) and &n(D9 T). For the case &n(H9 T), a few very 
partial results are known; see [51, pp. 249-254] and [45]. 

TRIVIAL REMARK. We observe that 0[z, R] = 0 on D whenever R(z) = 
A(z) - A(Lz)L'(z)n, A E%, LET. This fact was first noted by Poincaré 
[51, p. 249]. 

We claim that there is good reason to believe that life is extra complicated 
when everything is restricted to H. For simplicity, suppose that n = 2. 
Choose any nonzero <p G ^ ( L , T). According to Bers' completeness theorem, 
there will now exist some i ? 6 ^ such that 

To see things more clearly, we decompose R (z) using partial fractions: 

(46) * ( * ) « £ 7 3 T [CJZCAJER]. 
7=1 Z V 

We also define <p*(z) =cp(z) and i?*(z) =R(z). Since T is a discrete 
subgroup of SL(2, R), it is easy to see that 

(47) 0[z,R*} = [ ^ f o r * e " ) . 
L J lO f o r z S L j 

Thus, for z £ # , we find that 0[z, /?] = 0 although 0[z, R*] ZÉ 0. But, 

N c 

Consequently, /ƒ there are necessary/sufficient conditions for testing whether 
0[z9 R] = 0 on if, they must somehow distinguish between c, and c,. This 
seems a little strange [at first sight] because the £, are real and T C SL(29 R). 
To say the least, such conditions could not be given by rational expressions 
over the field Q(c,, coef T, ^.). Note: coef T is the set of all matrix coefficients 
determined by T. Similar remarks obviously hold for n > 3. 

In view of this difficulty, it seems reasonable to work with &n(D9 T) 
instead. Since every function R G <&„ can be written in the form 

f Rx E %9 R2^% ] 
(48, * - * , + * , wUh I | ( . ) = ^ _ « . (O-IÇÇJ • 
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we immediately see that 0[z, R] = 0 on D if and only if 0[z, Rj] = 0. There 
is accordingly no loss of generality if we restrict ourselves to the case 

(49) R£%, R(E) = R(z). 

From now on, only case (49) will be considered. 

6. Results for quadratic differentials. 

THEOREM 4 (n = 2). Assume that (49) holds. In addition, suppose that the 
poles of R(z) dz2 are located at hyperbolic fixpoints [of certain elements in T]: 

Then: 
N 

Im fMz° 9[z, R]TT[GJl(z)M] dz = 2 cfoi 
z0 j=\ 

where XJM is a rational expression in the field Q(coef T, £l5 . . . , £N). The 
expressions XjM can be computed effectively. 

PROOF (sketch). By means of an auxiliary conjugation, we may assume 
that oo is not a pole of R(z) dz2. Thus R(z) = 0(z~4) near z = oo. For the 
sake of simplicity, we assume further that the ^ occur in pairs and that M is 
primitive. [A matrix T E T is said to be primitive when it cannot be written 
in the form T = Um with m > 2 and U E T.] 

To begin the computation, observe that: 

jtf fMz°0[z,R]Tv[6yi(z)M]dz (z0BH) 

= S fMZ° R{Tz)T\z)2Tr[GK{z)M]dz. 

Using the coset decomposition T = 2 W[M], we now set T = WMk. There­
fore: 

J = 2 fMZ° * ( JFM*z)( WMk )\z)2Tr[ 9!t(z)M] <fe. 

It is very tempting to let u = Af *z. Applying equation (28), we immediately 
obtain 

Vl(u) = ^'MkGJl(z)M-k 

and 

/ = 2 2 rJI#*+,'°/J(»Fw)»r/(M)2Tr[giL(i/)JI/] dk#. 
W k JM% 

The summation over k yields 

f R(Wu)WXu)2Tr[6Jl(u)M]du9 
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where &M is some path (in H) which connects the repulsive and attractive 
fixpoints of M ; i.e. r\M and £M. The Cauchy integral theorem allows us to 
deform &M. We can therefore redefine &M to be the non-Euclidean line 
determined by i\M and £M. However, we reserve the right to make some small 
deformations a bit later! In any case, it follows that: 

; = 2 f R(Wu)W\u)2Tv[(m,{ü)M]du. 

Taking v = W(u) and applying (28), we now obtain 

and 

(50) / = 2 f R(v)Tr\G)\L(v)WMW-l]dv. 
w -V(óW) L J 

If &M is chosen to be the non-Euclidean axis of M, then W(&M) will simply 
be the axis of WMW~X. By using the identity 

(51) Tr[91t(z)*] - cz2 + (d - d)z - b « c(z - &)(z - % ) 

which is valid for any hyperbolic matrix K = ("J) E SX (2, R), we see that 
the W{&M) integrals are perfectly harmless. 

Let &£ be the closed loop generated by &M under the reflection principle. 
As is trivially verified, 

(52) lm f F(z) dz = ±: <$) F(z) dz whenever F(z) = JJz) . 

Since R(v) =R (t>), we immediately deduce that: 

(53) I m ( / ) = 2 TT <t R{v)Tr\^{v)WMW'x\(h. 

Although each integral is elementary, the number of W E T/[M] is infinite. 
At first sight, this looks discouraging. 

Observe, however, that the W integrals are zero unless W(&M) separates 
the points £.. Since this separation is considered on the Riemann sphere C, the 
estimate R(v) = 0(v~4) plays an important role here. 

Loosely speaking, there are only two kinds of separators W(&^): big ones 
and little ones. To be more precise [and less picturesque], we let Nx and N2 

signify the number of § contained in the respective components of C — 
W{&^). Big separators are characterized by the condition min[JV„ N2] > 1. 
Little separators, on the other hand, satisfy min[A ,̂, N2] = 1. See Figure 1. 

We claim that the number of big separators w(&^) infinite. To prove this 
assertion, notice that the endpoints of W(&M) dirt given by W£M, Wr\M. If p 
denotes spherical distance, then p[W£M, Wi\M\ will obviously exceed some 
positive number 50 for every big separator. However, since T is discrete, a 
simple compactness argument [based on WMW~X] shows that 

(54) card{ W E T/[M]: p[ W{M9 WVM] > S } < oo 
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FIGURE 1 

for every 8 > 0. This, needless to say, completes the proof of our claim. 
To finish the computation of Im(/), it is now sufficient to consider the little 

separators which enclose £,. Since ^ was assumed to be a hyperbolic fixpoint, 
we can write ^ = £L for some primitive LET. The repulsive fixpoint t]L will 
then correspond to some point £, withy > 2. 

By neglecting a finite number of elementary terms, we can reduce the 
problem to the case of tiny separators W(&^) [cf. (54)]. That is: 
P[ W£M, WT]M] is now assumed to be very small. 

Subject to small perturbations, &M was chosen earlier to be a non-
Euclidean line. The same set-up can certainly be used for &L. Since W(&^) is 
a tiny separator, it is obvious that W(&M) must intersect &L. See Figure 2. 

west) 

FIGURE 2 

To analyze the corresponding W G T/[M]9 we look at W(&M) D &L
 anc^ 

pass back to F using the universal covering map <p. This reduces the problem 
to a study of the intersections of yM and yL on F [where yL = <p($L) and 
1M

 =
 <P(&M)\' F° r technical reasons, it is important to know that these 

intersections are all transversal; this can be accomplished by making small 
deformations. It follows that: 

[W ET/[M]: W(&S) is a tiny separator about £L } 

* U {LnWa:0< n < oo}, 
a 

where a runs over an appropriate (but finite) index set. The dotted circles in 
Figure 2 should therefore be interpreted as LW{S,&) and L2W(&£). 

The terms in (53) which correspond to LnWa can now be rewritten as 
follows: 
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2 2 h $ R(z)Tr\Gyi(z)LnWaMW-lL-n]dz 

« ™ i 2 2 eJr[^L)L»WaMW-'L-»] ( e a = ± l ) . 

Using equation (28), we easily see that: 

9R-&.) = (M"" L"9lt&.)L-" for n £ Z , 

where 0 < AL < 1 is the multiplier of L. Consequently, 

Putting everything together, we finally obtain: 

Im(7) = [a finite number of elementary terms] 

(55) AT f TT[<mJè)WaMW-1] \ 
+

y ? / c 4 ? e " — ^ — r 
Note: for simplicity, the subscript^' has been omitted in a, ea, Wa, \L. 

The first assertion in Theorem 4 is now rather obvious. 
Before turning to the second assertion, one very important point should be 

noted. It is well known that Teichmüller space Tg can be realized as a space 
of marked Fuchsian groups (20); cf. [17, pp. 14-19]. In addition, recall that 
the elements of T can be represented as words in a formal group [corre­
sponding to (20)]. By considering appropriate quasi-conformal mappings on 
H, we deduce that: (i) the relative position of hyperbolic fixpoints is unchang­
ed when r varies in Tg [1, p. 47]; (ii) the form of Im(/) is independent of 
T E Tg. The rational expressions XJM can therefore be determined by 
studying a special choice of T. 

To show that this determination can be carried out effectively, we use the 
so-called Nielsen ordering on R [44, pp. 193-231]. This ordering (which 
deserves to be much better known) is based on the fact that there is a 1-1 
correspondence between points x E R and certain infinite words 1 1 ^ , ! ^ in 
the group (20). In particular, 

x = lim LXL2 • • • Ln(z0) [for any z0 E H]. 
n-+ao 

Hyperbolic fixpoints correspond to words which are eventually periodic. See 
also [8], [16], [35], [39]. 

Among other things, the Nielsen ordering can be used to set up an effective 
procedure for determining the relative position of fixpoints. In view of this, 
we can easily decide which loops W(&£) go around which fixpoints |,. These 
considerations ultimately lead to a rigorous proof of the second assertion. 
D 

COROLLARY (n = 2). Suppose that R satisfies the hypotheses of Theorem 4. 
Then: 0[z9 R] = 0on D if and only if 
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N 
2 CjXjMk = 0 forl<k<6g-6. 

7 - 1 

Needless to say, the elements Mk correspond to the Fricke paths . 

PROOF. We merely combine Theorems 3 and 4. • 
Before formulating any concrete examples, it is useful to look at Theorem 

3 in connection with another kind of Poincaré series. 
To define these series, we first choose any primitive element T = (a

c%) in I\ 
We then write: 

QAZ) C2 welrtv ( Wz - ZT f( Wz - VT)2 

^ ' [assuming that c ^ O ] . 

The fixpoints of T are denoted (as usual) by £T and %; the elements W are 
understood to be coset representatives: T = ^[T]W. For obvious reasons, 
QT(z) is called a relative Poincaré series. The modifications required when 
c = 0 are not important; they will therefore be omitted. 
It is easily checked that: 
(i) (z - iTy\z - i)Ty2 E &2(D9 T0) where T0 = [T]; 
(ii) QT(z) is unaffected by ambiguities in the choice of W\ 
(iii) QT(z) is absolutely convergent on D; 
(iv) QT(z) E (^(D, T); 
(v) QT(z) can be expressed as a sum over the conjugacy class { T}, viz. 

^ R\z) 
(57) QT(z)= S / D \ 2 > 

RŒ{T} (Z - Rz) 

In view of [19], definition (56) seems rather natural. The series QT{z) can 
also be found in [46], [47], but they appear in a disguised form. It is 
interesting to note that Poincaré considered relative series of a somewhat 
different type in [55], [57]. 

There is a simple transformation formula for the period (26) when M is 
replaced by Mk. Namely: 

(58) I[q, Mk] = k m * " w~* I[q, M], 
m — m ! 

where m and m~x are the eigenvalues of M E 5L(2, R). For this reason, 
there is usually no loss of generality if one assumes that M is primitive. 

THEOREM 5. Suppose that T and M are primitive elements in T such that 
{T} ^ {M} and {T} ^ {M"1}. Let yT and yM be any curves in the free 
homotopy classes corresponding to {T} and {M}. Then: 

TrsgnTr(r) „ 
Im I[Qr,M] = — K-^ 2 ^[T9 WkMWk'

l]9 

[Tr2(r)-4]3/2 k 
where 
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(a) the number of terms in the k-sum is < card(yM f) yT)\ 
(b) the Wk are double coset representatives in [ T] \ T/[M] and ek = ± 1 ; 
(c) 9[X9 Y] = Tr(X)Tr(Y) - 2Tr(XY). 
The entries ek and Wk can be determined by means of an algorithm once yT and 
yM are visualized on F. 

Finally9if{T) = {M} or {T} = {M~1}, then Im I[QT, M] = 0. 

PROOF (sketch). Suppose that {T} ¥= {M ± ï } . The coset representatives 
W E [T] \ T can now be expressed in terms of the double coset representa­
tives W0E[T]\T/[M]; that is, W = W0M

k (k E Z). By reviewing the 
proof of equation (50), we immediately see that: 

I[QT, At] = \ 2 ƒ a — I 3 Tr[<^v)W0MW0-
i] do. 

Note that the points £r, i)T, W0(£M), W0(-qM) are distinct. For this reason, the 
integrals over W0(âM) are perfectly harmless. Using equation (52), we obtain: 

, , . Trf 911(c) WV^Wo'1! 
(59) Im I[QT,M] - -L 2 £ 0 — ; r * • 

But, the Wc0,£,) integrals are zero unless W0(&£,) separates | r and rjr. Cf. 
Figure 3. 

%(®*M) 

FIGURE 3 

To analyze which elements WQ are now relevant, we pass back to F using <p. 
By deforming &T and &M, we can ensure that yT = <p(6£r) and yM = <p(â^/). 
Let <2r be any subinterval along &T which is homeomorphic to yT under <p. 
Since we can always replace JVQ by r*W0, there is no harm in assuming that 
W0(&M) crosses &T along GT. Assertion (a) follows immediately. It is 
understood here that yT and yM intersect transversally. 

Recall that T = (a
c

 b
d). By means of a straightforward computation, we see 

that: 

ï*-«H-« (z - £7-) (z - %> 
(60) 

^sgnTr(r) 
= c • 

[ T r 2 ^ ) - 4 ] 3 / 2 

Tr[9H(z)ö] 
- dz (counterclockwise) 

[ 2 T r ( ô r ) ~ T r ( g ) T r ( r ) ] 

for any Q E SX(2, C). The desired formula for Im I[QT, M] is now a trivial 
consequence of (59) and (60). 
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Once yT and yM are drawn on F9 the Nielsen ordering can be used to 
formulate an algorithm for determining Wk and ek. Œ the last three 
paragraphs in the proof of Theorem 4. This algorithm is particularly simple 
when yT and yM are Jordan curves. 

The exceptional cases { T} = {M±l} can be treated by means of a special 
[but similar] argument. • 

Theorem 5 can be used to construct explicit bases for (^(/f, T)R. To do so, 
one merely guesses 6g — 6 relative Poincaré series QT(z) and then tries to 
verify (by explicit computation) that: 

(61) rank[lm ƒ[ QTj, Mk] ] = 6g - 6. 

Note that this equation kills two birds with one stone: (a) {QT.}jt~\6 will be a 
basis for (^(/f, T)R; (b) Theorem 3 will be proved by direct computation. For 
generic T and 2 < g < 5, we easily see that 7} = Mj works. The same result 
presumably holds for all g > 6. [The proof reduces to showing that a certain 
(4g - 6) X (4g - 6) determinant defined over SL(2, Q2g~2 x C2 is not 
identically zero.] 

Once (61) is established, we can set 

(62) QT(z)= 2 CJQTJ(Z) [cjGR] 

and then solve for the c, by means of linear algebra in the field 
Q(tr r, V t ^ r ) - 4 ). To prove this, we simply observe that: 

6g-6 

(63) Im I[ QT, Mk] = 2 cjlm l[ QTj, Mk], 1 < k < 6g - 6. 

Compare [19, Theorem 5]. To get some feeling for the Cj in (62)-(63), we 
include the following period table for g = 2. 
(64) 

ft,, 

QAXA1 

QT 

A* 

0 
-r[Av 

0 
0 
0 
0 

*.! 

*. 

0 
0 
0 
0 

-P[A2AvBl] 

Computed using 

A2 

0 
0 
0 

'P[A2, B2] 
0 
0 

Theorem 5 

* 2 

0 
0 

V[A2, B2) 
0 
0 

-?[A1A2,B2] 

(A 

"20(04, 

vBl) AXA2 1 

0 0 
0 ?[A2AvBl) 
0 0 
0 P[AtA2,B2) 

0 2ö[(^1,51)^1M2] 
5,)M,M2] 0 j 

The following notational conventions hold: (a) <$[X, Y] = Tr(*)Tr(7) -
2Tr(*y); (b) />[(/, V, W] = Tr(UVW) - TT(UWV); (C) the factor ^[Tr2^) 
— 4]"3/2sgn Tr(T) is omitted in each row. 

REMARK [ABOUT THE FUCHSIAN PARAMETERS]. Assume, for a moment, that 
the Cj in equation (62) are given by reasonably simple formulas. It is now very 
tempting to formulate a Fuchsian analog of [19, §4]. In the present case, the 
Fuchsian parameters jÇ must satisfy: 

6g-6 

3/(z ,z)= 2 fjtyz) for zEH, 
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where Qj dx2 = Rj(z) dz2 as in equations (11) and (26). A purely formal 
computation starting with 

_ ( 7 Z - £ ) ( 7 V V - T J ) 
n g r = Y log- — -

* A T g(Tz-ri)(Tw-t) 
= [an Abelian integral of the third kind] 

yields 

r e r - { / } [Tz - {]2 

Unfortunately, this formal expression for /(z, £) is /ÏÖ/ absolutely convergent. 
[Proof: integrate over ^ with respect to y~x dx dy\ note that there is a 
logarithmic divergence at y = 0.] Nevertheless, it seems entirely possible that 
the expansion for /(z, £) will be conditionally convergent (at least when its 
terms are added in a special order). Compare: [24, p. 154], [42], [43], [49], [50], 
[67]. By modifying the arguments in [19, §4], we immediately obtain explicit 
formulas for the fj in terms of T and Im I[RJ9 Mk]. These formulas involve 
some messy infinite series which appear to be conditionally convergent at 
best. [The case of bordered Riemann surfaces may be easier; see Problem 
(III) at the end of §7.] 

Further investigation along these lines is definitely called for. The crucial 
point seems to be that the fj should be regarded as functions of T, not F. We 
recall that a similar trick is used in the theory of elliptic functions; i.e. Jacobi 
inversion. Cf. [15, p. 174]. 

Finally, there is an interesting connection with the Petersson inner product 
which should be mentioned. Suppose that M G T is primitive and that 
ƒ G &2(H, T). Then: 

(65) ( ƒ , & , ) - - • £ * ' g n T r ( M )
i 3 / 2 fMZ°/(z)Tr[9H(z)M] dz. 1 [Tr 2(M)-4] / J*o 

Compare: equations (43), (77), and [47, pp. 37-41]. 
We can now formulate several concrete examples. For convenience, it will 

be assumed that certain hyperbolic fixpoints are finite. Conditions of this type 
can always be fulfilled by making a suitable conjugation. Cf. equations 
(22H23). 

EXAMPLE 1 (AN ILLUSTRATION OF THEOREM 4). Consider the case g — 2, 
r«[,41,,42;*1,2?2].Set: 

(b - bx)(b - b2)(b- b3) 
{Z) (z - b)(z - bx){z - b2)(z - b3) ' 

where (b, bx, b2, b3) = ( ^ , ^ T/5I, rjA) G R4. In addition, write: 

R (z) = — + — + + . 
z-iBx z~iAx z-j]B{ z->qA] 
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Using Theorem 4 and the Nielsen ordering, we can compute the following 
period table. 

M, 

Ai 

(AVBX) 

AXA2 

- Im 7[0(z, R\ Mk] 

x ^ i , i 

o 

o 

o 

^ î ) ] - ^ T r p î t ( | 5 i M ^ 

[Recall that 0 < XL < 1 is the multiplier of L.] As shown in [18, Theorem 
7.14], the elements Mk correspond to legitimate Fricke paths whenever 

(66) 
Tx(A ,)Tr(5, ) * 2Tr(A,5, ), TT(A2)TI(B2 ) ^ 2Tr(A2B2 ) 

^[(^,,5,), ^„^2]^0 
Compare: (24) and (64). 

EXAMPLE 2. The completeness theorem of Bers [mentioned after (44)] can 
easily be strengthened so as to provide an explicit set {9[z, Rj\: 1 < j < N) 
which spans &„(D, T)c. In fact, using the notation of [34, p. 383], it is enough 
to look at Rj{z) = cp(u; z) with u G {Ak(aJ, Bk(a„)} and 1 < k < g, 1 < a 
< In — 1. Accordingly, the number N will not exceed 2g(2n — 1). 

We consider the case n = 2, g = 2, T = [At, A2; Blt B2] and suppose that 
(66) holds. Set: 

(0 - *.)(9 ~ fr)(9 - A3) 
' ( Z ) (z - cj)(z - bx)(z - b2)(z - 63) 

where (6„ Z>2, b3) = (£,,, ij,,, ^ , ) G R3. 

To apply the extended version of Bers' theorem, we define: 

c2 - ^ 2 ( ^ , ) c3 = Ai(vB) c4 = A2{t)A) 

c7 = M^A, ) 8̂ = *20to,) C9 = ^ ( T ^ , ) 
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It is understood here that Cj,¥* oo. [The missing entries correspond to trivia.] 
Using Theorem 4 and the Nielsen ordering, we can now compute 
Im ƒ [0(z, /?,), Mk] as in Example 1. An explicit (but rather lengthy) compu­
tation will ultimately show that: 

rank[lml[0(z, R,)9 Mk]]-6 for; G {1, 2, 4, 5, 6, 7} and 1 < k < 6, 
/>roi?iVferf 

Z ) ^ , , ^ , , ^ , / ! , ^ 1 ] ^ 0 and 
(67) 

D[B»{AX9B1),AX]*D[B1>A;X{AX9BX)A7>AX\ 

It is easily seen that conditions (66)-{67) define a dense subset of Teichmüller 
space. Subject to these restrictions, we conclude that {0[z, Rj]:j = 
1, 2, 4, 5, 6, 7} is a basis for both ^(7/ , T)R and ^(Z), T)c. Cf. equations 
(48H49). 

Taking things a bit further, we now write: 

•[*. *s] = 2 ty[*> Rj] withy G {1, 2, 4, 5, 6, 7} and À; G R. 
y 

To solve for A,, it is sufficient to look at the Mk periods: 

Im l[9(z, * 3 ) , Mk] » 2 A,Im 7[0(z, * , ) , Mk\ 1 < * < 6. 

In particular, by taking k « 3, we find that A7 « 0. Hence: 

0[>, /?3] « \x9[zy Rx] + A20[z, J?2] + \40[z, R4] 

+ A50(>, i?5] + X60[>, tf6]. 

This curious identity shows that {0[z, Rj]}%x
 i s not a basis for (^(Z), T)e 

Conclusion: some caution is required whenever we try to extract a basis 
from the explicit set {0[z, /?,]: 1 < j < N}. Compare [48]. 

EXAMPLE 3 (A REMARKABLE IDENTITY). Assume once again that g — 2, 
F = [Av A2; Bv i y . Furthermore, suppose that (66) holds. Then, in view of 
period table (64), {QM (*)}*_ i will be an explicit basis for (^(H, T)R. 

Let Rj(z) be defined as in Example 2. Since the periods Im I[0(z, Rj), Mk] 
can be computed explicitly, it is trivial to express 0[z, Rj] in terms of 
{QMJUV Takingy « 1, we obtain: 

(68) 

0[z,Rx] = cQAi(z) 

.-[T*H,)-4] g - ^ 

To eliminate the restriction (66), we simply apply a continuity argument. 

7. Results for nth order differentials [n > 2]. In this section, we shall be 
content to give a leisurely outline of the main results. Since brute-force 
computations are needed in the derivation of several formulas, it will be 
convenient to assume that: 
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(69) n < 6. 

This restriction can almost certainly be removed; cf. the paragraph following 
Theorem 11. 

The basic idea is now rather obvious. We consider q> G &n (H, T)R and then 
try to develop a period In[<p, M] which generalizes (26). This period should be 
computable in the sense that there are analogs of Theorems 4 and 5. But, 
more importantly, there should also be an analog of Theorem 3. The 
extension of Theorem 3 causes serious problems because it is not at all clear 
what the generalized Fricke paths {M*}(*«71K2*~2) will be [cf. equations 
(22>-(24) and (78)-{80)]. We will say more about this matter in a few minutes. 

To discover the correct formula for In[q>, M], we need a little background 
material. Cf. [20]. We fix n > 2 and then define the column vectors 

(70) X(z) = ( r " - ' - ) , Y{z) = ( ( - l ) a ( " ~ !)*«), 

where 0 < a < n — 1. We also define 

(71 ) 9H(2) = X (z) Y (z)' [ t = transpose ] . 

Note: when n = 2, this 911 differs from (27) by a factor of (— 1). 
For any matrix T = (" b

d) E SL(2, Q, observe that there is a uniquely 
determined n X n matrix x(^) such that: 

(72) X(Tz)(cz + d)n-l= x(T)X(z). 

W e s e t ^ K r ) » ^ " 1 ) ' ' 

FACT. The following properties hold: 
(i)X(Tz)(cz + d)n~x « x(T)X(z) and Y(Tz)(cz + d)n~{ - %{T)Y(z)\ 
(ii) x and ^ are homomorphisms 5L(2, C) -» £L(/i, Q; 
(iii) <%l(Tz)T'(z)1-" - xiT^izMT-1); 
(iv) Tr[9IL(z)x(r)] - ( - l r ' l c z 2 + (rf - a)z - bf1; 
(v) 9H(z) = [9H^(z)] where 9R^(z) - ( - l / ( J - , ) j r - 1 ^ - - and 0 < 

a, 0 < /i - 1. 

As explained in [18], [21], we can now generalize (26) by writing: 

ƒ„[*, At] « - f*%(z)Tr[<^(z)X(A/)] dz 

(73) 
V ' for M Grand<pG£w(i/ ,r). 

In view of assertion (iii), there is no problem in verifying the analog of (29). 
Furthermore, since the geometry is independent of n, there will be immediate 
analogs of Theorems 4 and 5 once we define 

1 v
 W'(Z)H 

c we[T]\r (Wz - £T) (Wz - riT) 

Cf. [46], [47] and note that statements (i)-(v) following equation (56) carry 
over with trivial modifications. In particular, 
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„ R'(z)n/1 

(75) QT(z)- 2 , ' „ 
R£{T} (Z-Rz) 

The analogs of (60) and (65) turn out to be: 

(76) 

and 

2/ ^ - « H - « (z - | r ) > - % ) " [Ti*(r) - 4 ] - 1 / 2 LC ' J 

^ Y] ' 2 ^ F T T [Tr(^)Tr(y) " ^(XY)]'[TT(X9 Y) - 2]' 

r ( | ) r ( / 2 - | ) sgnTr(M) 

X W [Tr z (M)~4] ' 
(77) 

for ƒ E #„(#, T). 

To complete the picture, it remains to generalize Theorem 3. This is where 
the trouble begins! 

Loosely speaking, there are two possibilities: 
(A) the computational approach, where we try to generalize equation (61) by 

means of educated guessing and explicit computation; 
(B) the theoretical approach, where we try to generalize Theorem 3 [without 

any guesswork] by first determining the geometric significance of the 
generalized Fricke paths Mk. 

REMARK. In method (B), no attempt is made to find an explicit basis for 

Before stating any theorems, it may be useful to take a quick look at [some 
of ] the difficulties encountered in both methods. 

First of all, notice that two educated guesses are required in method (A). 
That is, one must choose (2n — l)(2g - 2) relative Poincaré series QT(z) and 
an equal number of matrices Mk G T. There is nothing to dictate these 
choices when n > 3. As a result, the rank of our new period matrix can fail to 
be maximal for at least two reasons: (i) when the QT do not span &n(H, T)R; 
and (ii) when the elements Mk are "interrelated" in some sense [e.g. conju­
gate]. 

For small values of g and n, it is very tempting to make some informal 
choices of QT and Mk, and then try to compute the desired rank numerically 
[at least for generic T]. Although this project is entirely feasible for (g, n) = 
(2, 3) and (2, 4), the penalty for bad guesses is very high. I learned this the 
hard way. After three weeks of meticulous computation, my first nine 
experiments all managed to end in failure! As I discovered later, the diffi­
culties were caused solely by making bad choies of Mk. [You might say my 
early guesses were not educated enough.] 

CONCLUSION (A). For this numerical method to be practical, one must find 
some way to narrow down the choice of {Mk}^\l^2g~2). 
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Turning to method (B), notice that the fact preceding equation (24) 
supplies a geometric interpretation for the Mk when n = 2. It would be nice 
if we could prove a similar result for n > 3. With this objective in mind, we 
define: 

(78) N(g, n) = { [* a ; Yfi] G SL(n, C)2*: (Xl9 Yx) • • • (Xg, Yg) = I}; 

N(g9 ri) 
C79) -^y-(—pr = N(g,ri)[modulo inner automorphisms]. 

Gunning [13], [14] has studied both of these varieties. By counting the 
constants, we immediately see that: 

(80) dime 
N(g,n) 

SL(n, C) = (n2 - l)(2g - 2). 

CONCLUSION (B). Since (n2 - l)(2g - 2) > (2n - l)(2g - 2) for n > 3, the 
geometric interpretation of {M^}(^71)(2g~2) will have to involve more than 
just a trivial extension of the {n = 2} result. [One is tempted to consider 
subvarieties of N(g, ri)/SL(n, C).] 

To discover the "real" meaning of the generalized Fricke paths, we must 
return to N(g, n)/SL(n, C) and look at nth order linear differential 
equations over H/T. This procedure is motivated by the following coinci­
dence: 

(81) dime 
N(g,n) 

SL(n, C) 
= 2 àimR&k(H,T). 

k~2 

The sum on the right can be interpreted as the number of real accessory 
parameters in an n\h order linear equation; cf. [23]. 

To be more precise, we recall that a linear differential equation 

(82) i / ( , , ) + 2 {V)Pk(z)uin~k) = = 0 [with holomorphic coefficients] 

is defined over H/T if and only if its solution vector %(z) transforms 
appropriately under T; that is, 

(83) %(Lz) = x(L)%(z)(cz + ^ ) 1 - w forL = (a
c *) e I\ 

Cf. equation (32). By studying the Wronskian of %, we immediately see that 
X(L) E SL(n9 C). The mapping L -* x(L) is known as the monodromy 
homomorphism. In view of (83), the coefficients Pk(z) must satisfy certain 
identities. These identities imply that there is a one-to-one correspondence 
between admissible [P 2 (z) , . . . , Pn(z)] and S^H, V) © • • • 0 &H(H, T). 
This is where the accessory parameters enter the picture. 

THEOREM 6 [for 2 < n < 6]. The differential equation (82) is defined over 
H/T if and only if 
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P2 E &£H, T) 

!^eéE,(#,r) P3-$Pi 

P4 - 2P; + | P2" e â4(H, T) 

P.-ÏP1 + 15 p; e5(H, T) 

p6 -3p; + f P'A' - | Pi" + - ^ Pr E <£6(//, T) 

It is understood that this list terminates after P„. 
According to Wilczynski [70, pp. 26, 32], the general formula will be: 

1 " £ 2 , ( « - 2)!w! (2m - 2 - *)! 
<84) 2 .2 ( - ' ^ ( » - ! - , ) . ( — . ) • (2,-3)1,. * - * ***.!> 
Compare: [60, pp. 175-199]. These two references illustrate an important 
connection with classical invariant theory. 

Motivated by equations (33)-(34), we shall now consider the variational 
theory of these «th order equations. For 2 < n < 6, we introduce the 
accessory parameters [Xa, \p, \ , \ , XK} by writing (as appropriate): 

P2 - 2 \ A ( z ) 

( 8 5 ) j P 4 - 2 P ^ + | P ; = SVVW 

P6 - 1P'5 + f Pi' - | Pi" + £ J?" = 2 \ w.W 

The functions qa,... ,wK are understood here to be basis vectors for 
&k(H, T)R,2 < A: < 6. 

To normalize the solution vector %,, we choose any point z0 E H and then 
insist that 

(86) [<?L(zo), <M*o)> • • • > ^ ("~°(%>] = * 

for a fixed matrix /? G GL(n, C). After introducing the Wronskian matrix 
A(z) = [9l(z), 9L'(z)9.. . , ^"""^O)], we can define the adjoint vector %(z) 
by writing: 

(87) <W(z) 

*>iW 

<*(*) 

= [«throw of A(z) ' ] ' . 

The column vector %(z) transforms according to the following rule: 
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%{Lz) = ^{L)%{z){cz + dy-\ 
(88) 

for L = (a * ) G T and %(L) = x ^ " 1 ) ' . 

THEOREM 7 [for 2 < /i < 6]. Subject to (86), //œ following variational 
formula holds: 

where 

3A4 
- - f^° £,(*)<¥(*)'<fe-x(I), 

£« (0 = <7a^ forn = 2; 

E0(z) = r^ 
for n = 3; 

£„(z) = 6ç a%" + 6£<?l' + f ^ 

£p (z) = 4 ^ % ' + 2/£<2l 

Ey(z) = sy% 

for n = 4; 

£a(z) = l O ^ ' " + 15^;%" + 9q';Gli' + 2q'a'"h 

Ep(z) = I0rfi%" + 10/£%' + ^ /£<& 

£ y ( z ) = 55y%' + | 5 ; ^ 

£ , (z ) = t<& 

for n = 5; 

15 '% £a(z) = 15<7a%"" + 30£<H"' + 27?;%" + 1 2 C ^ ' + y £ 

£„ (z) = 20/>%'" + 30/£%" + - ^ r£%' + y /£"% 
->« ^ for n = 6. 

£T(z) = 15*r%" + 155;%' + y J;% 
£,(z)«6f,%' + 3<;<3l 
£K(z) = M-.1L 

We intend to apply Theorem 7 near the trivial equation w(n) = 0. Compare: 
equations (30)—(31). By correctly choosing the matrix R in (86), we can 
certainly ensure that %(z) = X(z) when «(n) = 0. But, 

(89) ^ v'-^ - " • " • ' - - * <&(z) = A-(z)=><¥(z) = 
(« " O' 

y(^). 

To obtain generalizations of the period (26), we can now mimic equation (34) 
and evaluate 

m-.1l
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(90) 

def 
I„[qa,L] = ( „ - l ) ! ^ - T r x ( L ) 

def 
I„[r,,L] = (n - 1)! - ^ - Tr *(L) 

at the trivial equation w(n) = 0. For convenience, we also define: 

(9i) v„ = &AH, r)R © • • • © &n{H, r)R; 

(92) N = (n2 - l)(2g - 2) = dim( Vn ) . 

THEOREM 8 [for 2 < n < 6]. Tfcese new periods In are given by the formula 

- / ^ T r [ f , ( z ) r ( z ) ' x ( L ) ] ^ , 
" * 0 

vv/iere F*(z) is simply E+(z) with % replaced by X [cf. Theorem 7]. There is an 
immediate analog of (29) for each of these integrals. In addition, the following 
reduction formulas hold: 

qa,L]=3Ti(L)I2[qa,L]; 

qa,L] = f [4 + 3Tr(L2)]l2[qa, L] 

rfi, L] = 6TT(L)I3[rfi, L] 

qa, L] = 24[3Tr(L) + 2Tv{Û)]l2[qa, L] 

rf*>L] = 1f [3 + 2Tr (L 2 ) ] / 3 [^L] 

sy, L] = 10Tr(L)/4[V L] 

qa, L] = If- [9 + 8Tr(L2) + 5Tr(L4)]I2[qa, L] 

rp, L] = ^ 9 . [9 T r ( L ) + 5Tr(L 3 ) ] / 3 [^ L] 

sy,L] = f [8 + 5Tr(L 2 ) ] / 4 [^L] 

tt,L] = l5TT(L)I5[tt,L] 

The reduction formulas displayed in Theorem 8 show that the basic periods 
are merely those given by equation (73) [which is reassuring]. We also have 
the following: 

COROLLARY. Let {Mk}%=l be arbitrary elements in T. When evaluated at the 
origin, the Jacobian matrix of the equi-dimensional mapping X -> [Im Tr x(Mk)] 
is simply: 
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(93) / = 1 
(n - 1)! 

1m~I~(rfi9Mk) 

lmI~(sy9Mk) 

1m IH(wK9Mk) 

[with the appropriate truncation]. 

Needless to say, À stands for (\„ \p9...) ERN . 

Observe that J is well defined for any collection of Poincaré series 
{qa9 rp9... } C Vn9 linearly independent or not. [It is understood here that 
1 < a < 6g - 6, 1 < /3 < lOg - 10, etc.] 

We propose to generalize equation (61) by considering the period matrix J. 
In fact, suppose that rank(/) = N. It follows immediately that {qa9 rfi9... } 
is a basis for Vn (over R). But, now, choose any h E {2, 3 , . . . , n}. The rows 
in J corresponding to &h (H9 T)R are linearly independent. For this reason, we 
can find a subset {Mkx}^lx28~2) such that: 

(94) rankjlm In(<pj9 MkJ] = (2A - l)(2g - 2), 

where {(Pj}f^l^28~2) is any basis for &h(H9 T)R. Equation (94) can then be 
regarded as a generalization of Theorem 3. In view of the reduction formulas 
in Theorem 8, we also see that: 

(95) rank[lmIh(<pj9 MkJ] = (2h - l)(2g - 2). 

A moment's thought shows that the analysis of / is plagued by the same 
difficulties that were encountered earlier near conclusion (A). In particular, 
before we can develop a numerical approach based on / , it will be necessary 
to find some way to narrow down the choice of {Mk}

n
k=,. 

At first sight, it might appear that we have gained nothing by considering 
Vn in place of &n (H9 T)R [especially from a computational point-of-view]. 
But, in the present case, N = dimc[N(g9 ri)/SL{n9 Q]. This equation 
suggests that the correct choice of Mk may have something to do with the 
geometry of N(g9 n)/SL(n9 C). Cf. conclusion (B). 

To clarify matters, we return to equation (90) and observe that 
N(g9 n)/SL(n9 C) is nonsingular near the monodromy group x(T) 
mod SL(n9 C); cf. [13], [14] and [23, Theorem 2]. In addition, note that the 
lexicographic correspondence M -» M [defined after (23)] is still valid for 
N(g> n)\ there is no harm in replacing *nx(F9 0) by T. Compare: equations 
(19)—(21). If life is reasonable, there should now exist a set of functions 
{Tr{Mk)}

N
kxX which represent local coordinates [on N(g9 n)/SL(n9 Q] near 

X(T) mod SL(n9 C). 

THEOREM 9 [for 2 < n < 6]. Given Poincaré series {qa9 r^9... } C Vn and 
elements {Mk} C I\ Suppose that J has maximal rank. Then: 

(a) the Poincaré series {qa9 r^9. . . } form an explicit basis for Vn\ 
(b) equations (94) and_ (95) hold; 
(c) the functions Tr(Mk) are local coordinates near x(D mod SL(n9 Q. 
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THEOREM 10 [for 2 < n < 6]. Given Poincarê series {qa9 r^9... } c Vn and 
elements {M^: 1 < a < (2h - l)(2g -2)92 < h < n] QTsuch that: 

rank[lm I2(qa9 M2a)] = 6g - 6 

rank[lm 73(r/?, M 3 J] - 10g - 10 

Let tf) denote the union of all the elements Mha; write 6DA=={MA:AfG(5D}. 
The hypotheses of Theorem 9 will then hold for an appropriate subset {Mk}%==l 

of 

These two theorems form the basis of our computational approach to 
Poincarê series; cf. Examples 4-6 below. 

Theorem 10 is proved by making a detailed study of the period ratios 
In[<P>Mk] (k£Z,M ET,M^I \ 
In[<p,M] l0T\<P<E&h(H,T),2<h<nJ-

In the primary case h = n9 one finds that: 

(96) in[<p, Mk] = *( s^jsCl V / [ M]r 
\ m - m l J 

where m and m~x are the eigenvalues of M. Cf. equations (58) and (73). The 
secondary cases 2 < h < n can then be treated using Theorem 8. By direct 
computation we discover that: 

(97) rank 
In(s9!W)/In(s9M) 

when y is restricted as in Theorem 10 and (q9 r9 s9... ) E (3^ X $3 X • • • X 
@,n. Note that the matrix entries are rational functions of m [independent of 
q 9 r 9 s 9 . . . I 

To complete the proof of Theorem 10, we must check that: 

rank 

Im/„(?a,L) 

~\mIH(rp~L) 

Im I„(sr L) 
« N. 

i e U ^ 

This assertion can be proved by a repeated application of the column 
operations suggested by (97). Cf. [7, p. 163 (Corollary 3)] and the reduction 
formulas in Theorem 8. 
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Before turning to the examples, we point out that there is a slight extension 
of Theorem 9 which clarifies the choice of Mk. For notational simplicity, 
define: 

(98) 9* = [ {Rk } k = , : T r ( ^ ) are local coordinates near x ( 0 mod SL(n, C) 1. 

Let J* be the period matrix corresponding to {Lk, qa, r^ , . . . }. Then, under 
the hypotheses of Theorem 9, 

(99) rank(/*) = iV^{L,}^ 1 G?T. 

By extending some of the arguments found in [18, pp. 240-253], we can 
easily determine several choices of {Mk}%xX which look like they might 
belong to ?T. In view of (99), it is perfectly legitimate to use educated guesses 
of this type when trying to construct examples in which rank(7) = N. 

For convenience, we define: 

(100) Tx = Al9 T2 = BXAX
XBX\ . . . , T2g„x = Ag9 T2g = BgA;xB;\ 

Cf. equation (20) and [18, p. 247]. 

EXAMPLE 4 (g = 2 and n = 3). For generic T, the hypotheses of Theorem 9 
are satisfied with: 

{#a}a«l=
 \QAX> QBX> QA2> QB2> QTXT? QTXT3 }> 

{ ^ j ^ - l 3 {RAX> RBX> RA2>
 RB2>

 RTXT2>
 RTxTf RTxT£h RTxTfl> RA2B2>

 RA2B2
l }> 

W l 6 - i - {Al9A2,Bl9B2, TXT2; TXT2\AXBX, TXT3, TxTf\ 

A2B29A2B2
X\AX\A2\BX\B2\TX

XT2
X\ 

The letters QL, RL signify relative Poincaré series of weight 2 and 3, respec­
tively. 

By using equation (76) and the analog of Theorem 5, it is very easy to see 
that [det(/)]2 defines a meromorphic function A on the quotient variety 
N(g, 2)/SL(2, Q . To prove that det(/) =£ 0 for generic T, it is enough to 
show that A ̂  0 on N(g, 2)/SX(2, C). This problem can be settled by a 
lengthy computation; we find that A ^ 0 near the point [Xa; Yfi] 
mod SL(2, C), where: 

*>-(: : - ) • "•-(} ia) 

[The necessary calculations can all be done by hand.] 

EXAMPLE 5 (g = 3 and n = 3). For generic T, the hypotheses of Theorem 9 
are satisfied with: 
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{ < 7 a } « « l = { o * , ' QAI' Q*39 QBX> QB2> QB? QTXT2> QT2T? 

QT3T4> QTXT3-> QT2T4> QT3T5 }> 

{ A > } y 8 - i = = {RA? RA2>
 RA3>

 RBX> RB2>
 RB3> ^r,r2» RT2T3> ^ r 3 7 v 

^ r , 7 y ^r2r4> RT3T<? RTXT2^
 RT2T3

1> RT3T4
1> 

RTlT-h RT2T4^
 RT3Tfl> RA3B3>

 RA3B3
l j ' 

{ ^ k } f - i - {Ai,A2,A3, BX,B2,B3, TXT2, T2T3, T3T4; TXT2\ T2T3\ 

T3T4 ,AXBX,AXB2,A2B2, TXT3, T2T4, T3T5, TXT3 , 

-*2-M > *3T5 , A3B3, A3B3 \ Ax 9 A2 ,A3 , 

5 , , B2 , 2?3~ , 

Tx-%-\ T2-%'\ T3
XT4

X }. 

Note that A can be defined as in Example 4. By means of a very lengthy 
computation, it can be proved that A ^ O near the point [Xa; Yp] 
mod SX(2, C), where: 

M , m = V 2 , /x=V3 

In this connection, we remark that: 
[A] The problem ultimately reduces to showing that a certain 32 X 32 

matrix J0 is nonsingular [at the point (Xa; Y^) mod SX(2, Ç)]. The matrices J 
and / 0 are very closely related. 

[B] It took 14 days to finish this project: 6 days to (theoretically) determine 
the entries in /0, 5 days to compute their values numerically, 3 days to 
evaluate rank(/0). An SR-52 programmable calculator was used wherever 
possible. 

[C] After a few reductions, J0 transforms into a matrix having rational 
entries. The denominators turn out to be integers of the form 2a3*. At this 
point, it is convenient to reduce everything modulo 11. Since this reduction 
leads to a nonsingular matrix over Z n , we conclude that rank(/0) = 32. [On 
the other hand, we observe that Z5 does not work.] 

EXAMPLE 6 (g = 2 and n = 4). For generic T, the hypotheses of Theorem 
10 are satisfied when: 

*>-(: : - ) • * - ( 

M - 3 I » 

0 ti - 1 
Y3 = \ 3 
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\QaJa~\~ {QAS QBX> QA2> QB2> QTXT2> QTXT3 ) î 

VPJft-l** l ^ i ' ^ i ' ^A29 RB2> RT{T2> RTXT2
X> RTXTJ ^TXT3

X-> RA2B2> ^A2B2
l }î 

l ^ r / y . i 3 5 {SAS SB{> SA2> ^ 2 ' ^TxT2h STiT2, ST{T2, ST^Tç\, STiT2, 

SA2B2> SA2B2~
X> SA2B

2
2> SAIBX> SAXB2 } ' 

{Al9BX9A29B29TxT29TxT3}; 

{AX9 Bx, A2, B2, Tj T2, TXT2 > Txi3, TXT3 , A2B29 A2B2 J; 

{Aj, BX,A2, B29 TXT2 , TlT2, TXT3, 1 xi3 , TXT$9 

A2Bl9 A2B2\ A2B\9AXBX9AXB2 }. 

The letters QL9 RL, SL signify relative Poincaré series of weight 2, 3, 4. 
Let J2, J39 J4 denote the period matrices which appear in Theorem 10 

[when n = 4]. As in Example 4, we easily see that [det(Jk)]
2 defines a 

meromorphic function A* on the quotient variety N(g, 2)/SL(29 C). In order 
to check that A* ^ 0, it will be enough to show that certain matrices J2, 73, J4 

have maximal rank. [Needless to say, the matrices Jk and Jk are very closely 
related.] The associated computations can be carried through successfully for 
the point [Xa; Yp] mod SL(29 C), where: 

The only serious trouble occurs when k = 4. In this case, it is convenient to 
use the methods explained at the end of Example 5. In particular, the 
denominators are powers of 2 and a reduction modulo 11 works. Cf. remark 
[C]. Counting the time spent on bad choices of sy and M4a9 the analysis of A4 

took me approximately two weeks (using the SR-52). 
REMARK. For safety's sake, the computations in Examples 4-6 were all 

double-checked. 
We shall now examine a more "theoretical" approach to the generalization 

of Theorem 3. [Recall method (B) near equation (77).] To save space, it will 
be assumed that the reader has some familiarity with Eichler cohomology. Cf. 
[9] and [34, Chapter 5]. It is customary to let Um denote the vector space of 
all polynomials (over C) with degree < m. 

Fix any basis {qa9 rfi9 sy9... } for Vn\ observe that these differentials are 
not assumed to be Poincaré series. Let the corresponding accessory parame­
ters be {Xa, \p, Ay , . . . } as in equation (85). For notational convenience, we 
select any one of the accessory parameters [say X] and suppose that X 
corresponds to <p E &k (H9 T). 

The following result can then be proved by applying Theorem 7 near the 
trivial equation u{n) = 0. The normalization is understood to be that given by 
equations (86) and (89). 

{"3.>:°-.-

file:///QaJa~/~
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THEOREM 11 [for 2 < n < 6]. When evaluated at the trivial equation, we 
find that 

^ = AX(L) - X(L)A - ^ - L _ jf^° <p(z )^ (z ) dz • x(L), 

(i) A is an n X n matrix with trace zero whose entries depend solely on 
(n, <p, z0); 

(ii) 911^ (z) & an n X n matrix whose entries are monomials depending solely 
on (k, ri). 

The matrices ^\CnJ(z) satisfy the following additional properties [for 2 < j < 
«]: 
(a) 9\lnn(z) « Jf (z)y(zy - 9L(z) or i/t eçiatàm (71); 

(b) 9it„,(rz) - r(zy-' • xm^M*)^"1)/" r e SL(2, Q ; 
(c)deg91Lny(z) = 2 / ' - 2 ; 
(d)Tr[%,,(z)] = 0; 
(e) Tr[9Hny(z)(Dll^(w)] = « ^ ( z - w)2*"2, w/œre 8Jk is the Kronecker delta 
and 

c22 = - 1 

3̂3 = + L*32 = ~ 9 

C44 = - 1 , c43 = 24, c42 = -648/5 
c55 = +1 , c54 = -50, c53 = 4800/7, c52 - -2880 
c^ = - 1 , c65 = 90, C64 = -2500, c63 = 180000/7, c62 - -648000/7 

Assertions (a)-(e) were verified by direct computation. This method of 
proof becomes very unpleasant when n > 7. For this reason, it would be 
useful to have an alternate approach to these formulas. It seems fairly 
obvious that such an approach can be found by appropriate use of group 
representations and/or invariant theory. For the latter, we refer to [60, pp. 
175-199] and [70]. We note that similar remarks can be made regarding 
Theorems 6-8. On the other hand, it is not at all clear how to attack equation 
(97) for large n. 

Continuing onward, let 

(101) p: N(g, n) -» N(g9 n)/SL(n, C) 

denote the obvious projection map. It is known that p defines an analytic 
fiber bundle near those points [Xa; Yp] which correspond to irreducible 
representations of T; cf. [13], [14]. In particular, this will be true for a small 
neighborhood % surrounding the point xOO E iV(g, n). 

FACT 1. One can always determine local coordinates [ r , , . . . , rN] on 
N(g, n)/SL(n, Q so that: 

(a) T, » • • • » r^ = 0 corresponds to xCO mod SL(n, Q ; 
tf>) [T\, . . . , % ] G R^ iff p~\rl9..., rN) intersects 91 n SL(n, R)2* 

nontrivially. 
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For convenience, we use r — (r„ . > . , T^) to represent points of 
N(g9 ri)/SL(n9 Q near x(T) mod SL(n, Q. [Observe that r will be a point 
in CN near the origin.] 

FACT 2. There exists a holomorphic family [Xa(r)\ Yfi(r)] of points in % 
such that: 

(a)[*a(0);^(0)] = x(r); 
(b)p[Xa{r); ^(r)] - r; 
(c) the point [Xa(r); Yp{r)) belongs to 91 n SL{ny R)2g iff r E R*. 
By use of the lexicographic correspondence M -* M, we can now define a 

holomorphic mapping L(T) for any LET. The generators obviously corres­
pond to Aa(r) = Xa(r) and /^(r) = ^(r). For small values of |A|, we let 
DECK) represent the nth order equation whose accessory parameters are all 
zero except for A* Cf. equations (82) and (85). The holomorphic mappings 
L(A) and L(A) can then be defined by writing: 

(102) X -•[normalized m-group of DE(X)] -» x(L) = L (X) 

[cf. Theorems 7 and 11]; 

(103) X-^[normalizedm-group of DE(X)] ^[r] ^L(r) « L(A). 

We emphasize that these mappings are defined only for small values of X. 
Since L(0) « L(0), it follows that there is a uniquely determined matrix 

M (A) E SL(n, Q such that: (i) M(0) = ƒ; (ii) L(X) = M(A)L(A)M(A)^! for 
all L E T ; (iii) M (A) depends holomorphically on A. Note that L(X) and Z(A) 
are homomorphisms with respect to L. 

FACT 3. Suppose that 2 < j < n. Then, 

rfL(A)-1 

^ x ) = Tr 
rfA xW^M*) 

defines a cocycle in # ![T, II^^]. It is understood here that x is a real 
variable and that the A-derivative is evaluated at {A = 0}. 

Using Theorem 11, it is trivial to differentiate the relation L(A) =* 
M(X)L(X)M (Xyl. The end-result can then be substituted into Fact 3. [Notice 
that M '(0) has trace zero.] 

THEOREM 12 [for 2 < n < 6]. Introduce the accessory parameter X as above, 
and suppose that X corresponds to<p E &k (ƒƒ, T). Then, 

r d£(xyl 

9^x) = Tr — ^ — x(£)9M*) 

= Pj(x) - Pj{Lx)L\x)x-J+ E8Jk(
20 <p(z)(z - x)2k-2 dz 

where: (a) 2 < j < w; (b) x w a ra*/ variable; (c) fAe X-derivative is evaluated 
at {A = 0}; (d) £ is a nonzero real constant dependent solely on (k, n); (e) 
Pj(x) E n^-2' (0 Pj(x) = Tr[ö9ILrtJ(x)]/<?r 50/ne « X n matrix Q having zero 



372 D. A. HEJHAL 

trace. Once [Xa(r); Yp(r)] is chosen, the matrix Q depends solely on (n, <p, z0). 

To interpret Theorem 12 in terms of Eichler cohomology, we consider the 
Eichler integral 

\2k-2 (p(t) dt (104) F(z) = f ( z - 0 2 

as in [9] and observe that 

(105) F(Lz)L\z)x-k- F(z) = f*0 (z - u)2k~2<p(u) du. 

The period cocycle for F will therefore be given by: 

(106) QL(x) = fZo (u-xfk-2<p(u)duell2k„2 for LET. 

As usual, x denotes a real variable. 

COROLLARY [TO THEOREM 12]. Fix X and <p as above. For 2 < j < n, we find 
that: <$LJ(x) = [coboundary] + Ed^Q^x). 

If p(x) G H2J-29 ^ e n Re/?(x) and Imp(x) have obvious meanings. In 
particular, it is easy to see that Im Q^L{x) defines a cocycle in Hl[T9 H2k-2]-

THEOREM 13 [for 2 < k < oo]. Assume that <p G &k(H, T). Then, 
Im QyL(x) is a coboundary iffq)(z) = 0. 

For the proof, we refer to [34, pp. 215-219] and [64a, pp. 278-285]. 
Theorem 13 plays a crucial role in the derivation of the next theorem 

To clarify matters, suppose that {Mk}%x{ 

a trivial translation, we can now use tk 

holomorphic mappings L(t) can then be defined, and we obtain 

(107) L(t) = FL(tl9...9tN) 

for appropriate functions FL near the point xCO mod SL(n, C). In view of 
Fact 2, FL is real for (t{9..., tN) G R^. [The functions FL should be regarded 
as "known" quantities; a little investigation shows that they are algebraic in 
nature.] 

Observe that 

9" as in equation (98). Modulo 
Tr(MJ in place of rk. The 

(108) L( \ ) = 
FL[TrM{(X)9...9TrMN(\)] 

FL[TTMX(\)9...9TTMN(\)] 

Accordingly, when the derivatives are evaluated at [u{n> = 0], we find that 

Tr 
dL(X) 

~d\ 

- l 

x(L)mux) 
N 

= S Tr 
h=\ 

N 

= S Tr 

via equation (90). It is easy to see that 

9 ^ 
x(i)V) 

dTrMh{\) 

d\ 

file:///2k-2
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(109) 9u^x) = Tr 

defines a cocycle in Hl[T, H2j-2l with rea^ coefficients; we emphasize that this 
partial derivative is evaluated at xCD mod SL(n, Ç). The earlier equations 
will now yield: 

(no) ^ . W = _ L ^ 2 ^LhJ{x)in[%Mh]. 

Applying the corollary, we discover that: 

(111) [coboundary] + £5 , ,e^(x) = — - j — £ <$Lhj(x)In[<p, Mh}; 

1 N 

(112) [coboundary] + ESJklm fi^(x) = 2 ^ ( ^ I m IH[q>, Mh]. 

Since (112) holds for each basis vector <p E {#a, r^ s 9... }, there will be a 
linear relationship between J and the imaginary parts of the Eichler periods 
QPL(X)- Cf. equation (93). By investigating the appropriate linear 
combinations of (112) using Theorem 13, we conclude that / has maximal 
rank. 

THEOREM 14 [for 2 < n < 6]. Let {qa, r^ sy,... } be any basis for Vn. The 
period matrix J has maximal rank if and only if {Mk}%xl E ?T. For the 
definition of 9", consult equation (98). 

In some sense, Theorem 14 is the "heart of the matter." Observe that the 
"only if' follows from Theorem 9(c); cf. the completeness theorems in §5. 

COROLLARY [for 2 < n < 6]. Suppose that R belongs to <3ln and that its 
poles are located at hyperbolic fixpoints. If ?T is nonempty, then the identical 
vanishing of 0[z, R] E &n(D9 T) can be decided in finite terms. Cf. equations 
(48M49). 

As far as I can determine, the structure of ?T has never been carefully 
investigated when n > 3. Cf. [4], [40], [58]. Needless to say, it seems very 
probable that ?T is nonvoid for all T. 

In the case of generic T, it should be possible to construct explicit examples 
of {Mk}

N
k=:X E ?T. Cf. Examples 4-6 and Theorem 9(c) for (g, n) = (2, 3), 

(3, 3), (2, 4). 
Before closing, it may be useful to mention several areas which deserve 

further investigation: 
(I) eliminate the restriction 2 < n < 6 using group representations and/or 

invariant theory; 
(II) give a careful description of ?T in the case of arbitrary (g, n); 
(III) prove analogous results [about Poincaré series] in the case of bordered 

Riemann surfaces; 
(IV) find some number-theoretical applications for these techniques by 

considering congruence subgroups; 
(V) try to formulate some results for the so-called zeta-Fuchsian series [54]; 

dth 
x(L)^nJ(x) 
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(VI) try to attack 0[z, R] over H instead of D; 
(VII) study the periods In[(p, L] in connection with nonanalytic 

automorphic forms; cf. [12, pp. 293-294], [25, p. 473], [36], [37], [38]. 
We hope to return to problems (III)-(V) in a later paper. 
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