HEREDITARILY PYTHAGOREAN FIELDS, INFINITE HARRISON-PRIMES AND SUMS OF 2ⁿ th POWERS

BY EBERHARD BECKER

Communicated by Olga Taussky Todd, July 21, 1977

- In [3] W. D. Geyer studied (infinite) algebraic number fields having an absolute Galoisgroup which is solvable as an abstract group. In particular he showed that for a real number field K of this type the absolute Galoisgroup $G(\overline{K}|K(i))$ must be abelian (we denote the algebraic closure of a field k by \overline{k}). Geyer's work may therefore be considered as a generalization of the well-known characterization of real-closed fields given by E. Artin and O. Schreier. This note reports on the work [1] originated in an attempt to carry over Geyer's results to arbitrary formally real fields K (= real fields). We investigate those fields with abelian Galoisgroup $G(\overline{K}|K(i))$ which may be regarded as substitutes for real-closed fields. The orderings of real-closed fields are to be replaced by certain infinite Harrison-primes, and the study of sums of squares by orderings can be extended with help of these Harrison-primes to sums of 2^n th powers.
- 1. Hereditarily pythagorean fields. A real field K is called pythagorean if $K^2 + K^2 = K^2$ holds, hereditarily pythagorean (= h.p.) if any real algebraic extension is pythagorean. Let \mathbf{Z}_p be the compact additive group of the p-adic integers, δ_{ij} the Kronecker-symbol and Br(K) the Brauergroup of the real field K.

THEOREM 1. K is a h.p. field iff $G(\overline{K}|K(i))$ is abelian. If K is h.p., then (i) $G(\overline{K}|K) = \langle \sigma \rangle \times G(\overline{K}|K(i))$, $\sigma^2 = 1$, σ operates by inversion on $G(\overline{K}|K(i))$,

(ii)
$$G(\overline{K}|K(i)) \cong \prod_{p} \mathbb{Z}_{p}^{\alpha_{p}}$$
 with $\alpha_{p} = -\delta_{2p} + \dim_{\mathbb{F}_{p}} K^{\times}/K^{\times p}$,

(iii) Br(K) has exponent 2, dim_{F₂} Br(K) =
$$\alpha_2 + {\alpha_2 \choose 2} + 1$$

H.p. fields can further be characterized by the Haar-measure of the set of involutions in $G(\overline{K}|K)$ [1], by the existence of a certain henselian valuation [2] (both due to L. Bröcker), by the existence of a Kummer-theory for all algebraic extensions [1] (F. Halter-Koch) or by torsion properties of the Wittring of K(X) [1].

2. Infinite Harrison-primes. An infinite Harrison-prime P [4] of K is called an ordering of type $n \in \mathbb{N}$ if $K^{2^n} \subset P$ and of exact type n if $K^{2^n} \subset P$, $K^{2^{n-1}} \not\subset P$. Orderings of type 1 are the usual orderings. Let Q_n be the subset of all sums of 2^n th powers in K. Then $Q_n = \bigcap P$ where P ranges over all orderings of type n, the case n = 1 is due to E. Artin.

AMS (MOS) subject classifications (1970). Primary 12D15, 12E99.

Let $L \mid K$ be a field extension, P, \widetilde{P} orderings of higher type of K, L respectively. (L, \widetilde{P}) extends (K, P) if $\widetilde{P} \cap K = P$ and P and \widetilde{P} have the same exact type. In [1] an extension theory is established, for example: (i) the number r of extensions to L is less than or equal to [L:K], (ii) r=0 or r=[L:K] if $L \mid K$ is a Galois-extension, in the latter case all extensions are conjugate. The extension-theory applies to the real closures (R, \widetilde{P}) (= the maximal algebraic extensions) of (K, P). Let P be of exact type $n \ge 2$, the case n=1 is due to E. Artin and E. Schreier.

THEOREM 2. (i) A real closure (R, \widetilde{P}) is a h.p. field with $G(\overline{R}|R(i)) \cong \mathbb{Z}_2$, has a henselian valuation with real-closed residue-class-field, two orderings of type 1 and a single ordering of exact type m for $m \geq 2$,

(ii) two real closures (R_i, P_i) , i = 1, 2, of(K, P) are isomorphic iff $R_1^{2m} \cap K = R_2^{2m} \cap K$ for all $m \in \mathbb{N}$.

Different from the usual Artin-Schreier-Theory there are in general infinitely many nonisomorphic real closures of a given (K, P). The proofs are essentially carried out by valuation theory since for an ordering P of higher type the set $\mathfrak{o}(P) = \{a \in K \mid n \pm a \in P \text{ for some } n \in \mathbb{N}\}$ is a valuation-ring [5]. Furthermore P can be constructed from an archimedean ordering of type 1 of the residue-class-field by means of a certain character of the value-group of $\mathfrak{o}(P)$.

3. Sums of 2^n th powers. The starting points for the applications to sums of 2^n th powers are the result $Q_n = \bigcap P$ and the facts about $\mathfrak{o}(P)$ just mentioned. Let K be an infinite not necessarily real field, $n \in \mathbb{N}$.

THEOREM 3. If
$$-1 \in Q_1$$
 (i.e. K is not real), then $-1 \in Q_n$.

This was also proved by Joly [7].

THEOREM 4. The following statements are equivalent: (i) any valuation-ring of K with a real residue-class-field has a 2-divisible value-group, (ii) $Q_1 = Q_n$ for some n, (iii) $Q_1 = Q_n$ for all n.

Theorem 4 applies to number fields, more generally to algebraic extensions of a real field with a single ordering of type 1.

THEOREM 5. For all $x_1, \ldots, x_r \in K$, $n, m \in \mathbb{N}$, there exist $y_1, \ldots, y_s \in K$ such that

$$(x_1^{2^n} + \cdots + x_r^{2^n})^{2^m} = y_1^{2^{n+m}} + \cdots + y_s^{2^{n+m}}.$$

Theorem 5 applied to $Q(X_1, \ldots, X_r)$ generalizes in a certain sense an identity of Hilbert used in his solution of the Waring-problem [6].

REFERENCES

- 1. E. Becker, Hereditarily pythagorean fields and orderings of higher types, IMPA-Lecture Notes, Rio de Janeiro (to appear).
- 2. L. Bröcker, Characterization of fans and hereditarily pythagorean fields, Math. Z. 151 (1976), 149-163.
- 3. W. D. Geyer, Unendliche algebraische Zahlkörper, über denen jede Gleichung auflösbar von beschränkter Stufe ist, J. Number Theory 1 (1969), 346-374.
- 4. D. K. Harrison, Finite and infinite primes for rings and fields, Mem. Amer. Math. Soc. 68 (1966), 1-62.
- 5. D. K. Harrison and H. Warner, Infinite primes of fields and completions, Pacific J. Math. 45 (1973), 201-216.
- 6. D. Hilbert, Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Zahl n-ter Potenz (Waringsches Problem), Math. Ann. 67 (1909), 281-300.
- 7. J.-R. Joly, Sommes des puissances d-ièmes dans un anneau commutatif, Acta Arith. 17 (1970), 37-114.

MATHEMATISCHES INSTITUT DER UNIVERSITÄT, WEYERTAL 86–90, 5000 KÖLN 41, FEDERAL REPUBLIC OF GERMANY