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In [3] W. D. Geyer studied (infinite) algebraic number fields having an
absolute Galoisgroup which is solvable as an abstract group. In particular he
showed that for a real number field K of this type the absolute Galoisgroup
G(K|K(7)) must be abelian (we denote the algebraic closure of a field k by k).
Geyer’s work may therefore be considered as a generalization of the well-known
characterization of real-closed fields given by E. Artin and O. Schreier. This
note reports on the work [1] originated in an attempt to carry over Geyer’s
results to arbitrary formally real fields K (= real fields). We investigate those
fields with abelian Galoisgroup G(X|K(i)) which may be regarded as substitutes
for real-closed fields. The orderings of real-closed fields are to be replaced by
certain infinite Harrison-primes, and the study of sums of squares by orderings
can be extended with help of these Harrison-primes to sums of 2"”th powers.

1. Hereditarily pythagorean fields. A real field X is called pythagorean
if K2 + K? = K? holds, hereditarily pythagorean (= h.p.) if any real algebraic
extension is pythagorean. Let Zp be the compact additive group of the p-adic
integers, &;; the Kronecker-symbol and Br(K) the Brauergroup of the real field X.

THEOREM 1. K is a h.p. field iff G(K|K(?)) is abelian. If K is h.p., then

() GKKIK) = (o) x GKK(7)), 0* = 1, 0 operates by inversion on
G(KIK(@),

(i) GKIKG) =1, Z3P with o, = —8,, + dimg, K*/K™?,

(iii) Br(K) has exponent 2, dimg , BrlK) =0, + ¢ 2)+1

H.p. fields can further be characterized by the Haar-measure of the set of
involutions in G(K|K) [1], by the existence of a certain henselian valuation [2]
(both due to L. Brocker), by the existence of a Kummer-theory for all algebraic
extensions [1] (F. Halter-Koch) or by torsion properties of the Wittring of

. KX [1].

2. Infinite Harrison-primes. An infinite Harrison-prime P [4] of X is cal-
led an ordering of type n € N if K2" C P and of exact type n if K2" CP,
K271 ¢ P. Orderings of type 1 are the usual orderings. Let Q, be the subset
of all sums of 2"th powers in K. Then Q, = N P where P ranges over all order-
ings of type n, the case n = 1 is due to E. Artin.
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Let LIK be a field extension, P, P orderings of higher type of K, L respec-
tively. (L, IN") extends (K, P) if PN K =Pand P and P have the same exact
type. In [1] an extension theory is established, for example: (i) the number »
of extensions to L is less than or equal to [L: K], (i) r = 0 or r = [L: K] if
LIK is a Galois-extension, in the latter case all extensions are conjugate. The
extension-theory applies to the real closures (R, F) (= the maximal algebraic
extensions) of (K, P). Let P be of exact type n = 2, the case n = 1 is due to
E. Artin and O. Schreier.

THEOREM 2. (i) A real closure (R, P) is a h.p. field with G(RIR()) =
Z,, has a henselian valuation with real-closed residue-class-field, two orderings
of type 1 and a single ordering of exact type m for m = 2,

(i) two real closures (R;, P,), i = 1, 2, of (K, P) are isomorphic iff R3"™
NK=R2" NK forallméEN.

Different from the usual Artin-Schreier-Theory there are in general infin-
itely many nonisomorphic real closures of a given (K, P). The proofs are essen-
tially carried out by valuation theory since for an ordering P of higher type the
set 0(P) = {a €KIn £ a € P for some n € N} is a valuation-ring [5]. Further-
more P can be constructed from an archimedean ordering of type 1 of the re-
sidue-class-field by means of a certain character of the value-group of 0 (P).

3. Sums of 2”th powers. The starting points for the applications to sums
of 2"th powers are the result Q, = N P and the facts about 0 (P) just mention-
ed. Let K be an infinite not necessarily real field, » € N.

THEOREM 3. If =1 € Q, (i.e. K is not real), then =1 € Q,.

This was also proved by Joly [7].

THEOREM 4. The following statements are equivalent: (i) any valuation-
ring of K with a real residue-class-field has a 2-divisible value-group, (i) Q, =
Q,, for some n, (iii) @, = Q,, for all n.

Theorem 4 applies to number fields, more generally to algebraic extensions
of a real field with a single ordering of type 1.

THEOREM 5. Forallx,,...,x, €K, n,mEN, there exist y,, ..., ¥,
€ K such that
+
(xfn NN +x3rl)2m =yi" m ... +y3n+m.

Theorem § applied to Q(X,, . . ., X,) generalizes in a certain sense an
identity of Hilbert used in his solution of the Waring-problem [6].
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