
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 84, Number 2, March 1978 

HARMONIC MEASURE AND ESTIMATES OF 
GREEN'S FUNCTION 

RICHARD A. HUNT 

The study of exceptional sets for nontangential limits of harmonic 
functions has led to the problem of the equivalence of harmonic measure and 
surface measure on the boundary of Lipschitz domains. In this note we will 
review the development of these results. We will see how estimates of Green's 
function can be used to relate the measures and look at methods of obtaining 
the desired estimates. 

If u is positive and harmonic in the unit ball B c En+\9 the Poisson integral 
representation leads easily to finite nontangential limits at almost every point 
of 32?. We are interested in modifications and generalizations of this result 

In 1950, A. P. Calderón [2] proved the following: If u is harmonic in the 
unit ball B c En+x and for each point Q E E, E c dB, u is bounded in some 
truncated cone T(Q) with vertex at Q, then u has a finite nontangential limit 
at almost every Q E E. 

In Calderón's result, we may assume the cones T(Q) axe tangent to, and 
truncated by the more distant surface of, a fixed small ball with center at the 
origin. In that case, B = UQBE^(Q) is a starlike Lipschitz domain. 
Calderón's result could be stated with the hypothesis that u is harmonic and 
bounded in B. In 1962, L. Carleson [4] obtained the same conclusion as in 
Calderón's result, but with the hypothesis that u is harmonic and bounded 
from below in Ê. In his proof, Carleson introduced the harmonic measure 
associated with the domain Ê. An estimate of Green's function for B was 
used to obtain results in terms of surface measure. 

In 1964, K.-0. Widman [11] showed if u is harmonic and positive in a 
domain D with 35 G C1+e , e > 0, then u has finite nontangential limits at 
almost every point of dD. As in the proof of Carleson, harmonic measure was 
used and an estimate of Green's function showed the exceptional set was of 
zero surface measure. 

Following the general outline of Carleson's proof, Hunt and Wheeden [8] 
in 1970 proved that functions which are positive and harmonic in domains D 
with dD E Lip(l) have finite nontangential limits except on a set of harmonic 
measure zero. The fact that this exceptional set is also of surface measure zero 
is a consequence of the 1976 result of B. Dahlberg [6] that harmonic measure 
and surface measure are equivalent on the boundary of Lipschitz domains. 

Let us briefly review a method to obtain the nontangential limits. We 
assume that D c En+l9 n > 2, 3D E Lip(l) and D is starlike about a point 
PQ. In particular, we assume there is a fixed truncated open cone F which is 
contained in D whenever it is positioned with vertex at Q E dD and axis 
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along QPQ, Unless stated otherwise, we assume P0 is the origin. 
If M is positive and harmonic in D, we have 

(1) u(tP) = ƒ K(P, Q)u(tQ) do>p°(Q)9 0<t<h 

where wp denotes harmonic measure and K(P, Q) is the Radon-Nikodym 
derivative, dcôp/do)p°. (The integral in (1) represents the solution of the 
Dirichlet problem in D with continuous boundary values u(tQ) for Q E 3D.) 
Since K{P^ Q)= 1, (1) shows that the measures u{tQ) dwp°(Q) are uni­
formly bounded by u(P0). K(P, Q) can be shown to be a continuous function 
of Q EdD for fixed P E D. (See Hunt and Wheeden [9].) It follows that we 
may take weak limits in (1) to obtain the representation 

(2) u{P)-f K(P,Q)dii(Q)9 

where /A is a Borel measure on 3D. If dp = ƒ do)p° + ds, where s is singular 
with respect to harmonic measure, then u(P) approaches f(Q0) as P 
approaches Q0 nontangentially for a.e. (dup°)Q0 E D. This follows from a 
result on the differentiation of integrals and estimates of K(P, Q). We will 
outline the proof. 

A(Qo,v) = {Q£dD:\Q-Qo\<y} 
will denote a "disk" in 3D with center Q0 E 3D and radius TJ > 0. For 
convenience, we set 

* B 0 ( e ) » | / ( C ) -f(Qo)\ d<»HQ) + ds(Q). 
A generalization of Lebesgue's theorem yields (see Besicovitch [1]) 

(3) f 4ieo(ô) = oK0(A(öo^))), i->a 

foTa.e.(do}po)Q0EdD. 
Let r c D be a nontangential open cone with vertex at g0. For PET with 

I J* " Qol - r, set 7?0 = A(Qo, r) and «, = A(Qo, 2jr) - A(go, 2>~V), y > 1. 
Harnack's inequality and the maximum principle are used to obtain (see 
Hunt and Wheeden [8], [9]) 

(4) sup K(P, Q) < Cj/ü>p°(bj), j > 0, where 2 9 < C(T) < oo. 
Q^Rj j>o 

For fixed 8 > 0 and any P G T with \P - Q0\ = r < 8, choose N such 
that 2N~lr < 8 < 2Nr. Then 

HP)-f(Qo)\ 

= \fdf(P, Q)(f(Q) d<*p°(Q) + ds{Q)) ~jdDK{P, Q)f(Qo) d"p°(Q)\ 

< ƒ K{P,Q)dvQo{Q) 

< 2 f w o *o.(c) + L A,n,ƒv> e) *o,(e). 
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It follows from (3) and (4) that the sum of the integrals over the Rfs 
approaches zero (uniformly in P e r with \P — Q0\ = r < Ô) as 5 
approaches 0. (4) also implies that for fixed 8 > 0, the integral outside 
A((?o> S) approaches zero as P approaches QQ9 PET. 

Let us now see how the size of Green's function near dD affects the ratio of 
harmonic measure and surface measure. The arguments are those of Dahl-
berg [6]. 

Green's function for D c En+l9 n > 2, is 

J f r<~ ^ i 
| p _ p>\n-\ JdD 

Note that for fixed P'9 

G(P, ƒ>') = ! - f K(P, Q) ! r do>pHQ). 

f. 

g ( ^ ) > , D V , - 7 T ^ > 3 r r > \P~A\<r. 

K(P9 Q) dupHQ) 
dû K J \Q- Pf~ 

is a positive and harmonic function o f ? EZ) with boundary values l/\Q — 
Pf~\Q EdD. 

For a fixed point Q EdD, let A = A(0, r) and let A = A(Q9 r) be that 
point on the segment QP0 with \A - g | = C^, where C, is a fixed constant. 
Let B = {JP: \P - A\ < 2r}. The Lipschitz character of 3D allows us to 
choose C, large enough to insure that B c D. o(E) will denote the surface 
measure of E c dD. C will denote various positive constants. We have 

coVA) G(A,P0) copo(A) 
(5) c—n^- < — — - < c — T ^ . 

a(A) r a(A) 
To see the first inequality in (5), we compare G with Green's function for B 

with pole at A. This yields 
J \_ ^ C 

\P-A\n~x (2r)n~ 

Choose t such that tQ = A. (Recall P0 is the origin.) Then 

{tP: P E A} c {P: \P-A\< tr} c {P: \P - A\ < r}. 

The maximum principle then implies 

<op(A) < Crn~lG(tP9 A), P ED. 

Since a(A) « rn and (7 04, PQ) = G(P0, A), we obtain the desired inequality 
by setting P = P0. 

To see the second inequality, note G(P, A) < l/\P - A\n~K Hence, 
G(P9A) < (2r)l-"9 P EdB. Since <op(A) > C > 0, P e a B (see, for 
example, [8, Lemma 2.1]), the maximum principle gives 

G(P,A) < Crl~nœp(A)9 P ED - B. 

As before, we obtain the desired inequality by setting P = P0. 
We can now prove: 
(6a) If mfr>oG(A9Po)/r>0 for a.e. (do) Q EdD9 then o>p°(E) = 0 

implies o(E) = 0. 
From (5), we have that a(A) < CQup°(A) for a.e. (rfa) Q EdD. Since 

a(£) = \imM_^OQo({Q E E: CQ < M}), we may assume CQ < M < co9 Q EE. 
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Given any e > 0, choose open O D E such that COPQ(0) < e. Each Q E E 
is the center of a disk A((?) c O. A Besicovitch type covering theorem (see 
[1]) then gives a countable subcollection {A(QJ)}J>1 such that 

E c\J A(gy) c O a n d 2 XA(Ô) < c«+iXuy>,A(ö,)> 

where XA *S ^ e characteristic function of A and C„+, is a constant which 
depends only on the Euclidean dimension. Then 

o(E) < 2 <T(A«2,)) < M 2 <o'°(A(Ö,)) 

< M Q + W (J A(£,)) < MCn+xo>p°(0) < MCn+{e. 

Similarly, we have: 
(6b) If supr>0G(/l,P0)/r< oo for a.e. (dap°) Q E 3D, then o(E) = 0 

implies cop°(E) = 0. 
Let us now consider how to obtain the desired estimates of Green's 

function. 
It is convenient to write P = (x,y), x E En9y real. We assume D c En+} 

is bounded on the sides by {|JC| =* 1}, on top by {y » 1}, and on bottom by 
{(x9y): y « f(x)}, where ƒ E Lip(l). For (XQ, f(x0)) on the bottom part of 
3D, we redefine A ((x0, ƒ (x0)), r) to be the point with coordinates (xo, f(x0) + 
C,r). 

The first estimate we consider applies when 3D is bounded above near a 
point (xQ,y0) on the bottom part of 3D by a surface which is sufficiently close 
to its tangent plane at (XQ, y0). That is, let 

K* - {(x>y): 1*1 < 5> *(*) < ƒ < *o(*)}» 
where ${x) = ôCl-̂ IX ô *s continuous and nondecreasing on [0, 1) with 
<J>0(0) * 0. Moreover, we assume /|r|<i<K0/kr+1 at < oo. If it is possible to 
reposition D ^ in such a way that the origin is moved to (xQ,y0) and the 
repositioned domain is contained in D, then 

inf G(A,P0)/r > C > 0, 
r>0 

where ̂  » 4 ((x0, ƒ 0)> >*)• 
To see this, we adopt the coordinate system of D^ ô positioned with origin 

at (x0,y0). The coordinates of A become (x,y) = {Cxr sin 0 • JC', Qr cos 0), 
where 0 and JC' are fixed with 0 < 0 < TT/2 and |JC'| = 1. We will show 
info^^^G^O,^), P0)/y > C > 0. (The arguments could be carried out 
with A in place of (0, y) or we could use Harnack's inequality to obtain 
G(A9P0)> CG((0,r),P0).) 

We will need the auxiliary function 

H{X'y)~]M«[(X-<f+yf+l)/2 

For 0 < \x\ < 8/2, let 

dt. 
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B = {t: \t - (1 4- 4>(x)/\x\)x\ < <t>(x)}. 

Then <J>(0 > <KX) f°r t E B. We assume S is small enough to insure <t>0(8/2) 
< 5/4, so B c {|x| < 5}. It follows that 

H(x9<t>(x))> <t>{x)j- — — rfr > QK*) . 

Hence, the harmonic function C0y - H(x9y) is nonpositive at (x, <X*)X 
|JC| < 5/2. By replacing <J> by a larger multiple of <J>, if necessary, we may 
assume that T = {(JC, 4>0(5/2)): |x| < 5/2} satisfies T c D. Then 
G((x,j), P0) is bounded from below on T by a positive constant. Also, 
C0y - H(x9y) is bounded from above on T. The maximum principle then 
implies that a positive multiple of CQy — H(x9y) is majorized in A*>$/2 by 
G((x9y)9P0).But 

C0y - H(09y) f <f>(0 C 0 

'° X K I T ^ * 2 

if 5 is sufficiently small. (Note that C0 is independent of 5.) 
If dD E C1+e , c > 0, the above estimate and (6a) yield that harmonic 

measure zero implies surface measure zero. For the sawtooth Lipschitz 
domains considered by Calderón [2] and Carleson [4], the same type of 
estimate works with <j>(x) ~ dist(x, E). This estimate of Green's function also 
appears in Calderón [3]. 

The technique of using a Poisson integral to estimate Green's function is 
not available for general Lipschitz domains. Dahlberg obtained the desired 
estimates in a very elegant way, which we shall outline. 

First, note that the mean value theorem implies 

(7) s u p ^ f 0 < s u p f ^ , / > 0 ) . 

To estimate dG/dy9 we construct domains Dj/D with dDj *9Z), except on 
the bottom part of dD where we replace the Lip(l) boundary function ƒ of D 
by a C00 function. The functions dGj/dy are uniformly bounded from below 
on the common boundaries of Dj and on the boundary of a small ball B with 
center P0. Also, dGj/dy > 0 on the bottom part of Dr The minimum 
principle for harmonic functions then implies dGj/dy > — C > — oo in 
D — B. It follows that the harmonic function dG/dy is also bounded from 
below in D - B, so the result of Hunt and Wheeden implies that dG/dy has 
finite nontangential limits at a.e. (dù)p°) Q EdD. In particular, sup^>03G-
(A, P0)/dy < oo for a.e. (rf<op°) Q EdD, so (6b) and (7) may be used to 
obtain that surface measure zero implies harmonic measure zero. 

We now have up°(E) « fEk da. Essentially, k is given by the boundary 
values of dG/dy. Recall that G(P9 P0) ~ \P ~ Pol1"" + KP\ where h is 
harmonic in D. Hence, dG(P9P0)/dy - b(P) +dh(P)/dy9 where b(P) is 
uniformly bounded for P near dD. Then 
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(8) 

It follows that 

f k2da=f kdup°x*f (b + ^)da* 

™[ bdup° + |^(P0)<oo 

1/2 

01) 

(9) «*•(£) = fkda< If k2da\ (a(E))l/\ 

The uniform estimate given by (9) can be used to show that wp°{E) * 0 
implies a(E) = 0. However, Dahlberg also obtained a local version of (8) 
which gives even sharper results. Dahlberg showed 

(10) -Tjrr f k2 da < C( - ^ r r fk da) . 

*(A) 4 \ a(A) 4 ƒ 
This inequality implies that /a/)*' da < oo for some/> > 2. (See Gehring [7].) 
Also, it shows the measures dcop° and da are comparable in the sense of 
Coifman and Fefferman [5]. It follows that 

wp°(E) < C(o(E))a for some a > £ , and 

I a(E) < C ( « ^ ( £ ) ) * for some p > 0. 

In a certain sense, (11) is a best possible result. (See [6].) That is, consider 
the harmonic measure in D = {z: |z| < 1, Im z > 0} of A * {|z| < 8} n 3i>. 
We have <o£°(A) » C5, z0 = i/2. (See [10, p. 55].) The transformation z~*zy 

for fixed y, 0 < y < 2, transforms Z> into a Lipschitz domain Z>r A is 
transformed into a "disk" AT of radius 5Y, with 

ug (Ay) « « # (A) « C8 « C(a(Ay))l/T. 

This shows the sharpness of the exponents in (11) and how they depend on 
the Lipschitz constant of the domain. 

For a fixed Lipschitz domain it is easy to see that 

iop«(A) < C(<x(A))" and a(à) < C («*•(£))', 

for disks A, where a and /5 depend on the Lipschitz constants. It would be 
interesting to know if the same a and /? work for sets other than disks. 
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