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We denote by (T, 2) a measurable space and by X, Y, Z metrizable topolog­
ical spaces. A multifunction from T into X is a mapping t —> M(f) which assigns 
a set M(t) C X (possibly empty) to each /GT. The set 

domM= {tGT\M(t)=£0} 

is called the domain of M. The multifunction M is called ^-measurable if 

M'\C) = {t e T\M{t) DC^0} 

belongs to 2 whenever C C X is closed. 
If (T, 2), (T', 2') are measurable spaces, then 2 ® 2 ' denotes the product 

a-algebra generated by rectangles E x f ' j G S ^ ' e S ' . By B(X) we denote 
the algebra of Borel subsets of X. A set E C T is called ^-analytic if it can be 
represented as a result of the ^-operation of Suslin applied to elements of 2. An 
equivalent definition: E is 2-analytic if there is a Polish space X and a set A G 
2 ® B(X) such that E is the projection of A on T (cf. [3]). 

THEOREM 1. Let X be a Polish (resp. compact metrizable) space, and let 
M be a ^-measurable multifunction from T into X such that the sets M(t) are 
closed. Then there exist a Polish {resp. compact metrizable) space Z and a map­
ping fift z): T x Z—+Xsuch that 

(i) ƒ is continuous in z and ^-measurable in t\ 
(ii) for all t E dom M, one has M(f) = f(t, Z), the range off(tf • ). 

If X is a separable Fréchet space and all sets M(t) are convex, then there is 
a pair (Z, f) satisfying (i), (ii) and such that Z is a closed convex subset in another 
separable Fréchet space Y, and for all t ET, the mapping z —> f(t, z) is the re­
striction on Z of a linear nonexpansive mapping from Y into X. 

Taking a dense countable set {zl9 . . . } in Z, one gets a dense countable 
family of measurable selectors for M. The existence of such a family was estab­
lished by Castaing [2]. In our case, however, this family is rather "well arranged". 
In fact, the method we have used to prove the theorem demands explicit construc­
tion of such a family (with the help of the selection theorem of Rokhlin [8] and 
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Kuratowski and Ryll-Nardzewski [6] ), to define the space Z and the mapping ƒ. 
The latter is carried out much in the same manner as in Ekeland's work [4], in 
which a similar result for continuous convex-and-compact-valued multifunctions 
was proved. 

We shall say that the measurable space is complete if 2 contains all 2-ana-
lytic subsets of 71 

THEOREM 2. Assume that (T, 2) is a complete measurable space and that 
X is a Lusin space. Let ACTxXbel,® B(X)-analytic, and denote by E the 
projection of A on T. Then there are a Polish space Z and a mapping ƒ: E x Z 
—• X which is ^-measurable in t, continuous in z and such that A is the range of 
the mapping (t, z) —* (t, f(t, z)) from E x Z into E x X. 

V. Levin has brought my attention to the fact that this theorem can be re­
stated in a stronger form: it is possible to assume the measurable space complete 
but require instead that ƒ be measurable with respect to the a-algebra generated 
by 2-analytic subsets of T, rather than with respect to 2-

For any z GZ, the mapping t —• f(t, z) is a measurable selector for A. 
Thus Theorem 2 implies a result on selectors which turns out more general than 
the corresponding results of Aumann [1] and Sainte-Beuve [9], because our as­
sumptions on the measurable space are, in fact, weaker. (There is a complete 
measurable space whose algebra does not contain all universally measurable sets.) 
Note that selection theorems of such type (for analytic sets) go back to Lusin [7] 
and Yankov [10]. 

THEOREM 3. Let Xbe a compact metrizable space, and S be a Banach 
space of continuous mappings from X into Rn such that the imbedding i: S —• 
C(X, Rn) is continuous. Assume also that either i(S) is Fa in C(X, Rn) or the 
measurable space (T, 2) is complete. 

Let there be given a multifunction (t, x) —> Q(t, x) from T x X into Rn 

such that 
(a) Q(t, x) is nonempty convex and compact for each t, x; 
(b) for all x E l , the multifunction t —> Q(t, x) is measurable; for all t 

E T, the multifunction x —> Q(t, x) is Hausdorff continuous; 
(c) for all t, x and all z G Q(t, x), there is a mapping h( - ) G S such that 

h(x) = z and h(u) G Q(t, u) for all uEX. 
Then there are a Polish space Vand a mapping g: T x X x V—+ Rn such 

that 
(i) g is measurable in t and continuous in (x, v); 
(ii) g(t, • ,v)GSfor any t, v; 
(iii) Q(tt x) = g(t, x, V) for all t, x. 

It follows from the theorem that the differential inclusion x G Q(t, x) can 
be rewritten as an ordinary differential equation with control x = g(t, x, v) in 



144 A. D. IOFFE 

such a way that g will preserve regularity properties of Q. For instance g can be 
taken Lipschitz in x if Q(t, • ) is Lipschitz, or C1 in x if for every t the multi­
function Q(t, • ) admits a rich collection of C1-selectors. The fact that such re­
duction is possible with g merely continuous in x was proved earlier by Ekeland 
and Valadier [5]. 
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