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Let M be a manifold and define F(M, k) as the subspace of Mk given by 
{(Xj,. . . , xk)\xt + Xj if i =£/}. Permuting the coordinates gives a free action 
of Sfc, the symmetric group on k letters on F(M, k). If X is a based space, A**' 
= X A - - • A X supports a Xk action and we can form 

B(M, X, k) = F(M, k)*x X[k]/F(M, k) x *. 

The cohomologies of F(M, k) and B(M, X, k) have ubiquitous applications. 
H*(B(M, X, k)) can be used to evaluate the E2 term of a spectral sequence con­
verging to the Gelfand-Fuks cohomology of M, [7] or [8]. It can also be used 
to evaluate the E2 term of a spectral sequence due to P. Trauber [12] and D. W. 
Anderson [1] converging to the cohomology of the space of based maps from 
M to X. The calculations for the case M = Rm give a complete and useful theory 
of homology operations for m-fold loop spaces [5]. 

In [4] and [5], the first author has obtained complete information on 
H*(F(Rm, k)) and H*(B(Rm, X, k)) in conjuction with his work on m-fold 
loop spaces. In this paper we give some calculations for some other manifolds 
M. We are most successful with M71 = Rn x V and with M = Sm. 

Recall that by [4], H*F(Rm, k) is generated as an algebra by elements 
Atj of degree m - 1 with k>i>j> 1 subject to the relations AirAis = 

Asr(Ais - Air) if r < s. With A^ = (- X)mA^ for / > ƒ, the action of Xk is given 
byo*Aif=Aai§ai. 

THEOREM l.IfV is connected, ifM™ = Rn x V with n>2, and if all 
coefficients are in some field, H*(F(m, k)) is isomorphic as an algebra to 

H*(F(Rm, k)) ® H*(Vk)/I 

where I is the two-sided ideal generated by the elements 

A.f ® ( I ' " 1 x j ; x l H - l7'"1 x y x 1*"') 

for all i and j and y G H*(V). Both H*(F(Rm, k)) and H*(Vk) are Xk algebras 
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and the epimorphism from their tensor product to H*(F(M, k)) is a Xk algebra 
morphism. 

REMARK. In case F is a point and n = 2, Theorem 1 is a result of V. I. 
Arnold [2] and E. Brieskorn [3] who used different methods than we do. They 
also did not determine the Sfc action. 

Let Lc
m be the Lie algebra of compactly supported C°° vector fields on M. 

REMARK. Knowing H*(F(M, fc)), the calculation of H*(B(M, X, k)) can 
be done using the spectral sequence of a cover [10]. If the field has character­
istic prime to k\ the spectral sequence collapses. Combining Theorem 1 with 
the Gelfand-Fuks spectral sequence [9] we get 

COROLLARY 2. Let M71 and If1 be two manifolds whose rational Pontrja-
gin classes vanish and f or which Pf(M) = p((N): $t is the ith Betti number. Then 
H*(LC

 r ) = H*(LC
 0 ) as vector spaces when r + m = n + s, r, s>2. 

V RrXMJ V RSXN' ^ 

PROOF. Theorem 1 assures us that the E2 terms of the Gelfand-Fuks 
spectral sequence [9] are equal, and Guillemin [8] and Trauber [12] assure us 
that the spectral sequences collapse. 

Let us turn to the case M = Sm. F(Sl, k) is homeomorphic to S1 x 
F(RX, k-\) and F(JRl, k - 1) has the homotopy type of (k - 1)! discrete 
points. In case m > 1, we have 

THEOREM 3. Suppose the coefficient field has characteristic not 2. Then 
H*(F(Sm, k)) as an algebra over 2k is isomorphic to A[x] ®Am where Am is 
the image ofH*(F(Sm, k)) in H*(F(Rm, k)) under any embedding Rm C Sm 

and A[x] is an exterior algebra on a generator x of degree m if m is odd or 
2m - 1 if m is even. Xk acts on Am since Am is an invariant subgroup of 
H*(F(Rm, k)). 2fc fixes x and acts on A[x] ® Am diagonally. 

Whenever H*B(M, X, k) is known, E2 of the Gelfand-Fuks spectral sequence 
is known by specializing X to be a certain wedge of spheres. Theorem 1 (to­
gether with minor modifications in case n = 1) yields a complete description of 
H*(B(Rn x V, X, k); Q). The results obtained for Gelfand-Fuks cohomology 
coincide with those obtained by A. Haefliger [13] who used completely differ­
ent methods. 

COROLLARY 4. H* Lc
 n is isomorphic to a free commutative algebra 

whose generators are explicitly given in terms of H*V and the dimension of V 
provided the rational Pontrjagin classes of V vanish and n>\. 

COROLLARY 5. H*L m is additively isomorphic to A[x] ® Bm where 
A[x] is as in Theorem 3 and Bm is a certain subspace (but not a subalgebra) of 
H*LC

 m. 
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Details, further applications, and more extensive computations will appear 
elsewhere. 
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