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CHAPTER I. PRACTICAL ASPECT 

1. Introduction. Having done pure mathematics for a good many years, I 
became interested about three years ago in practical problems in medical 
radiology-specifically in the problem of finding tumors, hemorrhages, and 
other lesions of the brain with ordinary hospital equipment and without the 
introduction of contrast material. 

This is a significant and unsolved medical problem. The soft tissue density 
differences within the brain are so small that, masked by the heavy and 
variable skull, they are invisible on ordinary radiographs. The traditional 
procedures of radiology involve the injection either of air or of an x-ray 
opaque dye. Both are painful and dangerous, and the information obtained is 
often meager. In fact, very sick patients are unable to support the tests. On 
the other hand, the last few years have seen remarkable advances with the 
advent of the EMI scanner and its descendants. The scanners take a large 
number of radiographs around a semicircle and use the computer (in a way 
that is described in §2) to produce cross sections of the density function. The 
information obtained in this way is far more accurate and complete than that 
from the traditional procedures, and it is obtained either without contrast 
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material or with a relatively noninvasive use of it. The disadvantage of the 
scanners is that they are so expensive and elaborate as to be out of the range 
of the ordinary small hospital. Moreover, they are completely inflexible, 
producing cross sections of the density function whether or not this is the best 
information for a given problem, and sometimes producing them in far from 
the best way. The objective of our work has been to produce equivalent 
results, but with ordinary hospital equipment that is available everywhere, 
and with the flexibility to produce other kinds of results too. 

The brain is a particularly good starting point in the study of medical 
radiology for another reason than its medical significance. With the small 
density differences, masked by the skull, it offers the maximum theoretical 
difficulty, while at the same time, having no moving parts, it offers the 
minimum technical difficulty. The lessons learned from the brain can be 
expected to be of good use on other parts of the body, and in nonmedical 
problems as well. Already these lessons are leading to encouraging experi­
ments also described here in the diagnosis of gall stones, breast cancer, and 
vascular lesions-all by methods other than cross section reconstruction. 

These practical problems lead to interesting mathematical problems that 
require rather sophisticated theorems for their solution. And the mathemati­
cal solutions, in return, although they rarely provide computationally useful 
formulas, error bounds, and the like, do have a direct and important effect. 
They set the directions from which the practical problem should be 
approached. 

A vast amount of work is being done these days on cross section recon­
structions, and it spans many fields:-medicine, molecular biology, neutron 
radiography, and radio astronomy, to name a few. This article is not intended 
as a survey of the field. It is a personal account of our own work, and it 
makes no mention of any other, apart from occasional comparisons of what 
we can do (or think we can do) with what the EMI scanner can do (or what 
we think it can do). These comparisons should be regarded as opinions of the 
authors. The reader who is interested in surveying the field should consult the 
extensive bibliography which has been prepared and is being kept up to date 
by Dr. Richard Gordon of the N.I.H. The reader who is particularly inter­
ested in the medical side can refer to the original paper of G. N. Hounsfield 
[7], the inventor of the EMI scanner; the many reports from the Mayo Clinic; 
and the book of Drs. P. F. J. New and W. R. Scott [12]. 

In several aspects our work has been joint work with our colleagues R. B. 
Guenther of the Oregon State mathematics department, C. Hamaker of the 
University of Oregon mathematics department, C. W. Kerber of the Univer­
sity of Oregon Medical School, and E. K. Killian of the Good Samaritan 
Hospital in Corvallis. We have received help and helpful advice from J. P. 
Kelley of the Oregon State x-ray department and C. Klopfenstein of the 
University of Oregon chemistry department. 

Since this article is an account of my lecture at Monterey, I may take the 
liberty of offering occasional first person comments-for which my co-authors 
should not be judged too harshly. 

This article is dedicated to my long time teacher, colleague, and friend 
Nachman Aronszajn on the occasion of his seventieth birthday. 

KTS 
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2. A reconstruction method. For radiographic purposes an object in Rn is 
determined by its density function ƒ, ƒ(x) being the density at the point x. An 
x-ray from a direction 9 (a point on the sphere Sn~l) provides a function PJ 
on the plane orthogonal to 9 whose value at a point z of this plane is the total 
mass along the line through z in the direction 9: 

(2.1) Pf(9, z) = PJ(z) = r f(z + t9)dt forz E O 1 , 
• ' - c o 

The reconstruction problem is the problem of recovering the unknown 
density ƒ from a knowledge of certain of the radiographs2 Pê ƒ, . . . , P0 f. 

Throughout the article it will be assumed that an object is identified with 
its density function and that the latter is square integrable with compact 
support, unless the contrary is explicitly stated. 

Of course real objects exist in the 3 dimensional space R3. Note, however, 
that a solution to the 2 dimensional problem provides immediately a solution 
to the 3 dimensional problem by recovering all 2 dimensional sections 
orthogonal to a fixed line. At present almost all 3 dimensional reconstructions 
are being obtained in this way for reasons of computational simplicity. Thus 
even the practical situation requires the study of both the 2 and 3 dimensional 
cases. It turns out that most of the formulas and results remain the same for 
all dimensions, or at least follow a pattern, so that both cases can be covered 
at once by allowing the general dimension n. What is more important to a 
mathematician, however, is that some very interesting distinctions do arise 
between the dimensions. 

Reconstruction methods can easily be devised. The one we are using is a 
modification of a simple iterative scheme of Kacmarz [3], which is as follows: 
Suppose that N- is the null space of P0, that ƒ is the true solution, that Pj is the 
orthogonal projection (in L2) on ƒ 4- Nr and that P = PM • * • Px. The 
method consists in choosing an initial guess g and setting fm = Pmg. The Pj 
are computable, and it is shown in [1] (by an elegant, and highly recom­
mended argument) that if N = f) N., then the fm converge in the L2 sense to 
the projection of g on ƒ + N. This Kacmarz method is effectively the one 
used also (at least initially) by the EMI scanner, and it has been rediscovered 
and used by others too [4]. We have established the following rate of 
convergence. 

THEOREM 2.2. If each Nj makes an angle > otj with the intersection of the 
following ones and g0 is the projection of g on ƒ 4- JV, then 

(2-3) \\fm " 2o||2< O ! S - Sof wi*h c < 1 ~ II sin2 aj 

PROOF. This is a theorem in abstract Hubert space, the Nj being arbitrary 
closed subspaces subject to the angle condition. (Recall that the angle 
between two subspaces U and V of a Hubert space is > a if |<w, t>>| < cos a 
for all unit vectors u and v in U and V respectively and orthogonal to 
u n v.) 

There is no loss of generality in assuming that ƒ = 0, for this amounts to 
making a translation in the Hubert space, and it is almost obvious that the 
theorem is invariant under translation. We do this in order to obtain projec-

2In the parlance of radiography the x-ray is the photon beam and the radiograph is the picture 
it produces. 
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tions that are linear. Since g0 lies in N and P is the identity on Af, the 
inequality to be proved is 

m 

H^m(«r- *o)||2< h - H sin2a,l t |g-^o| |2 . 

Setting v = g — g0 and noting that TV1 is invariant under P, we see that it is 
sufficient to show that 

(2.4) ||i>t;||2< 11 - II sin2a,J||t;||2 forvGN1-. 

This will be proved by induction on M, the case M = 1 being self evident as 
both sides are 0. 

Let N' = NM n • • • n N2 and P' = PM • • • P2. For any ü E i V 1 write 
v = w + vx with w E Nx and vx E N^~, so that Pv = P'w. Now write w = w' 
+ w" with W E N' and n>" in ^V'-1. Then P'w = w' + P'w", and the 
summands are orthogonal, so that 

ir»f=iKii2+r»i2-
Induction gives 

| | P V | | 2 < f l - 1Î sin2ayJ||w"||2, 

and these last two formulas give 

( A f - l \ M - l 

1 - II sin2^- ||w||2+ II sin2 aj\\wf. 
y-2 / y -2 

Now, w lies in N{ and is orthogonal to Af = Af, n N\ and vvr lies in Nr and is 
orthogonal to N. Since the angle between AT, and AT is at least a, it follows 
that ||w'||2 = <vv, w'> < cos «i||w'|| ||w|| and hence that \\w'\\ < cosa,||w||. 
Combining this with the last formula and using the facts that Pv = P'w and 
IMI < t l v I I» w e § e t ^ e required formula (2.4). 

REMARK. In our reconstructions we have been using 18 x-ray directions 
(M = 18) and 10 iterations (m = 10) in which case the running time on the 
CDC 3300 is about 40 seconds. D. C. Solmon and C. Hamaker [6] have 
computed the angles Oj and have found that 

17 

II sin2 a, «2.957 X 10~5 

y - i 
(for a judicious ordering of the projections Pt). However, by applying Theorem 
(2.2) to a sequence of finite dimensional subspaces invariant under P, they have 
shown that c < 2/3 (where c is the constant in 2.3). Thus the theory states that 
12 iterations are sufficient to obtain a relative error of 1%, which is in agreement 
with the 10 iterations we have been using in practice. 

The results of our first significant experiments, one on a pig's head and the 
other on a brain tumor patient at the University of Oregon Medical School 
Hospital are shown in Figures 1 and 3 below. 
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FIGURE 1. Reconstruction of pig's head. The pig's head was a phantom consisting of a real 
skull about 10 cm in diameter filled with tissue equivalent wax (49% beeswax, 49% paraffin, and 
2% resin) in which there were two water filled holes about 0.8 cm in diameter. In the upper row 
are actual photographs of cross sections of the pig's head. In the lower row are reconstructions of 
the same cross sections. 

FIGURE 2. Location of brain tumors (as demonstrated by angiography) in a patient. The profile 
sketches of the patient indicate the levels of the cross sections shown in Figure 3. On the left 
profile are indicated a small tumor on the left and a large tumor on the right. On the right profile 
are indicated the ventricles. The numbers correspond to the cross sections shown in Figure 3. 

Level 17 Level 19 

FIGURE 3. Horizontal cross sections of the brain tumors sketched in Figure 2. The metastatic 
tumors are the dark masses in the interior. Some apparently mysterious features, e.g., the fact 
that the skull is thicker on the left side, are due to the fact that the head was tipped to the left 
during the x-rays. Therefore, any horizontal cross section cuts the left side higher than the right. 
The numbers correspond to the horizontal sections indicated in Figure 2. 
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The result of a more recent experiment is shown in Figures 4, 5, and 6. This 
experiment involved a completely known phantom (or model) similar to one 
being used by the Mayo Clinic to check the uniformity of EMI scanners. It is 
a plexiglass cylinder about 3" in diameter wrapped with a teflon tape skull 
about 1/8" thick. Inside are two lexan pins of diameters 1/4" and 1/8", a 
water filled hole of diameter about 3/16" and a Y shaped water filled 
channel of diameter about 3/16", The lexan pins are smooth and round, but 
the water filled hole and channel are ragged. In traditional radiography 
plexiglass, lexan, and water are considered completely equivalent. (According 
to T, F. Budinger the physical densities are as follows: teflon 2.16, lexan 1.20, 
plexiglass 1.19, and water 1.00.) A photograph of the phantom is shown in 
Figure 4, an EMI reconstruction in Figure 5, and our own reconstruction in 
Figures 6a and 6b. The numbers in Figure 6b are the actual numbers that 
came straight from the reconstruction program without a posteriori 
smoothing of any kind with the following inessential modifications: 468 was 
subtracted from each number in the phantom so that the more interesting 
ones would stand out as one digit numbers; and any number less than - 9 
was replaced by - 9 so as to stay in the two digit range. (The latter occur only 
in the teflon skull and on the fringes. Although teflon is denser than the other 
materials, both the EMI reconstruction and our own showed it to be less 
dense. Either teflon tape is different from teflon, or else air trapped in the 
wrapping reduces the density.) 

1/8" pin 

1/4 pin 

Figure 4. Photo of phantom top view 

Figure 5. EMI Scan 
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Figure 6a. Reconstruction of Phantom 
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Figure 6b. Reconstruction of Phantom — density numbers 
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3. Some simple formulas. It is immediately checked that if p is a function of 
one variable, then 

(3.1) f PJ(x)p((x, 0) dx = f f(y)p((y, 0) dy for £ e <K 
J0± JRn 

This formula has two interesting consequences. The first arises on taking 
p(t) = tm, in which case the left side is a homogeneous polynomial in £ 
defined on ff1 and depending on both ƒ and 0, while the right side is a 
homogeneous polynomial in £ defined on Rn and depending only on/. This 
means that the functions in the range of the x-ray transform must satisfy certain 
consistency conditions. D. Ludwig [9] (for n = 2) and D. C. Solmon [15] (for 
n > 2) have proved the following theorem. See §13 below for a precise 
statement and proof of Ludwig's theorem, which is the more difficult of the 
two. 

THEOREM 3.2. Apart from obvious symmetry, support, and regularity condi­
tions a function g{0, x) defined for 0 E Sn~l and x E 0L lies in the range of 
the x-ray transform if and only if for each m the polynomials 

(3.3) / V * ( 0 = f 8(0,x)<x, %Tdx forte 0 x 

fit together to form a polynomial on Rn, i.e.pm9{£) = pm(£)for ^ G ^ 1 . 

REMARK 3.4. Just what can be expected in the case of heads I do not know, 
but I read recently that in the case of chest x-rays it can be expected that 
80-90% of the photons reaching the film are noise (scatter)-and of course 
there is also additional noise coming from the developing process, unevenness 
in the film emulsion and so on. When one takes a certain number M of x-rays 
there is little reason to believe that the resulting pictures 
g(0v x), . . . , g(0M, x) satisfy the consistency conditions of the theorem, in 
which case they are not the true radiographs of any object at all and the 
iterations described in the last paragraph simply bounce around. The situa­
tion is not quite this bad, however, for it can be shown that a finite number of 
radiographs read at a finite number of points cannot lead to inconsistencies. 
See §15. 

A trivial use of Theorem 3.2, but one that actually has been important in 
practice is the following. It is clear that the several radiographs must be 
radiographs of precisely the same object. Under laboratory conditions the 
object can be held perfectly still, but under hospital conditions the patient 
cannot. Despite careful precautions the head bobs up and down and around 
and about to a surprising degree, and the films lie in surprising positions in 
the cassettes. The problem then is to match the radiographs that result. The 
theorem shows (m = 0, 1) that this can be achieved by matching the centers 
of gravity. 

A second useful consequence of formula (3.1) is the Fourier transform 
formula that results from taking p(t) = e"lt. Apart from powers of 2-77, the 
left side becomes the Fourier transform of PJ and the right side the Fourier 
transform of ƒ. When the powers of 2TT are accounted for, the result is as 
follows. 



RECONSTRUCTING OBJECTS FROM RADIOGRAPHS 1235 

(3.5) ( W ( ö = (2^)1 / 2 / (É) forte 0 \ 

where 

REMARK 3.6. Another reconstruction method in widespread current use, 
usually called the "Fourier Method", is based on formula (3.5). This formula 
shows that when the radiographs of the object ƒ are known from the 
directions 0V . . . , 6^ then the Fourier transform ƒ is known on the lines 
0,-1, . . . , Ojfc. Then ƒ is defined everywhere by an interpolation, and the 
reconstruction is its inverse Fourier transform. 

In the literature, the method described in the last section, which I prefer to 
call the Kacmarz method, usually is referred to as the ART method, standing 
for Algebraic Reconstruction Technique. 

There is one more method in widespread current use called the "Convolu­
tion Method". This is simply a numerical implementation of Radon's original 
formula for the inversion of the Radon transform. Radon's formula and its 
proof are given in §§9 and 12. 

4. The determination of an object by x-rays-and the lack of it. One of the 
main points I want to discuss in this article is the extent to which x-rays 
determine an object. This seems to be widely misunderstood, and the misun­
derstandings seem to have led to effort in unprofitable directions. 

From the Fourier transform formula (3.5) it is clear that an object is 
determined by its radiographs, for the Fourier transform is determined. Since, 
however, the objects come from a special class of functions (square integrable 
with compact support), much more can be said. The Fourier transforms come 
from a special class of real analytic functions on Rn, and it is well known that 
real analytic functions cannot vanish on an infinite set of n — 1 dimensional 
planes through the origin without vanishing identically. Therefore: 

THEOREM 4.1. An object is determined by any infinite set of radiographs. 

Although this result is reassuring, especially in the problem of making 
reconstructions from electron micrographs, where the directions must be 
confined to a relatively narrow cone, the practical question is the extent to 
which an object is determined by a finite set of radiographs. It has been 
largely assumed that incorrect objects with many correct radiographs, 
although they do exist, must be so bizarre as to be unreachable by reconstruc­
tion methods, or at least as to be easily rejected by any reasonable interpreter. 
The fact of the matter is this: 

THEOREM 4.2. A finite set of radiographs tells nothing at all. 

For some reason this theorem provokes merriment. It is so plainly one of 
those mathematical ideals untainted by any possibility of practical applica­
tion. The precise statement of the theorem will become clear from the simple 
proof, and in any event will be given explicitly in Theorem 4.3. 

Given a finite number of directions 0] 0M, choose a polynomial q that 
vanishes on each plane 0A, for example 
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and let Q be the corresponding differential operator obtained by replacing § 
by — id/dxj.t For any g E C0°° (infinitely differentiable with compact support) 
set ƒ « Qg, and consider PJ. By formula (3.5) we have 

W H O - (2*)VV (0 = (27r),/2^(|)g(|) /or « S 0 \ 

thus, 

This shows that there are plenty of objects with zero radiographs from the 
given directions. Indeed, if g0 is any given function in C0°°, the theorem of B. 
Malgrange [10] on the solvability of linear partial differential equations with 
constant coefficients can be used to solve the equation Qg{ — g0. Now, g1 is 
not quite suitable as the g above, for it cannot be expected to have compact 
support However, if K is any compact set in the interior of the support of g0, 
then <p E C0°° can be chosen so as to be 1 on a neighborhood of K and 0 
outside a slightly larger neighborhood which is still within the support of g0. 
Now take g * <pg„ i.e. ƒ = 0(<P£i)- Then 

( a ) P ^ / - 0 / o r y - 1, — , AT, 
(b) ƒ ~ £o on % and outside the support of g0. 

In other words, ƒ has zero radiographs from the given directions, and yet is 
equal to the completely arbitrary g0 except on an arbitrarily small ring just 
inside the boundary of the support of g0. A slight modification of this 
argument gives the following result, which is the precise statement of Theo­
rem 4,2. 

THEOREM 4.3. Suppose given an infinitely differentiable object f0 and a finite 
number of directions. Then there is a new infinitely differentiable object ƒ with 
exactly the same shape, exactly the same radiographs from these directions* and 
completely arbitrary on any compact set in the interior of the support off0. 

Before turning to some illustrations of this theorem and to some of the 
implications, let us consider first another theorem that seems to point back in 
the opposite direction. Although a reconstruction method necessarily uses 
only a finite number of x-rays, it also necessarily produces only a finite 
dimensional space of possible reconstructions. The question arises as to 
whether the radiographs serve to distinguish between the objects within this 
finite dimensional space. 

THEOREM 4.4. For almost any finite dimensional space F the objects in F can 
be distinguished by a single radiograph from almost any direction. 

The precise statement is as follows. 

THEOREM 4.5. Let F be a finite dimensional space of objects with basis 
fv • » » > ƒ#' and let V be the set of directions 9 such that at least two objects in F 
have the same radiograph from the direction 0, Then 

(a) V is an algebraic variety in Sn~~l; 
(b) V = Sn~l if and only if there are polynomials qv . . . <>qN such that 
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N 

(4.6) 2 qjWWj (Ö = 0 M all 0 and all£eO \ 

Part(a) says that either no single direction serves to distinguish between 
objects in F, or else almost any direction does that job; while part (b) says 
that the latter is the usual case. In our reconstructions the jÇ- are step functions 
on a fixed grid in R 2. This example is worked out at the end of the proof of 
Theorem 413. 

What will be proved is the following slightly more general result that comes 
from Fourier transforming the theorem. 

THEOREM 4.7. Let ƒ,, . . . ,fN be real analytic functions on / ? \ and let V be 
the set of directions 0 such that their restrictions to the plane 0 -1 are linearly 
dependent, Then 

(a) V is an algebraic variety in Sn~]\ 
(b) V = Sn~] if and only if there are polynomials qv . . . , qN such that 

(4-8) 2 <7,(0 )fji (É " <10 ># ) = 0 for all 0 and all fc 

PROOF. A fixed point 0 lies in V if and only if there are numbers q\0) 
satisfying (4.8), hence if and only if each coefficient in the Taylor expansion 
of (4.8) is 0. Now, if 

* ( * ) = ƒ ( € - < & * > * ) 

and 

A$ « D - <£>, 0)0 with D « {Dx Dn ) = (3/3JC, , 9 / & 0 

then Dg{£) = A0f(% - <£ 0)0). Thus, 9 lies in V if and only if there is a 
solution ^ ( 0 ) , * . . , qN{0) to the system of equations 

(4.9) 2 qj{9 )A}f3 (0) - 0 for every «, 

which happens if and only if the coefficient matrix {A0fj(O)} has rank less 
than JV, Consequently, V is the set of common zeros of the N x N minors, 
and the latter are clearly polynomials in 0, so V is an algebraic variety. 

Let r be the maximum rank of the above matrix at a point of K, and rearrange 
the ƒ s so that {Agfj},j « 1 ,* . . , r, has rank r at some point of K Consider 
the matrix (at 0) 

A?fx *efi • " A?Ux 

Aft Atfi • - <W+i 

^/ / l A$f2
 % ' ' Atfr + Y 

The determinant is 0 on K, and expansion via the last row gives the relation 
N 

(4.10) 2 Qj(O)A0
afj(O) = 0 on Vfor each a, 

y = i 
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the q} being 0 for j > r + 1, and being the minors in the above matrix, 
therefore polynomials, for y < r + 1. Hence, 

N 

(4-10 2 Qj(9)fj(f - <& 0>*) = 0 /or 0 o/i K W a l l £. 
7=1 

If K = S"7"1, this is the required relation (4.8). On the other hand, if this 
relation holds for all 0 E Sn~\ then it gives a dependence relation between 
the j^ for every 0 except those in the proper variety W of common zeros of the 
Çj, and shows that Sn~l = V U W, which is possible only if S"~l = V. 

While on this order of ideas we give a similar theorem that provides the 
corresponding information in the case of the Radon transform, which is the 
subject of much of Chapter II. 

THEOREM 4.12. Let ƒ,, . . . ,fN be real analytic functions on R"< and let V be 
the set of directions 0 such that their restrictions to the line through the origin 
with direction 0 are linearly dependent. Then V is an algebraic variety in Sn~K 
and V = Sn~l if and only if there are homogeneous polynomials qx qN of 
the same degree such that 

(4.i3) s «jfr °-
y = i 

The proof is similar to that of Theorem 4.7 except that in place of the 
Taylor coefficients of the fj the homogeneous parts of the Taylor expansions 
are used. 

In practical situations the question can often be resolved without recourse 
to the general theorem. In our case, for example, the situation is as follows. 
Suppose that all objects to be considered have support in the unit square 
l*iI ^ I* l-*2l < 1- A number N is chosen (in our case N = 25), and arbitrary 
objects are approximated by step functions on the squares determined by the 
lines |JCJ| = k/N and \x2\ = l/N. Thus, a basis of the space F consists of the 
translates Xj(x) == x(* "" aj)-> where x is the characteristic function of the 
square \xx\ < 1/2/V, |x2| < \/2N and the a} are the points at the centers of 
the above squares. The Fourier transforms, the / of the last theorem, are 
therefore the functions 

fj(t)~e-'«>*>x(i). 

and the variety V consists of those 0 for which the matrix ajk = <#., 0}k has 
less than the maximum rank. These are the 0 for which the numbers (ar 0) 
are not distinct-hence the 0 for which the corresponding line has slope k/l 
with k and / integers at most IN in absolute value. This particular case is 
given in R. Mersereau and A. Oppenheim [11]. 

Now, the question is-Which is the practical result, the obviously unrealistic 
infinite dimensional Theorem 4.3, or the finite dimensional Theorem 4.4? To 
see what happens in practice consider Figure 7, which shows two reconstruc­
tions of the same cross section of the head of another brain tumor patient 
from the University of Oregon Medical School Hospital. In the first, the 
tumor (verified by biopsy) is easily visible as the dark mass on the right hand 
side. In the second, it is merged with the skull (in accordance with Theorem 
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4.3) in such a way as to make diagnosis very dubious. It is indeed Theroem 
4.3 that is in evidence here, not noise, experimental error, or what have you. 
Medically feasible objects with virtually identical radiographs-yet medically 
very inequivalent, i.e. one with a tumor and one without-are easy to produce 
artifically on the computer without noise and without experimental error. 

Thus the indeterminacy theorem expresses a fundamental fact that must be 
faced. The consequences can be reduced by the use of a huge number of 
x-ray directions, but there ought to be better ways. One possibility is de­
scribed in the next section. 

Figure 7 

5. Resolution. In this field the term resolution refers, in a somewhat 
imprecise way to the minimum size of details that can be expected to be 
picked up. Thus, to say that a procedure for diagnosing lesions of the brain 
has a resolution of 1/8" would mean that the procedure can be expected to 
reveal tumors, hemorrhages, etc. which have diameter 1/8" or better. 

There are three main factors governing the resolution of reconstructions 
from x-rays. The first is the indeterminacy described in Theorem 4.3. The 
second is the size of the reconstruction matrix relative to the size of the full 
object being reconstructed. The third is noise. The first two will be discussed 
in this section and the noise in the next. 

It is seen from the actual example in Figure 7 that the indeterminacy is a 
real problem. In the case of the big scanners there seems to be disagreement 
as to whether it has been licked or not. Some authorities say that initially it 
was a problem, but is not one any longer, while others say that there are still 
difficulties, particularly with lesions just inside the skull. 

Any reasonable reconstruction method finds very quickly a solution to the 
problem of producing an object with the correct, or very nearly correct, 
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radiographs from the given directions-but it may well find one of the feasible 
but wrong objects of Theorem 4.3. Ordinarily the wrong objects will be highly 
oscillatory in the little ring where the compensating errors are made. This is 
little help, however, in detecting the error, or even that one has been made, 
for the skull bone itself is highly oscillatory-something like a honeycomb-so 
that the erroneous oscillations get lost among the ones that belong. What are 
needed are additional twists to direct the reconstruction procedure toward the 
right solution instead of one of the wrong ones. 

One possibility is to make use of a priori information about the object that 
does not come from the x-rays. One example of this that is used in many 
procedures is to set a priori upper and lower bounds for the density of brain 
tissue and to correct each stage of the iteration so that these bounds are 
satisfied. Such bounds were used in the wrong reconstruction shown in Figure 
7. It appears that work should be done on this question of what kind of a 
priori information can really be used effectively. 

A second possibility, the one that we rely on more and the one that 
produced the correct reconstruction in Figure 7, is to make use of empirical 
knowledge of the behavior of the reconstruction method. The idea is simply 
to determine experimentally what kind of object the procedure handles well, 
and then to decompose a given problem in stages, each of which involves that 
kind of object. Experience shows that the kind of object that our procedure 
handles well is a simple object with relatively good density contrasts in the 
desired details. 

Now consider the head. In regard to what is sought, it certainly is a simple 
object-consisting of bone, normal tissue, and perhaps a lesion or two. 
However, the desired details, namely the lesions, certainly do not have good 
density contrasts. If the lesions are forgotten for a moment, the object 
becomes still simpler-just bone and tissue-and the density contrast becomes 
large-bone vs. tissue. It can be expected, therefore, that an initial run of the 
reconstruction procedure should do a very good job of finding the skull, and 
indeed it does. In this initial reconstruction the density at each tissue point is 
replaced by a constant, usually the average density of brain tissue. The 
computing machine then simulates x-rays of this new object and subtracts 
them from the original x-rays. If the results were perfect they would be the 
radiographs of a head without a skull and with zero average density, an 
object which is simple and in which the density contrasts of the lesions have 
become relatively large, in short an object which another run of the recon­
struction procedure should handle well. Figure 7 shows what is obtained with 
and without this "removal of the skull". (At the end the skull is replaced.) 

Recently we learned from Dr. Paul F. J. New that in the majority of brain 
scans now being performed in the Massachusetts General Hospital a radi­
opaque iodine dye is now being injected intravenously prior to the scan. For 
various reasons blood tends to accumulate at the site of a tumor, and so the 
dye accumulates there also, providing additional density contrast and thus 
helping the reconstruction procedure toward the right solution. This in­
travenous injection is considered safe and relatively noninvasive, as opposed 
to the arterial injection used in arteriograms which is much less so. 

Although such dye injection should help in this way, it can in fact be used 
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in a much more powerful way akin to the above removal of the skull-pro­
vided one is not tied to a fixed machine that can do nothing but produce 
cross sections. X-rays can be taken before and after injection of the dye, and 
subtracted. The results are radiographs of nothing but the vascular structure 
containing the dye-a very simple object with high density contrast which the 
reconstruction procedure should handle remarkably well. In many cases, 
however, it will not be necessary to produce cross sections at all, for the 
regions with dye will stand out sufficiently well on one or two films» This idea 
is explored further in §8. 

Still another problem in which the subtraction idea will be essential is one 
that we have not tried yet but will be trying shortly. It is the problem of 
detecting flaws in the fuel assembly of a nuclear reactor. From the point of 
view of economy it is necessary to replace the fuel pins as seldom as possible, 
while from the point of view of safety it is necessary to replace them as soon 
as they become defective. At present there is no way to detect flaws without 
dismantling the whole thing. Of course an x-ray beam does not penetrate such 
an object, but a neutron beam does, and this opens the possibility of cross 
section reconstructions. 

The fuel assembly consists of 217 fuel pins in a hexagonal case about 5" in 
diameter. Here we have something just about as different as possible from the 
head. The 217 pins make a very complicated object, while the flaws, consist­
ing of cracks, bulges, bends, etc., provide large density contrasts-essentially 
fuel or casing vs. air. Such an object has no chance of being reconstructed 
faithfully by a direct application of our procedure. However, if two radio­
graphs are taken, one of the assembly to be tested and one of a perfect 
assembly, and the two are subtracted, the result will be a radiograph of 
nothing but the defects. One would certainly hope that these will be few 
enough in number to provide the necessary simple object. 

Now we turn to the second factor governing the resolution of recon-
structions-the size of the reconstruction matrix relative to the size of the 
object being reconstructed. As mentioned earlier, the reconstructed density 
function is a step function on a fixed grid, so it can be thought of as a matrix. 
It is perfectly obvious, but does not always seem to be appreciated, that a 
detail in the object cannot possibly be revealed properly if it is smaller than 
the area represented by a single square of the grid. In fact, in practice it turns 
out that single squares are not reliable, while a group of about four adjacent 
ones usually is. 

To see the practical consequence of this, consider our plexiglass phantom 
in Figure 4. The diameter is about 3" and the reconstruction matrix is 
50 X 50, so each square of the matrix represents a square in the phantom of 
side 3"/50. Thus, details in the phantom should be picked up if they have 
diameter at least 2 X 3"/50 « 1/8", and indeed the 1/8" lexan pin is picked 
up. 

The 1/8" lexan pin is also picked up in the EMI scan shown in Figure 5, 
but in a similar experiment a year or so ago it was not. The reason is as 
follows. Until very recently it has been part of the EMI procedure to insert 
the head in a water bath of fixed size. Many reasons were advanced for doing 
this, but the main one was to produce an effectively round object of fixed size 
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so that the same x-ray exposure could be used for all x-ray directions and all 
patients. The big disadvantage is that the object being reconstructed becomes 
the actual object plus the water bath. Thus the 3" plexiglass phantom filled 
only a small portion of the water bath and hence of the EMI reconstruction 
matrix. At the time that the 1/8" pin was not found an 80 X 80 reconstruc­
tion matrix was being used, and it simply was not big enough, while at the 
time of the scan shown in Figure 5 this had been increased to 160 X 160. 
Since the diameter of the water bath is about 10.6", each square in the new 
matrix represents a square in the object of side 10.6"/160^ 1/16", and 
details should be picked up if they have diameter at least 1/8", as indeed the 
1/8" pin was- in the new matrix. 

This is another illustration of the disadvantage of a fixed machine that is 
completely set in its ways. Our very first experiment, for example, was done 
on a tooth x-ray in the dentist's office. Since the tooth could be made to fill 
the full 50 X 50 reconstruction matrix, it was possible to pick up the tiny root 
canals. Our solution to the problem of not having round objects is explained 
in the next section. 

6. Calibration. Up to this point we have been pretending that the result of 
an x-ray from the direction 9 is the total mass function P^ defined on the 
plane 0±. Of course the direct result is not this function, but an exposed 
photographic film in which the gray level at a point x depends on the total 
mass of the object ƒ along the line through x perpendicular to the film. The 
gray levels on the film are converted to numbers by a densitometer which 
shines a small spot of light on the film (in the case of the plexiglass phantom 
the spot was a rectangle effectively .1 mm. in width and .6 mm. in height) and 
records the number 

^ ^ t no. of light photons hitting spot 
(6.1) D (x) = log n n : :—r , 

v ' no. of light photons transmitted 
which is called the optical density of the film at the point x. 

There is a simple formula relating the number D(x) to the desired number 
Pgf(x), but the simplicity is something of an illusion for the formula contains 
constants that depend on the kind of film that is being used and on the x-ray 
exposure. One can always stick to the same kind of film, but hospital 
equipment is incapable of producing uniform exposures with the accuracy 
required for this kind of work. What kind of accuracy is needed can be seen 
from the plexiglass phantom. For x-ray purposes the density difference 
between plexiglass and lexan is about 1.5%. An average line across the 
phantom and through the 1/8" lexan pin has length about 2", so the pin 
occupies about 1/16 of it. Therefore, the difference between the total mass 
along a line through the pin and along a nearby line that misses the pin is 
about 1/1000. In other words, about 1000 gray levels are needed to do the 
problem. On the other hand, supposedly identical x-ray exposures of the same 
object produce densitometer readings that vary by several per cent. 

For this reason it was decided at the beginning to pay no attention to the 
"simple" formula relating D(x) and PBf{x\ but rather to calibrate empiri­
cally each individual film. An aluminum wedge is included in each x-ray 
shot. 
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x-ray 

Let w(s) denote the densitometer reading at the point on the film at distance s 
from the thin end of the wedge. If the density of the wedge were 1 and the 
angle 45°, then s would be the true total mass corresponding to the densitom­
eter reading w(s), and hence for any densitometer reading Z), w~l(D) would 
be the corresponding true total mass. A different density and different wedge 
angle simply introduce an irrelevant proportionality factor. Thus, w~\D(x)) 
is a function that is proportional to the desired P9f{x), the proportionality 
factor depending on the wedge density and angle, but not on anything else. 

While the calibration of each individual film was introduced initially to 
counteract the variability in supposedly identical x-ray exposures, it turns out 
to do much more than that. In particular, it permits intentional variation of 
the x-ray exposure. 

The characteristic curve of a photographic film is the graph of the optical 
density of the film as a function of the exposure received by the film. The 
characteristic curve of a typical medical film looks something like this. 

Exposure 

Within the optical density range from a to b (which depend on the film and 
intensifying screen in use) the film is sensitive to small changes in exposure, 
and hence to small changes in total mass in the object. Outside this range the 
film becomes very insensitive. Consequently it is necessary to choose the 
exposure so that the relevant areas of the film come out in the sensitive range. 

Now consider a head. It is much thicker from front to back than from side 
to side. An exposure that puts the front view within the sensitive range will 
make the side view much too dark, and one that puts the side view within the 
sensitive range will make the front view much too light. The individual 
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calibration of each film allows the use of different exposures from the 
different directions so that all films can be kept within the sensitive range. 

The wedge also has other functions, such as to cancel out variations in the 
development process, but the above are the main ones. It will be seen in §8 
that in some problems the wedge is not needed, but in reconstructions it is. 

REMARK. In the scanners the attenuation of the x-ray beam usually is 
measured by the effect on scintillation crystals rather than by the effect on 
photographic film, so the above discussion is not directly applicable. It 
appears, however, that the crystals share some of the characteristics of the 
film and that the basic reason for the use of the water bath was to produce a 
round head for which the x-ray exposures could be kept the same from all 
directions. The unwanted accidental variations are cancelled by dividing the 
beam in two parts in each shot-one passing through the head and the other 
just through the water bath~and using the difference between the two. 

7. Noise. Noise is a general term that refers to anything on the film that 
does not belong there. There are many sources of noise on x-ray films. 

(1) SCATTER. When a photon from the x-ray beam passes through the object 
two things can happen. It can sail through completely undisturbed, or it can 
interact with atoms of the object. In the case of an interaction the photon 
may be stopped, which attenuates the x-ray beam. The amount of attenuation 
at a given point of the film, as measured by the optical density at the point, 
gives a measure of the number of interactions that took place along the line 
through the point and perpendicular to the film, hence of the number of 
object atoms along this line, and hence of the total mass along the line. 
Unfortunately, however, the interactions are not this simple. Sometimes they 
involve, not the stopping of the x-ray photon, but a change in its direction. 
Other times they involve the release of photons from the object atom. And 
still other things occur too. These new photons and the old ones with the 
wrong direction are called scatter. They strike and expose the film at points 
where it should not be exposed. 

(2) QUANTUM MOTTLE. A fairly heavy dose of photons is needed to expose 
the film, unacceptably heavy in the case of human patients. In most medical 
x-rays the film is not exposed directly by the x-ray beam, but rather by the 
light from a fluorescent screen called an intensifying screen. A rather sparse 
x-ray beam causes the intensifying screen to fluoresce sufficiently to expose 
the film. The result is an exposure to the patient that is a small fraction of 
what would be needed with direct exposure, but it is also a badly mottled film 
on which it is more or less the case that the effect of individual x-ray photons 
has become visible. 

(3) OTHERS. There are many other sources of noise, of which here are a 
few: finger marks of the technicians, streaks left by dirty rollers in the 
developing machine, incorrect developing temperature, uneven film emulsion. 

Figure 8 shows a graph of the noise along a line on one of the films of the 
plexiglass phantom. The noise is large relative to the total mass differences in 
these problems, so something must be done to get rid of it. 

Inspection of Figure 8 shows that the nature of the noise at first poses a 
problem and then provides its solution. Ordinarily one expects to eliminate 
noise by averaging of some kind. In this case the huge isolated peaks of noise 
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I line across phantom 

Figure 8. - Noise 
provide the problem: if averages are taken over small intervals, then any 
interval containing a huge peak will contain only one or two and the average 
will be so distorted that things will end up worse than they began; while if 
averages are taken over large enough intervals to assure cancellation of the 
peaks, then all possibility of preserving fine details will be lost. 

The source of the problem, the isolation of the largest peaks, the somewhat 
reduced isolation of the next largest, etc., provides also the answer: to smooth 
in stages, at each stage correcting only the very worst peaks, and taking 
advantage of the fact that in these medical problems it is known a priori that 
there are not huge local oscillations in the total mass. 

The first stage of the noise elimination proceeds as follows. Suppose that 
D (x) is the densitometer reading at the point x along a line on the film. Fix a 
number L, fairly large at the first stage, and let A (x) be the average of D (y) 
over the interval of length L centered at x. The noise at this stage is 
considered to be the difference 

N(x) = D(x) - A(x) 

(which is reasonably valid because there are no large local oscillations). Next, 
fix a number OK. At this stage the point x is considered ok and no correction 
is made if \N(x)\ < OK. Finally, fix a number OK'. At the points x that are 
not ok, D (x) is more or less replaced by A (x), but not quite, for the very bad 
points contribute to A(x). Therefore, define A\x) to be the average of D(y) 
over those points y in the interval of length L centered at x which satisfy 
\N(y)\ < OK' and at these points correct D(x) to be A'(x). 

At each stage the procedure is the same, except that D(x) is the outcome of 
the previous stage instead of the original densitometer readings. 

Now, the question is, what are the principles governing the choices of the 
numbers L, OK, and OK'. First of all, the number L should be chosen to 
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provide a fairly reliable average-not unduly distorted by the large peaks. 
Second, the number OK should be chosen so that corrections are made at 
relatively few points-the number of such points being dependent on L. At the 
first stage, for example, L will be quite large because of the great height and 
severe isolation of the worst peaks. The replacement of D (x) by an average 
over a large interval of length L will not cause the loss of detail if it is done 
only at very few points, where it would cause the loss of detail if done at 
many. At later stages L will not be so large, for the worst peaks will be 
smaller and less isolated. At such stages, when averaging is done over smaller 
intervals, it can be done at more points without the loss of detail. The basis 
for choosing OK' remains rather vague, except that it should not be too 
different from OK, One should not insist that things be too close to a possibly 
bad average. 

In the experiments performed so far five stages have been used. With 
densitometer readings taken every .1 mm. on the film the values of L were 18, 
18, 14, 10, 8. The values of OK varied from one experiment to another (but 
not from one line to another or one film to another within the experiment). 
They were chosen so that corrections were made at about 2% of the points in 
the first two stages, about 4% of the points in the second two, and at all 
points in the fifth. The values of OK' were chosen so that each interval could 
be expected to have perhaps 80% of its points OK'. The point to insist on here 
is not to take these numbers too small, not to try to do too much at any given 
stage. The procedure is one of "disaster elimination", and, until the end, only 
the disasters at a given stage should be touched. The results of the noise 
elimination are shown in Figure 9 for the case of the plexiglass phantom. It is 
plain from the graphs that most of the noise has been eliminated, and from 
the quality of the reconstruction (Figure 6) that the essential details have been 
preserved. Another and quite different example is presented in §8, Figure 10. 
The mathematical basis of this noise elimination has not been analyzed. 

K original readings 
from part of phantom 

T "V readings from part of phantom 
y \ after noise elimination 

Figure 9 
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8. Other problems. It is to be expected that work on a very delicate problem 
such as the revealing of soft tissue distinctions hidden behind a heavy and 
variable skull ought to furnish along the way the means to do other and 
simpler problems. In this section I shall discuss a few on which work has 
already begun. 

(1) NONINVASIVE ANGIOGRAMS. Quite often it is important to be able to 
visualize some part of the vascular structure of the body. One of the 
traditional brain examinations, the angiogram, has the purpose of visualizing 
the arteries in the head, as well as certain tumors. Iodine contrast dye is 
injected into the carotid artery in the neck. The dye goes directly to the head, 
and then on its way through the body. While the full amount is still in the 
head an x-ray is taken. At this point the dye is present in sufficient concentra­
tion to be visible on the film, though it is not visible later on after spreading 
through the body. Angiograms of other arteries follow the same princip­
le-direct injections of contrast dye into an artery and an x-ray taken while the 
dye remains in the neighborhood. This direct arterial injection is painful and 
dangerous, always calling for hospitalization, and often (perhaps 1% of the 
time) producing grave complications. 

On the other hand, a slow intravenous injection of the dye is considered 
safe and relatively painless and harmless, though occasional allergic reactions 
do occur. Hospitalization is rarely necessary. The intravenous injection has 
been useless in visualizing the arterial structure because there is never a time 
at which the dye is present in sufficient concentration, but it is commonly 
used in kidney examinations. The kidneys extract the dye from the blood, and 
hold it there in high concentrations. Intravenous injection is also used to 
visualize veins in the way the arterial injection is used to visualize arteries, 
but, depending upon the vein, this can be a tricky business. 

We learned recently from Dr. Paul F. J. New, however, that the stablized 
intravenous concentrations (200-300 milligrams of iodine per 100 milliliters of 
saline solution) are sufficient to be detectable in EMI scans-and this opened 
the exciting possibility of "noninvasive" angiograms. If these concentrations 
are detectable in cross section reconstructions, then there must be some 
evidence of their presence on each individual film, even if it cannot be seen. 
The reason it cannot be seen is simply that it is so meager and is hidden in 
the skull variations and noise. Why not, therefore, take two films, one before 
and one after the dye injection, run them through the noise elimination to get 
rid of the noise and then subtract them to cancel the skull variations? 

To test this idea four balloons made from surgical gloves, the first three of 
diameter 8 mm. and the fourth of diameter 7 mm. (just accident), were filled 
with iodine contrast dye in concentrations of 84, 140, 196, and 280 milligrams 
of iodine per 100 milliliters of saline solution. The balloons were placed in a 
6" square plastic milk bottled filled with water, and a real dry skull was 
placed out in front. 

x-ray / d r y 

^ / skull 

top view 
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One x-ray was taken, then the balloons were removed and another was 
taken-the two corresponding to x-rays of a patient taken before and after the 
injection of dye. Figure 10 shows the graphs of the densitometer readings 
before and after noise elimination along a line through the balloons on the 
first film, the corresponding line on the second film, and the difference. 

The balloons show up clearly, except for the first one with the very low 
iodine concentration (which does in fact show up too but at a level not 
readily distinguishable from the remaining background noise). The different 
heights reflect the different iodine concentrations. The height of the last one 
seems at first less than might be expected, but this is due to the smaller 
diameter which is also apparent on the graph. The fact that the balloon with 
84 mg. iodine/100 ml. saline appears slightly, if indecisively, above the 
background, while the one with 140 mg. iodine/100 ml. saline appears so far 
above the background, indicates that an 8 mm. balloon with 100 mg. 
iodine/100 ml. saline should surely be visible, hence also a 4 mm. balloon 
with 200 mg. iodine/100 ml. saline, etc. Since the latter concentration is still 
at the bottom of the concentrations found in the blood after intravenous dye 
injection, it should be possible to visualize blood vessels or tumors of 

Figure 10 
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diameter about 4 mm. When many lines are read and a picture is printed 
back by means of a reverse densitometer (film writer) it should be possible to 
do much better. For example, film defects that are large enough to be 
preserved by the noise elimination do not cancel in the subtraction, and they 
show up glaringly under the magnification and isolation coming from looking 
at a single line of readings. Note also that the large oscillations in the dry 
skull make the question of matching the two films accurately much more 
critical than it will be with other parts of the body. 

In this procedure the calibration of §6 is unnecessary because arithmetic is 
not being done with the numbers in any essential way-though probably it 
would help a little. Note that in Figure 10 the graph without balloons is 
perceptibly higher than the one with balloons-which illustrates the lack of 
uniformity in supposedly identical exposures. 

As we see it now the procedure will be used in two ways: 
(a) Individual lines can be inspected, as was done with the balloons. The 

presence of a bump of sufficient size on such a line will indicate an 
accumulation of dye and hence the presence of a lesion and its location along 
the line. Thus films from two directions will locate the lesion precisely. The 
magnitude of the bump will indicate the size of the lesion, as is shown by the 
difference in the widths of the bumps corresponding to the 8 mm. balloons 
and the 7 mm. balloon. If lines are read at, say, 2 mm. intervals, the 
procedure should reveal the presence of a 4 mm. lesion with just two x-rays 
and localize it completely with four. 

If additional information is needed, cross sections can be reconstructed at 
the level where the lesion is now known to exist. 

(b) A subtraction angiogram type film can be made by preparing a large 
number of lines and running them through a reverse densitometer (film 
writer). Suppose that a first x-ray is taken before dye injection, a second 
shortly after when the dye has passed from the anticubital vein through the 
heart and out into the arteries, but has not yet reached the veins, and a third 
when the dye has spread through the body. Subtraction of number 1 from 
number 2 will reveal the arteries, and the film produced by the film writer will 
be a subtraction angiogram. Subtraction of number 1 from number 3 will 
leveal both the arteries and the veins in the same way. Subtraction of number 
2 from number 3 will reveal the veins alone. While this article was in press 
this procedure was used with apparent success to visualize the vascular 
structure in the neck of a patient at the Good Samaritan Hospital in 
Corvallis. 

(2) DISTINGUISHING BETWEEN CANCER AND FIBROCYSTIC DISEASE IN THE 

BREAST. Even when a mass is known to be present in the breast (e. g. palpable 
by the physician) it remains a difficult problem to determine without a biopsy 
whether the mass is cancer or is a fibrocystic lesion. Since the fibrocystic 
lesion is more dense than the fatty breast tissue, while the cancer is normally 
still more dense, and since the situation is not obscured by a highly oscillatory 
skull, it appeared that something ought to be possible simply by examining 
the densitometer readings along a line through the lesion. 

If the lesion has density d and is round with radius r, then the total mass 
function along the line is 



1250 K. T. SMITH, D. C. SOLMON AND S. L. WAGNER 

y = M(x) = 2dV? or xz + —r = r. 
Ad2 

Thus, the graph is an ellipse in which the ratio of the axes is 2d-and it might 
be expected that if the units on the coordinate axes are chosen judiciously, 
then cancers will have vertical major axes and fibrocystic lesions horizontal 
ones, so that the two will be distinguishable at a glance. Figure 11 shows the 
graphs of six cancers (scirrhous adenocarcinoma, the most common of breast 
cancers), and Figure 12 shows the graphs of five isolated fibrocystic lesions. 
These came from breast films (mammograms) in the radiology files at the 
local hospital, and all were cases where the diagnosis could not be made 
without a biopsy. 

There is one minor point here. The densitometer readings do not provide 
the total mass function of the lesion alone, but of the lesion plus the breast, in 
which the characteristic shapes are completely lost. Indeed, because of the 
variation in the thickness of the breast, it is plain that the same lesion will 
look very different in different locations. The total mass function M(x) must 
be decomposed in a normal and an abnormal part, M(x) — N(x) + A(x), 
where N(x) is the total mass function that would occur if the lesion were not 
there and the difference A(x) = M(x) — N (x) is what we shall call the 
abnormality function. It is the abnormality function that presents the 
characteristic shape. To obtain the abnormality function we combine the 

Figure 11. Cancer 
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available clinical information with inspection of the x-ray films and 
inspection of the graph of the densitometer readings. Usually it is possible to 
locate the edges of the lesion fairly easily. Within the lesion, where the 
function N(x) is not known, it is approximated by a straight line. This 
approximation is what produced the graphs in Figures 11 and 12. 

10 

Figure 12. Isolated fibrocystic lesions 

By a stroke of good luck calibration is unnecessary in this problem. If D is 
the densitometer reading corresponding to a total mass M, it can be verified 
experimentally that, within the range of masses and exposures occurring in 
mammograms, D is a linear function of M : D = pM + q with numbers/? and 
q that depend on the film and the exposure. Thus 

D(x) = p(N(x) + A(x)) + q = pN(x) + q + pA(x) = Dn(x) + Da(x). 

The term Dn(x) = pN(x) + q is simply the densitometer reading that would 
occur if the breast were normal, while the interesting term Da(x) = pA(x), 
apart from the irrelevant additive constant q, is the densitometer reading that 
would be produced by the abnormality alone. The stroke of luck that obviates 
the need for calibration is that the number p is independent of the x-ray 
exposure, so that the function Da, which is produced without calibration, is 
equivalent to the desired function A. 

Figure 13 shows six cases of fibrocystic disease in which the primary lesion 
was not isolated but surrounded by secondary lesions. In such cases the edges 
of the lesion are naturally more difficult to locate and the characteristic shape 



1252 K. T. SMITH, D. C. SOLMON AND S. L. WAGNER 

is partially lost. Nevertheless, only two of these, numbers 24 and 25, present 
the massive, steep sided, rock like appearance of the cancers. These two were 
almost entirely fibrous, rather than fibrocystic, in nature. For the time being 
nonisolated and almost entirely fibrous lesions appear to be difficult to 
distinguish from cancer. 

There are other kinds of breast cancer than scirrhous adenocarcinoma and 
other kinds of benign lesions, but these that we have begun to study are by 
far the most common. 

The noise elimination procedure was not needed in this experiment. The 
reason is that mammogram films do not make use of the intensifying screen. 
This produces better results (no quantum mottle) but at the expense of a 
heavy x-ray exposure: 175 mas. in the top or caudad views, where the breast 
is flattened out considerably, and 350 mas. in the lateral views. When the 
noise elimination is brought into play it should be possible to make use of the 
intensifying screens and to reduce the exposure to an insignificant 10-15 mas. 

While this article was in press it was discovered that the ratio between the 
area under the graph of y = Da(x) and the area of the rectangle circumscri­
bing this graph is a significant parameter in discriminating between scirrhous 
adenocarcinoma and fibrocystic disease. Additional mammograms were 
obtained from the University of Oregon Medical School Hospital and from 
the Roswell Park Memorial Institute, Buffalo, New York, to bring the total to 
33. The above ratio discriminated correctly in every case. This fact throws 
both light and shadow upon a number of things. See [14]. 

Figure 13. Non-Isolated fibrocystic lesions 
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(3) DISTINGUISHING BETWEEN AIR BUBBLES AND GALL STONES. Following the 
removal of stones from the gall bladder the surgeon must determine whether 
any stones have escaped into the bile duct. Since stones are invisible on a 
radiograph, he injects iodine contrast dye into the duct, which then appears 
as a white path surrounded by dark normal tissue. If a stone is present it 
appears as a dark shadow in the white duct, as in Figure 14. 

Figure 14 

Once in a while an air bubble is injected along with the dye, and it too 
appears as a dark shadow very difficult to distinguish from the shadow of a 
stone. In the case of a stone or an indeterminate diagnosis much more 
extensive surgery must be performed. 

It is to be expected that densitometer readings along a line L in the duct 
should produce results something like those of the last section-that the denser 
stones should have an appearance something like that of the cancers and the 
less dense air bubbles an appearance something like that of the fibrocystic 
lesions. Figure 15 illustrates this with two stones and two air bubbles. Figure 
16 shows an irregular stone in which the diagnosis on the basis of shape is 
hampered by the irregularity. In this case a second line M is read crosswise to 
the duct so that the shadow can be compared with normal tissue rather than 
contrast dye which is denser than either bubble or stone. Now the bumps 
become dips, indicating that the shadow is denser than the normal tissue and 
that the shadow must be a stone.3 

When the bubble or stone does not fill the duct it can be tricky to find 
adjacent normal tissue to use in comparison. Therefore, a better procedure 
would be to take an x-ray before as well as after the injection of the dye, 
using the latter only to locate the exact position of the bubble or stone. In this 
way the dye would not interfere at all and the bubbles would present bumps 
in sharp contrast to the dips coming from stone. 

In this problem the subtraction used to produce the abnormality function is 
not needed, as the body changes thickness very little in crossing from one side 
of the shadow to the other, nor is the calibration needed. On the other hand* 
the noise elimination is needed. 

3 In most of our figures larger densities or total masses are represented by larger numbers, but 
straight densitometer readings produce the reverse, for larger total masses permit less exposure 
which results in lighter film. When the films are calibrated the wedge automatically straightens 
this out, and when subtractions are made, as in the cases of the subtraction angiograms and the 
mammograms, they arc done in an order that straightens it out. In Figures 15 and 16 the 
densitometer readings are graphed directly, so larger densities are represented by smaller 
numbers. 



1254 K. T. SMITH, D. C. SOLMON AND S. L. WAGNER 

Figure 16 
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CHAPTER II. MATHEMATICAL ASPECTS 

9. The x-ray transform as an operator on L2. The functions g(9, x) in the 
range of the x-ray transform (see (2.1)) are functions on the space 

T= {(0,x):O E S"~Kx E 0 - 1 } , 

which is the tangent bundle to S"~l for those who want to think of it that 
way. T has a natural measure /x such that 

( gdn=[ [ g{0, x)dx dd. 

If ƒ E Ll(Rn) (L2 with compact support) has support in a compact set K with 
diameter 8(K), then the Cauchy-Schwarz inequality gives 

jyjf dx < 8{K)\\jfLHRn) 

for each 0, and hence 

This section contains some results about P as an unbounded operator from 
L\Rn) to L\T) with domain Lft/T). 

The adjoint of P is easy to compute. If ƒ e Ll(R") and g E L2(T) (both 
nonnegative at first to justify the interchanging and combining of integrals) 
and E0 is the orthogonal projection on 9 x , then 

<Pf, «> = f f r f(x + t0)s(0,x) dtdxdO 

= ( ( f(y) g(0, Eey) dydO = <ƒ, P*g), 

with 

(9.1) P*g(y) = [ g(e.E9y)dO. 

This gives the following result. 

THEOREM 9.2. For every g E L2(T), P #g is defined almost everywhere and is 
locally square integrable. Moreover, g is in the domain of P* if and only if P #g 
is globally square integrable, in which case P*g = P #g. 

For n = 2 the square integrability of P # g depends entirely on cancellation 
in (9.1). It is immediately seen that if 0 ^ g E L2(T) is nonnegative, then 
P #g cannot be square integrable, while if g is odd as a function of 0, then 
P #g = 0. Thus the domain of P* is somewhat peculiar. 

A simple integration formula will be needed below. 

(9.2') f f h(i,)\q\ dn de = |S"-2| f h(i)di. 

Consider first functions h on S"1"1. For these the formula is 
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f f h(<p)d(pd9~\Sn-2\ f h(9)d0 

which is true because both sides define rotation invariant measures on the 
sphere and they agree f or h = L Now (9.2') results from expressing the inner 
integral on the left and the integral on the right in polar coordinates. 

Define the operator A* by 

(93) (Ayr«)-i€|7(€) 
for 

(9.4) fe% = {feL2:0EL2}. 

These operators act on functions in L2{Rn) and also in L2(T). In the latter 
case they act with respect to the variable x E 0 x alone. It is well known and 
easy to verify that each /\s is selfadjoint on L2(Rn) and that for s > — n/2 
it is the closure of its restriction to Ll{Rn). 

Formula (3.5) shows that 

(9.5) | (A*+ 1 / 2 #ro | 2 = 2*|(A!fr(€)|2|É| fori e 0X. 

Integration over 0 ^ and 5"""1 and the integration formula (9.2) give 

(9.6) |A'* , /2^HlHr) - ^l5""2! IIAOIliw 
It follows immediately from the case s - - 1 / 2 that P admits a closure P 
whose domain is the same as that of A""1'2* i-e-

% = ^ - 1 / 2 -

On this domain formula (9.6) and the Fourier transform formula (3.5) 
continue to hold. It is shown in [13], [14] that if n > 2, then every ƒ E L2 is 
integrable over almost all lines in almost all directions and that ƒ E °i)p if and 
only if the line integrals produce a function in L2(T) and that in this case Pf 
is given by the line integrals. If n « 2, however, there are ƒ E °i^ that are not 
integrable over any line. 

For s > 0, 6i>s is simply the Sobolev space %s, but for s < 0 this is not so. 
In general % is a strictly decreasing function of \s\. We are not much 
interested in̂  % for s < 0 except in the case s •» - 1 / 2 when ^ is the 
domain of P and in the case s « (1 - /i)/2 when, as is shown in §12, °i)5 is 
the domain of the closure of the Radon transform. 

Formula (9.6) with s « 0 shows that the operator 

(9.7) V0 - (27r)~1 /2 |5' I-2f1 /2A ! / 2P 

extends to an isometry V of L2(Rn) into L2(T). Therefore, K* V = 1, and we 
have the inversion formula for the x-ray transform: 

(9.8) /ƒ Pf = ft / t e » / - (27T)-1|Sn""2r1A , /2/># A , /2£, 

with P # given by formula (9.1). 
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REMARK. Although V is an isometry, its component parts A1 / 2 and P are 
unbounded, so the above derivation is somewhat formal. In particular, 
although A 1 / 2 and P commute formally, they do not commute as unbounded 
operators. Nevertheless, formula (9.8) is correct in the sense of products of 
unbounded operators, as can be seen in [15]. In the case n = 2, where the 
x-ray and Radon transforms coincide (see the next section), formula (9.8) 
becomes the classical inversion formula of Radon, except that in the latter the 
powers of A a r e collected on the right. Hence the classical formula is 

(9.9) If Pf = g, then ƒ - (4ir) " ! P # A g , 

with P # given by (9.1). It is shown in §12 that this formula is justified if and 
only if g is even and lies in W)p the domain of /\. (When g = Pf, what is 
automatically true is that g is even and lies in 6Di/2-) 

10. The general /c-plane transform. The x-ray transform (involving integra­
tion over lines) and the classical Radon transform (integration over (n — 1)-
planes) are the two extreme cases of the general A-plane transform. If m is a 
subspace of Rn of dimension k, write x = (x\ x") with x' E 77 and x" G m1-
and define 

(10.1) PJ(x") » ƒƒ(*'. x*W for x11 G TT1. 
JIT 

The x-ray transform is the case where A- = 1 and <n is the line through the 
origin with direction 0, while the Radon transform is the case where k = n -
1 and 77 is the subspace orthogonal to 0. Apart from notation the two are the 
same in the crucial dimension 2, and this was the origin of our interest in the 
Radon transform. 

Many interesting similarities, distinctions, and subtleties arise as k and n 
vary. An example is the following result, which becomes false at k = n/2. 

THEOREM 10.2. If f is square integrable on Rn< then for almost every k-space 
77, ƒ is actually integrable over almost all k-planes parallel to 77, provided 
k < n/2. Moreover, 

(10-3) ƒ | | / y f W ) dp < c2\\ffLHR„r q = 2{n~ k)/ (n - 2k). 

Here Gnk is the Grassmann manifold of A-spaces in Rn and /A is the finite 
measure on Gnk (unique to within a constant factor) that is invariant under 
orthogonal transformations. The proof can be found in [13]. In the remainder 
of the article, in order to avoid having to deal with the Grassmann manifolds, 
I shall concentrate on the Radon transform and a few of its applications. The 
ideas needed to handle the general /c-plane transform are contained in the 
two extreme cases of the x-ray transform and the Radon transform, so 
nothing much will be lost 

11. The Radon transform. The Radon transform of an integrable function ƒ 
is the function 

(11.1) Rf^t)-Ref{t)=( f{*Wn^ 
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where \in__x is the Lebesgue measure on the plane <x, 0> — t. For fixed 
6 E Sn~\ R#fis defined almost everywhere in t and satisfies 

f\Raf(t)\dt<f\f(x)\dx. 
Unless it is stated otherwise or obvious from the context the function ƒ is 
assumed to be square integrable with compact support. 

If p is a function of one variable, the analogue of (3.1) is 

(11.2) |V(0P(0* -ff(x)p«x< 0» dx. 

Taking p(t) = tm we get the consistency condition that 

(H.3) pm(f\ *) = / V ( 0 ' m dt =ƒƒ(*)<*, 0}m dx 

must be a homogeneous polynomial of degree m. Taking p(t) = e~iTt we get 
the Fourier transform formula 

(11.4) ( V ) ' ( T ) - ( 2 f f ) ( " - | , / 2 / ( r f ) . 

It is apparent from formula (11.3) that 

pm(f> ») = ( 2 0 " / 2 « * , « > 7 W ) ' H = (2tf)"/2<«Z>, 0)mf (0) 

and consequently that the pm are effectively the homogeneous parts of the 
Taylor expansion of ƒ : 

(H.5) / (n - (2*r , / 2 S '->„,(ƒ: n/'*!. 
m*0 

The information about the Radon transform needed to determine the 
function can be described as follows. 

THEOREM 11.6. For any square integrable ƒ with compact support the set of 
directions 0 with R9 ƒ = 0 is a homogeneous algebraic variety in S"~K Con­
versely, for any given proper homogeneous variety V and any given function 
g0 E C0°° there is an f E C0°° such that ƒ = g0 except on an arbitrary ring just 
inside the support of g0 and R9f = 0 for all 0 E V. 

PROOF. From formula (11.3) it follows that ^ = 0 if and only if all 
pm(f\ 0) = 0 and hence that the set of such 0 is a homogeneous algebraic 
variety. For the converse, choose a homogeneous polynomial q that vanishes 
on V, form the corresponding differential operator Q, and repeat the proof of 
Theorem 4.3. (Any variety in S"~l is homogeneous, i.e. the intersection of 
Sn~l with a homogeneous variety, so the term homogeneous can be dropped 
if desired.) 

The question of when the functions in a given finite dimensional space can 
be distinguished by the Radon transform from a single direction is answered 
by Theorem 4.12. 

It is useful to know which sequences of polynomials come via (11.3) from 
some function ƒ. A simple initial characterization is the following. 
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THEOREM 11.7. For each m, let pm be a homogeneous polynomial of degree m. 
There is a square integrable f with support in the unit ball such that pm(9) = 
Pm(f'< #) for all m if and only if 

(a) \pm{ï)\ < c\£T for all m and all f G C\ 
(b) The sum lLi~mpm{£)/m\ is square integrable on R". 

PROOF. The necessity of the two conditions is obvious (Cauchy-Schwarz in 
(11.3)). For the sufficiency, define/by (11.5) with/?m(f) in place of pm(f\ £)• 
According to condition (a) the sum converges on Cn and ƒ satisfies 

|ƒ ( H | <(27r) -" / 2 a^l < cxe^+'~+M. 

By the Paley-Wiener theorem (see §14) the inverse Fourier transform ƒ has 
support in the cube Q = {x: \Xj\ < 1). By a rotation Q becomes any cube 
that circumscribes the unit ball, so ƒ has support in the ball. 

While Theorem 11.7 is a useful initial step, it is undesirable to require 
condition (a) on the complex space. When ƒ is known there is control over the 
pm on the complex space by means of the second integral in (11.3). When 
only Rf is known, however, there is control only on the real space. Somewhat 
surprisingly, condition (a) on the real space (along with condition (b), of 
course) turns out to be enough, as is shown in §15. 

Before going on we record the simple commutation relation between the 
Radon transform and differentiation. If q is a polynomial, let qe(r) = q(r9)< 
and let Q and Q9 be the corresponding differential operators. Then 

(11.8) ReQf = ft/?/ 

as is immediately checked by Fourier transform. 

12. The Radon transform as an operator on L2(Rn). If ƒ E Ll(Rn) (square 
integrable with compact support) has support in the compact set K, then the 
Cauchy-Schwarz inequality gives 

< 1 2 1 ) I M l > ( * ' ) < c8(K)"-x\\jfLHRnY 8 = diameter. 

Thus it is natural to consider R as an unbounded operator from L2(R") to 
L2(S"~l X /?') with domain Ll(R"). The adjoint of R is easy to compute. If 
ƒ G Ll(R") and g e L2(Sn~l X /?'), then 

<*ƒ, g> = f f" f ƒ (x) d[in_, i ( M dt dO 

= f f f(x)g{6,(x,0)) dx d9 

= ff(x)f g ( 0 , < * , 0 » d9dx = (f,R*g) 
JRn JSn-\ 

with 

(12.2) R*g(x)= f g(0.(x.0))d0. 
JSn-\ 

This computation should be done first for ƒ > 0 and g > 0, in which case all 
the combinations and exchanges of integration are automatically justified. 
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and then a posteriori they are justified for all 

fEL%(Rn) and g e L 2 ( r 1 X Ü I ) . 

This gives the following result. 

THEOREM 12.3. For every g e L2(Sn~* X Z?1), R*g as defined by (12.2) is 
defined almost everywhere and is locally square integrable» Moreover, g is in the 
domain of R* if and only if R *g is globally square integrable, in which case 
R*g= R*g. 

The domain of /?* is rather peculiar. It is easily verified, for example, that 
no nonnegative 0 ¥* g €= L2(Sn~l X R ]) lies in the domain, while every odd 
g most certainly does. The condition of lying in the domain of R* is one of 
cancellation in (12.2). 

Formula (11.4) shows that 

(i2.4) |(A("-I) /2+W(T)|2= w v f V (rf )iVr'. 
integration with respect to r and 0 gives 

(i2.5) IA0"')/1+'iVBlH5-.xi,.> - 2(2*r'iiA-yiil^v 
It is easr[y seen from the case j « (1 — n)/2 that the operator R admits a 
closure R whose domain is the same as the domain of /\°~n)/2, i.e. 

°*iî - °tVi»>/2. 
On this domain formulas (12.4) and (12.5) continue to hold with R replaced 
by /?, but it is not to be expected that R is definable by integrals over 
(n - l)-planes. There are functions ƒ G °P^ not integrable over any (n — 1)-
plane. See [13]—[15]. In general functions belong to °P^ because of cancella­
tions in the integrals rather than because of absolute integrability. About the 
best that can be said on the latter score comes from the Hausdorff-Young 
theorem and [13] which show that 

L2 n Lp c *P# ifp < In/ (In - 1). 

It can be shown that for the functions in this class the required integrals do 
exist and do give R. 

Formula (12.5) with s - 0 shows that 

K = 2-'/2(27r)u^V2A (w"" I ) /2« 
is an isometry, so that V* V « 1 and hence that formally at least 

R "!g = 2-I(277)!-nfl* A"~ lg = 2-I(277),-w f A"" *(«. <*• « » dff, 
JSn-\ 

which is the classical inversion formula for the Radon transform. While the 
powers of A commute formally with R and R*+ as unbounded operators they 
do not 

THEOREM 12.6. The domain of R is *i\i-.„)/2« and the^ range consists of the 
even functions in cl\„-i)/2* More generally, the range öf R on °j^ D °i)^ consists 
of the even functions in °D(|>_ \)/2+s H °l\„- \y/2« and on this domain 



RECONSTRUCTING OBJECTS FROM RADIOGRAPHS 1261 

(12J) fl~l «2~ 1 (27r ) 1 ^ n A ( ^ I ) / 2 ^^* A ("~ l ) / 2+° i / 0 < a < ^ . 

PROOF. Formula (12.5) shows that the range is contained in 

^(«-o/2+in LTP(„-n/2* 
and clearly any function in the range is even. If g is any even function in this 
space, then/(TO) = (2<nf-n)/2g(0, r) is well defined, and for all a 

Taking a = 0 we see that ƒ lies in L2, so the inverse Fourier transform ƒ exists 
and lies in L2. Taking a * (1 — #i)/2 (and recalling tha^all the domains ^ 
are contained in L2) we see that ƒ lies in l%, and that ƒ?ƒ = g. Taking a - s 
we see that/lies in ÜD5. 

Now, for any w E 6D# and 0 < a < ^ we have 

(*w, A("~!)/2+ag) = 2(2v)n~lf^ IJ
00M(T«)|T| (1"" ) / 2+<1/ (T»)'|T|,,"lAd» 

-2(2îr)""!<ii, A ( I *" ) / 2 *y>. 

Since (1 - w)/2 < (1 - w)/2 + a < 5 it follows that A (1" l , , / 2+!f e ZÂ 
hence that /\(n~l)/2+°g is in the domain of i** and that 

R* A(*" l)/2,fag » 2(2w)"MA°~,,)/2'fV-
REMARK. Closer inspection of the proof shows that formula (12.7) holds if 

(#i - l)/2 + s < a < 0. 

13. Ludwig's theorem on supports. This section contains a proof of a very 
nice theorem of D. Ludwig [8], [9] that characterizes the functions g E 
L2(Sn~* X R l) such that g = Rf where ƒ E L2(Rn) has support in a given 
compact convex set K. This proof may be somewhat simpler than the existing 
ones in that it makes no use of spherical harmonics or properties of the wave 
equation. We first consider the case where g(0, t) is independent of 9. 

LEMMA 13.1. If p E C0°°([- 1T 1]) is even, (hen p « /ty w/f/i ̂  E Cf(Rn) 
and\P(x) = 0/or |JC| > 1. 

PROOF. We suppose at first that n is odd so that A"""l = ( - id/dt)n~ K The 
inversion formula of the last section shows that if 

+(x) - 2-\2m)x'n f p (*- | }«x, 0 » <0 

= 2-1(27T/)1*rt|5^2| f V"~ 0 ( | * | cos ç)sin""V «*»> 
•'O 

( v(«-3) /2 1 - rn * 
M / 

then i// E C00 r> ^% and /?^ = p. When |x| > I, n - 2 integrations by parts 
gives 0, for (1 — s2/\x\2fn~~^2 is a polynomial of degree n - 3. 

If A? is even, we form the function ^0(x0, x) for Rn* l as above and pui 
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4>(x) ssJ^o(xQtx)dx0. 

Since \p0 is a function of the absolute value alone, so is \p, and their Radon 
transforms obviously coincide from the direction of the jc„-axis. 

LEMMA 13.2. If'<p E C0°° is Ofor \x\ < 1, then 

[ An~lR*d0 = Ofor\t\>l. 
JSn-l 

PROOF. Since /\n"xRq> is even, the integral is an even function of /, and it 
is enough to prove that it is orthogonal to any even p E C0°°([-l, 1]). By 
Lemma 13.1, p = R\p, and by the isometry of the last section the inner 
product of p with the integral is 

</?^ A " ' ' * ? ) = 2(2,7)"-*<^, «p> = 0, 

since \p = 0 for \x\ > 1 while <p = 0 for fjc| < 1. 
The next lemma is given in [8], but proved in a different way. 

LEMMA 13.3. If <p E C0°° is Ofor \x\ < 1 and q is a polynomial of degree m, 
then 

f q(9)An-lR<pdO 
JSn-i 

is a polynomial of degree < m on \t\ < 1. 

PROOF. It is no loss of generality to assume that q is homogeneous. In this 
case, if Q is the corresponding differential operator, then formula (11.8) 
shows that 

Consequently. Lemma 13.2 (with Qy in place of cp) shows that the mth 
derivative of the integral in question is 0 on |/| < 1, hence that the integral 
itself is a polynomial of degree < m. 

In what follows K is an «-dimensional compact convex set with support 
function 

| |€ | |x-sup <*.*>. 
xeK 

The theorem of Ludwig [9] is as follows. 

THEOREM 13.4. Let g E L2(Sn~l X Rl). The necessary and sufficient condi­
tions that g = Rffor some f E °DS with support in K are: 

(a) g E % _ 1 ) / 2 + 5 andis even-
(b)g(9,t) = 0fort> \\9\\K. 
(c)pm(0) = jg(0, t)tm dt is a homogeneous polynomial of degree m. 

PROOF. The necessity of (a) is given in Theorem 12.6 and that of (c) in 
(11.3). The necessity of (b) is evident as the inequality / > [|ö||^ means that 
the plane <JC, 0> = / does not touch A". 
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Moreover, Theorem 12.6 shows that conditions (a) and (b) provide a 
function ƒ E °DS n 0ÏÏg with Rf = g. The point at issue is to show that this 
function ƒ has support in K, and this will be done by showing that ƒ is 
orthogonal to every <p E C0°° that is 0 on K. For any <p E C0°° the isometry of 
the last section gives 

(13.5) <ƒ, <p> = c<g, A""'%> = cfsnJgo< A"'%<p) dB. 

Now we assume that K is the unit ball Z?(0; 1) and establish the theorem in 
this case. (Afterward the general case will follow easily.) For fixed 0 we 
expand g in a Legendre series: 

g(«.') = SU«)U' ) 
with 

O3-6) &,(*) = <8$> Lm) -ƒ_ ' ,*(* ' t)Lm(t) dt. 

All that needs to be known about the Legendre polynomials Lm is that they 
are obtained by applying Gram-Schmidt to the powers of / in the space 
L 2([- l , 1]). Thus, they form an orthonormal basis of this space, Lm is a 
polynomial of degree m, and Lm is orthogonal to all polynomials of degree < 
m. We have 

<&, A"-%<P) - 2 gm(9)(Lm, A"'%9)-
This series can be integrated term by term over S"~\ since the sum of the 
absolute values is at most || ge\\L2\\ AW~1R0<PIIL2'

 a n d formula (13.5) gives 

(13.7) (f,<p) = c 2 Ç Lm(t)f gm(0)An-^<pd9dt. 

Since Lm is a polynomial of degree m, it follows from (13.6) and condition 
(c) that gm is a polynomial of degree m, then from Lemma 13.3 that the inner 
integral in (13.7) is a polynomial of degree < w-orthogonal therefore to Lm. 
Thus, each term in the series is 0. 

This completes the proof for the ball B(0; 1). Of course, the proof for 
B(0; r) is the same, and the proof for B(a; r) follows from this and obvious 
identities for translations (e.g. |||||^+fl = \\£\\K + <fl, £>)• Finally, if K is any 
compact set and B is any ball containing it, then ||^||^ < ||£||fl, so what has 
been done shows that ƒ has support in B, and hence in K, since K is the 
intersection of such balls. 

REMARK. Given an arbitrarily large number N, it is not hard to find a 
function ƒ with the following properties. 

(a) ƒ E 6i)s for all s > — JV, so in particular / E C 0 0 and all derivatives are 
square integrable. 

(b)(l + \x\)Nf is integrable. 
(c) Rf has compact support, while ƒ does not. 

Simply start with a function E E C00 which is equal to \x\2~~n (or log \x\ if 
n = 2) on I*| > 1, and take_/ to be any sufficiently high derivative of E. 
Formula (11.8) shows that {RJY = 0 for |/| > 1, and hence that RJ(t) = 0 
for |/| > 1. It is of course the polynomial condition (c) that is violated in 
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Ludwig's theorem, with g = Rf From the proof of (11.3) it follows that thepm 

are indeed polynomials for m < Af but not necessarily otherwise. This means 
that if ƒ E L2 is rapidly decreasing (i.e. satisfies (b)) for all /V, then Rf has 
compact support if and only iff does. 

It is interesting that the polynomial consistency condition (c) in Ludwig's 
theorem disappears completely when the compact support is dropped (cf. 
Theorem 12.6). It is not a continuous condition, and cannot be preserved, but 
some remnant might be expected to remain. 

14. Paley-Wlener theorems. The purpose of the Paley-Wiener theorems is to 
give the conditions under which a function ƒ is the Fourier transform of a 
function or distribution ƒ with support in a given compact n dimensional 
convex set K. There are three classical versions. 

PALEY-WIENER I. Let ƒ E L2. Then f has support in K if and only if f has an 
analytic extension to Cn satisfying 

(14.1) | ƒ (f)| < «?«Im*!l* for f E C \ 

When K is the rectangle, 

K-{x:\Xj\<ajJ-\ n), 

the support function has the natural extension to Cn 

l|f||*=2«#y|. 
PALEY-WIENER II. Let f E L2 and let K be a rectangle. Then f has support in 

K if and only if f has an analytic extension to Cn satisfying 

(14.2) lim sup ' 0 g ' V n l < 1 for S E C\ 
|£|->oo IIS II* 

PALEY-WIENER-SCHWARTZ. Let f be a tempered distribution and let K be a 
rectangle. Then ƒ has support in K if and only if f has an analytic extension to 
C" satisfying (14.2). 

Paley-Wiener I is simple and straightforward to prove. Paley-Wiener II, 
which is much stronger because of the replacement of Im Çj by |^|, is rather 
slippery, and in fact has been the subject of erroneous proofs. Paley-Wiener-
Schwartz is not difficult to prove on the basis of Paley-Wiener II and simple 
facts about tempered distributions. 

In working with x-rays, one acquires the habit of looking at the Fourier 
transforms along individual lines through the origin (corresponding to indi­
vidual x-rays). This habit and the theorem of Ludwig lead to some improve­
ments in the Paley-Wiener theorems. 

THEOREM 14.3. Let ƒ E L2 and let K be symmetric about 0. Then ƒ has 
support in K if and only if f is C °° and for almost every real direction 9 the 
function fe(r) = f(r9) has an analytic extension to C1 satisfying 

log\ fg(r)\ 
(14.4) lim sup , , < \\9\\K for re C1. 

|T|-*OO m 
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This improves Paley-Wiener II in two ways. It requires the analytic 
extensions only along individual lines through the origin, which form a 
manifold in C" of real dimension (n — 1) + 2 = n + 1, and moreover re­
quires no matching of the extensions. Also it allows any symmetric A\ not just 
rectangles-showing, for instance, that Paley-Wiener II is true with any 
symmetric K and any complex norm extending the support function. In all of 
the Paley-Wiener theorems the necessity is obvious and we prove only the 
sufficiency. 

PROOF. Since ƒ is square integrable and locally bounded, it follows that for 
almost all 0, fe is square integrable, and we have a square integrable ge such 
that ge = {2irfn~X)/2fe. Set g(0, 0 = g9(t). From the fact that ƒ is square 
integrable and locally bounded it follows (polar coordinates) that g 6 
ü^(*-i)/2> a n d it i S obvious that g is even. From Paley-Wiener II in the case of 
1 variable it follows that ge(t) = 0 for t > \\9\\K . Thus, conditions (a) and (b) 
in Ludwig's theorem (s = 0) hold, and it remains to check (c). To establish (c) 
we compute the Fourier transform of (27r){l~~n)/2g$ by expanding e~iTt in its 
Taylor series and integrating term by term. On the one hand the result is 
f0(r) = /(r#), and on the other it is a power series in r with coefficients 
i~mPm(g'i 0)/m\. Consequently,pm(g\ 9) = /m<0, D)mf(0) is a homogeneous 
polynomial of degree m. Now, Ludwig's theorem gives that g is the Radon 
transform of an ƒ with support in K, and it is plain that the Fourier transform 
of / is / . 

The Paley-Wiener-Schwartz theorem can be improved in various ways. One 
of them is as follows. 

THEOREM 14.5. Let f be a tempered distribution and let K be symmetric. Then 
f has support in K if and only if f is C00, (1 + 1^1)" /̂ E L2 for some N, and 
for almost every real direction 0, fe(r) has an analytic extension to C1 

satisfying (14.4). 

PROOF. Fix e > 0 and let <p E C0°° have support in the ball #(0; e). Then f<p 
is square integrable and 

v lQgl^(T)^(T)l ^..m ^ lû{ 1™™P M <I!ÖL+ el*l-
|T|-*OO I ' I 

Since the term on the right is the support function for K 4- 5(0; e), it follows 
from Theorem 14.3 tha t /* <p has support in K 4- B(0; e). Since this is true 
for every <p, it follows that ƒ itself has support in K 4- B(0; e), and then that ƒ 
has support in K. 

REMARK. The polynomial growth condition, (1 + \x\)~Nf E L2, is of course 
necessary, but we do not know to what extent it is actually needed in the 
proof of sufficiency. The Paley-Wiener-Schwartz theorem shows that if a 
tempered distribution on Rn extends to an analytic function of exponential 
type on C", then it automatically has polynomial growth on Rn. We do not 
know what happens in this regard when the extendability is only assumed 
along lines through the origin with real directions. Some information, but 
probably not the best possible, is given in the next theorem. 

Before stating the theorem we note that from the definition of a tempered 
distribution and the elementary inequality 
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(14.6) ƒ |f >|2 dt < — - i - - ƒ |f °+>f *, 
J (2a -hl) J 

which holds for a > 0 and <p G C™(Rl), it follows that every tempered 
distribution g on Rl has a bound of the form 

(14.7) \(g, <p>f< c 2 / (1 + f 2 ) > V | 2 dt = c » ^ /or <p G Q°. 

THEOREM 14.8. Let f be a C™ function on Rn such that: 
(a) Each fe has an analytic extension to Cl satisfying (14.4). 
(b) Each fe is tempered on Rl with a bound of the type (14.7) where N and q 

are fixed and c = c(0) satisfies fs»-i c2 d9 < oo. Then f has support in K. 

PROOF. It is readily seen that when q = 0 we are back in the case of 
Theorem 14.5, so we shall prove the theorem by induction. For any function g 
on Rx we set Sg(t) = fog(s)(t - s) ds. It is plain that (SgY = g; that if g is 
C00, so is Sg; that if g has an analytic extension of exponential type, so does 
Sg; and that if g has compact support, so does S g provided 

(14.9) fg(t)dt = 0 and ftg(t) dt = 0. 

Fix an even function e G C0°°([— 1, 1]) with integral 1. If <p G C0°° and 

a = ƒ(p(t) dt and fi = ftcp(t)dt, 

then cp = ae - 8̂e' 4- ^ where ^ G C0°° satisfies (14.9) and 

(i4.io) H < V ? w l i 0 «/M/ |^]<V^W|2,0. 

Consequently, if N > q and ^ > 2, then, by (14.6), 

where the constant k depends only on e and q. 
If g has the bound (14.7), then with ^ as above we have 

l<s&*>l«1<&s*>|< i*k,-2< ÎMU,,-2-
When this is combined with (14.10) we find that if g has the bound (14.7) with 
N > q and q > 2, then 

(14.12) | <5g ,^> l<max |g | c / c M ^_ 2 , 

where the constant k depends only on e and q. 
This effectively completes the proof by induction. We can always assume 

that N > q9 and by (14.6) we can assume that q > 2. For fixed 0, we consider 
gg = Sf0. It is plain that ge(t) is an even function of (0, t\ so it determines a 
function g on Rn with g(t9) = gB(t). What we have done shows that g 
satisfies the conditions of the theorem with q replaced by q — 2. It follows by 
induction that g has compact support, hence that g has polynomial growth, 
and hence that 

/({)-(i | .o} !i(£) 
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does also, so we are back in the case of Theorem 14.5. 
The rest of the section contains some results that will be of use in the next 

and also have some interest of their own. It is assumed throughout that K is 
symmetric as well as compact, convex, and n dimensional. We define EN{K) 
to be the space of entire functions ƒ on Cn satisfying: 

04.13) ii/iii-i.o+i€iTvr"«<<»' 
and 

(14.14) | / ( T 0 ) | < c ( i + | T | 2 ) > I I I ' H A ; 

with constants c and/? which may depend on/. According to Theorem 14.5, 
EN(K) consists of the Fourier transforms of the distributions which have 
support in K and have order N in the sense of (14.13). The number N is 
assumed to be a nonnegative even integer. 

LEMMA 14.15. There is a constant M depending only on N and K such that if 
ƒ G EN(K), then 

(14.16) J ƒ ( 0 | < M(l +\S\2)N/2e*lm'^f\\N for £ G C\ 

PROOF. The proof is patterned on that of the theorem on p. 211 of [2]. Set 
g = (l + |£|2)-"/2/,sothat 

II*IIL>- | | / IL ™* / = 0 - A ) " / 2 g 
If ip G CQ°(R") is £>'<*•£> on a neighborhood of K, then, as ƒ has support in K, 

ƒ (O = <2tf)- /2</, *> - (2*r"/2(g, (1 - A)w/2*>. 

and hence 

|/(n|<(2-)-"/2||/||Jd-A)A'/V|t, 
Thus, it suffices to show that for each fixed J, \p can be chosen to be ei<x* > on 
a neighborhood of K, to have support in a compact set independent of f, and 
to satisfy 

(14.17) \DN$(x)\ < M(\ + | £ | ) V m ' « * 

with a constant M independent of f, DN denoting an arbitrary derivative of 
order at most N. 

To this end we fix a function cp G C0°°(/?
w) which is 1 on a neighborhood of 

K and a function p G C0°°(fl
 l) which is 1 for r > — 1 and is 0 for / < - 2 , 

and set 

\p(x) = (p(x)p((x9TJ> 4- IMItf )ef<JC,f>» where v\ = lm f. 

On K we have ~<JC, ÎJ> < ||i]||^ < ||i]||^ + 1, so on a neighborhood of K 
we have <*, rj> + ||i]||^ > — 1, and therefore p(<.v, TJ> + HTJH )̂ = 1. Thus ^ 
is e'<x,f> on a neighborhood of #, and because of cp it has support in a 
compact set independent of f. It is plain that the derivatives of $ satisfy 
(14.17) with the exponential replaced by e~<JC,1,>. However, \p is identically 0 
unless <x, TJ> + \\r)\\K > - 3 , hence unless -<JC, r/> < Hr/Ĥ  -f 3, in which 
case 
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A 

THEOREM 14.18* EN{K) is complete and C0°°(/0 is a dense subspace. 

A PROOF, The completeness is obvious from Lemma 14.15. To see that 
CQ°(K) (the space of Fourier transforms of functions in C™(K)) is dense, 
note first that if ƒ , ( £ ) - ƒ (pf). P < U then ƒ„-*ƒ in EN(K) as p -*L 
Therefore it is enough to approximate functions/which satisfy 

\f(S)\<M(\+\S\2)N/>lm^ 

for an arbitrary but fixed p < I. In this case the inverse Fourier transform 
has support in pK, so it can be regularized without getting outside of K. 

LEMMA 14.19. If K has diameter < 25 and ƒ E EN(K)< then 

Dkf(0)> t <-2^/2 

<«.«(.•!£) (i)-(14.20) , M 

where M is the constant in (14.16). 

PROOF. Evaluate the derivative by Cauchy's formula, integrating over the 
circles |£.| = kj/8 and using the fact that 

IimmJC<«iri<«2ft|. 
15. More on the polynomials pm. In this final section we go back to the 

polynomials pm that can arise via formula (11.3) from some square integrable 
function ƒ with support in a given n dimensional compact convex symmetric 
set K. The promised improvement of Theorem 11.7 is now obvious. 

THEOREM 15.1. For each m, let pm be a homogeneous polynomial of degree m. 
There is a square integrable f with support in the unit ball such that pm(0) — 
PmU* 9) if and only if 

(a)1/>m(Ö| <c\i\mfortGR\ 
(b) The sum 2* mPm(0/m^ *s C°° and square integrable on Rn. 

PROOF. The sum in (b) obviously satisfies the conditions of Theorem 14.3. 

THEROEM 15.2. Let p0,..,, pM be any finite sequence of polynomials with pm 

homogeneous of degree m. Then there is a function ƒ E C0°°(/C) such that 

Pm(fi ») - PmV)' 
PROOF. Let P be the sum of the pm« and choose N large enough so that 

P E EN(K). Let F be the subspace of EN{K) with zero Taylor coefficients 
through order N* By Lemma 14.19, F is closed, and of course it has finite 
codimension. By Theorem 14.18, C0°°(/C) -f F is both closed and dense, so it 
is equal to EN{K). Consequently, we can find ƒ E C™(K) and/Q in F so that 
ƒ + /o — P' This means that the Taylor series of ƒ begins with P, which is the 
assertion of the theorem. 

Another way of stating Theorem 15.2 is as follows. 

COROLLARY 15.3. If U is any neighborhood of 0 and P is any polynomial, 
then there is an f G C0°°( U) such that the Taylor series for f begins with P. 
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To end the article, let us go back to "practical" matters. Suppose that a 
certain number M of x-rays are taken with the resulting radiographs 
ge, • . . , g0 . Because of the noise involved the question arises as to whether 
the g0 are in fact the radiographs of any object at all. Formula (11.3) provides 
the necessary condition that for each m the numbers 

05.4) «jm-jfyWdt 

must be the values of a homogeneous polynomial pm at the points 0y Now, 
the values of a homogeneous polynomial of degree m can be prescribed 
arbitrarily at any m + 1 points of the sphere so this condition is vacuous for 
m > M - 1, and the set of these conditions becomes finite. The question is 
whether this finite set of conditions is sufficient. (It is assumed, of course, that 
9, * ± 9j.) 

THEOREM 15.5. Let ge , , • . , gB be square integratie and vanish for \t\ > K 
and suppose that for m < M — 2 the numbers ajm in (15.4) are the values of a 
homogeneous polynomial pm of degree m. Then for each r > 1 there is a square 
integratie f with support in B(0; r) such that Ref = g$. 

PROOF. By Theorem 15.2 it can be assumed that ajm = 0 for m < M — 2. 
Fix one of the 0,'s, say 0M, and write x = (x\ t) with x'X0M. Since anm = 0 
for m < M — 2, it follows that ge (T) = rM~lh(r) where h is square 
integrable and vanishes for |/| > 1. 

Let q be a homogeneous polynomial of degree M - 1 such that q(0j) - 0 
for y < M - 1 and q(0M) » 1, and choose $ E Co°(Rnml) with integral 1 
and vanishing for |/| > e. Now set 

( 2 f f ) ( " " , , / 2 / ( r , T ) - ? ( r , T ) * ( ^ ( r ) . 

Then/(0,T) = g^(r)and 

|ƒ (f\ T)| <:c'eM+*1 

so that/has support in {(V, /)* |*'| <ƒ* |*1 < 1}» which is contained in any 
desired ball of radius > 1. Moreover, ƒ(r0f) = 0 because q{0f) = 0, Thus we 
have produced an ƒ with support in the ball such that 

R*J=to* and V ^ 0 f°rJ<M< 
Doing this for each of the 0j and taking the sum, we get the required/. 

COROLLARY 15.6. A finite number of noisy radiographs read at a finite 
number of points cannot be inconsistent. 

PROOF. Suppose that radiographs from directions 0{ 0M are read at 
points ƒ , , . . . , tN, producing readings fijk. j « 1 M, A' = 1,. . . , N. 
Choose any homogeneous polynomials p0 PM-V '* 's obvious that for 
each/ we can find a function g0 E L2 such that 

89j('k) = fijk and J'fy(0'm dt = pm(0j\ / w « 0 , . . . , A / - 2 . 

The theorem now provides an ƒ with Ref{tk) — /3jk. 
The ge can be chosen from any specified subspace of L2 of dimension at 
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least (M — l)N, and hence the/from any specified reconstruction subspace 
F of L2 such that F - f] N9, has dimension at least (M - \)N. Here again, 
however, theory and practice come into conflict. It seems to be useful to 
choose the number N of readings quite large so that there is redundancy (and 
with it the possibility of inconsistency) in the equations for the reconstruction. 
In our reconstructions we have been taking F of dimension 2500 (50 x 50 
matrices), M = 18, and N = 200. 
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