# HILBERT'S TWELFTH PROBLEM AND $L$-SERIES 

BY H. M. STARK ${ }^{1}$<br>Communicated by Olga Taussky Todd, March 14, 1977

Let $k$ be a totally real number field of degree $n \geqslant 2$ with conjugate fields $k=k^{(1)}, \ldots, k^{(n)}$. Let $I(\uparrow)$ denote the group of fractional ideals of $k$ generated by those integral ideals relatively prime to a given integral ideal, $\mathcal{F}$. Let $S(F)$ denote the subgroup of $I(f)$ generated by those principal integral ideals $(\alpha)$ with $\alpha \equiv 1(\bmod \mathcal{F})$. The quotient group $H=I(\mathcal{F}) / S(\mathcal{F})$ is the ray class group $(\bmod \mathcal{F})$ of $k$ and corresponds via class field theory to a totally real abelian extension $F$ of $k$.

We define the character of $\operatorname{sign} \lambda(\alpha)$ on $k$ by

$$
\lambda(\alpha)=\prod_{j=2}^{n} \operatorname{sgn}\left(\alpha^{(j)}\right)
$$

Let $\mathbb{S}_{0}$ denote the subgroup of all $(\alpha)$ in $S(\uparrow)$ such that $\lambda(\alpha)=1$ and $\$$ the set of all $(\alpha)$ in $S(\mathfrak{f})$ such that $\lambda(\alpha)=-1$. It can happen that $\mathcal{S}_{0}=\mathfrak{F}=S(\mathfrak{f})$. The condition that this not occur is that for all units $\epsilon$ of $k$ congruent to 1 $(\bmod f)$, we must have $\lambda(\epsilon)=1$. We assume that $\uparrow$ satisfies this condition, and let $G=I(f) / \mathcal{S}_{0}$. By class field theory, $G$ corresponds to a real abelian extension $K$ of $k$ which is a quadratic extension of $F$.

For any (S) in $G$, let

$$
\zeta\left(s,(\Im)=\sum_{\ell \in \mathbb{C}} N(\hat{\ell})^{-s}\right.
$$

where the sum is over all integral ideals $\mathfrak{\ell}$ of $\widetilde{\cong}$. Let

$$
\epsilon(\varsigma)=\exp \left[2 \zeta^{\prime}(0, \text { § })\right], \quad \epsilon=\epsilon\left(\varsigma_{0}\right)
$$

Conjecture 1. The numbers $\epsilon(\mathbb{(})$ are conjugate algebraic integers in $K$. If $\mathfrak{p}$ is a first degree prime ideal in $\mathfrak{S}$ of norm $p$ then the explicit reciprocity law of class field theory is given by

$$
\epsilon^{p} \equiv \epsilon(\mathfrak{S})(\bmod \mathfrak{p})
$$

Our conjecture thus provides an answer to Hilbert's twelfth problem for totally real fields $k$. The purpose of this note is to present the first numerical example of Conjecture 1 with a nonabelian ground field $k$. Conjecture 1 implies that $\epsilon(\mathbb{S} \mathbb{T})=\epsilon(\mathbb{C})^{-1}$ is a unit, that

[^0]$$
\alpha(\aleph)=\alpha(\S \cdot 5)=\epsilon(\lessdot)+\epsilon(\aleph)^{-1}
$$
is in $F$ and that
$$
g(x)=\prod_{\mathfrak{c}\left(\bmod \mathfrak{E}_{0}, \mathfrak{x}\right)}(x-\alpha(\mathfrak{c}))=\sum_{j=0}^{|H|}(-1)^{j_{\theta}} x^{|H|-j}
$$
has coefficients in $k=k^{(1)}$.
We take $k=k^{(1)}=Q\left(\beta^{(1)}\right)$ where
$$
\beta=\beta^{(1)}=3.07911886452947847 \cdots
$$
is one of the three real roots of
$$
x^{3}-x^{2}-9 x+8=0
$$

The field $k$ has class-number 3, discriminant $2597=7^{2} \cdot 53\left(1, \beta, \beta^{2}\right.$ form an integral basis) and every unit $\epsilon$ of $k$ has $\lambda(\epsilon)=1$. Thus we may take $f=(1)$; $F$ is then the Hilbert class field of $k$ and $K$ is a sixth degree extension of $k$ which is a quadratic extension of $F$. The group $G$ is cyclic of order 6 and is generated by the element $\mathbb{S}_{1}$ containing the unique prime ideal $p_{2}$ in $k$ of norm 2. We let $\mathfrak{C}_{j}=\mathfrak{C}_{1}^{j}, 0 \leqslant j \leqslant 5$. In particular $\mathfrak{T}=\mathbb{C}_{3}$. (Indeed $p_{2}^{3}=(\beta)$ and $\lambda(\beta)=-1$.)

The following values of $\zeta^{\prime}(0, \mathcal{C})$ were found on a computer which worked internally with an accuracy of about 16 decimal places:

$$
\begin{aligned}
& 2 \zeta^{\prime}\left(0, \varsigma_{0}\right)=2.6229258798145494=-2 \zeta^{\prime}\left(0, \complement_{3}\right), \\
& 2 \zeta^{\prime}\left(0, \mathfrak{~}_{2}\right)=-.72668091960461237=-2 \zeta^{\prime}\left(0, \mathcal{S}_{5}\right) \text {, } \\
& 2 \zeta^{\prime}\left(0, \mathcal{C}_{4}\right)=-.55674277199362199=-2 \zeta^{\prime}\left(0, \mathcal{S}_{1}\right) \text {. }
\end{aligned}
$$

We put $\epsilon_{j}=\epsilon\left(\mathbb{C}_{j}\right), \alpha_{j}=\alpha\left(\mathbb{C}_{j}\right)$. We then get

$$
\begin{aligned}
g(x)= & \left(x-\alpha_{0}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{4}\right) \\
= & x^{3}-18.718329575489666 x^{2}+73.354291283859894 x \\
& -81.914383130290574
\end{aligned}
$$

The coefficients of $g(x)$ are supposed to be in $k=k^{(1)}$ (in other words, we are getting a particular embedding of $k$ out of Conjecture 1 as well as a particular embedding of $K$ and $F)$. Conjecture 1 yields bounds on $\theta_{j}^{(i)}(i=2,3)$ and so leads us to the numbers

$$
\begin{aligned}
\beta^{2}+3 \beta & =18.718329575489740 \\
5 \beta^{2}+12 \beta-11 & =73.354291283860260 \\
6 \beta^{2}+13 \beta-15 & =81.914383130291046
\end{aligned}
$$

which must be $\theta_{1}, \theta_{2}$ and $\theta_{3}$ respectively if Conjecture 1 holds.
It may be checked that any root $A$ of

$$
x^{3}-\left(\beta^{2}+3 \beta\right) x^{2}+\left(5 \beta^{2}+12 \beta-11\right) x-\left(6 \beta^{2}+13 \beta-15\right)=0
$$

does indeed generate $F$ and that either root $E$ of $x+x^{-1}=A$ is a unit in $K$ which in fact generates $K$ over $Q$. Lastly, the reciprocity law is as given by Conjecture 1.

Let $\epsilon^{\prime}=\epsilon_{0} \epsilon_{2} \epsilon_{4}$. Conjecture 1 implies that $\epsilon^{\prime}$ is the relative norm of $\epsilon$ from $K$ to a quadratic extension $K^{\prime}$ of $k$. We have shown without assuming Conjecture 1 that $\epsilon^{\prime}$ generates the unique quadratic extension of $k$ lying in $K$ and that

$$
\epsilon^{\prime}+\left(\epsilon^{\prime}\right)^{-1}=\beta+1
$$

This serves both as a check on the reciprocity part of Conjecture 1 and on the accuracy of the computation of the numbers $\zeta^{\prime}(0, \aleph)$.

Some comments about the actual computation may be useful. The function

$$
\left(\frac{2597}{(2 \pi)^{3}}\right)^{s / 2} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right)^{2}[\zeta(s, \text { § })-\zeta(s, \text { (s })]
$$

is given by a triple integral of a three-dimensional $\theta$-function and we are interested in the value of this integral at $s=0$. The triple integral splits into two pieces via the inversion formula for $\theta$-functions. At $s=0$, one of these pieces splits into an infinite sum of single integrals of the form

$$
I_{1}(a)=\int_{0}^{\infty} \exp \left[-a\left(x+2 x^{-1 / 2}\right)\right] d x
$$

while the other piece splits into an infinite sum of double integrals of the form

$$
I_{2}(a)=\int_{0}^{\infty} \int_{a}^{\infty}(x t)^{-1 / 2} \exp \left[-t\left(x+2 x^{-1 / 2}\right)\right] d t d x
$$

The interior integral in $I_{2}$ for a given $x$ was integrated using the continued fraction expansion of the incomplete gamma function as analyzed by R. Terras [2]. The integral over $x$ in $I_{2}$ was then computed numerically as was the integral for $I_{1}$. Several hundred integrals of each type were required in the computation. In the procedure finally used, the field $K$ cost $\$ 7$. Still, it would be very worthwhile for future computations to have a rapid accurate algorithm for computing $I_{1}$ and $I_{2}$ for a wide range of $a$.

More details regarding this example, examples with real quadratic $k$ and analogies with complex quadratic $k$ will be found in [1].

## REFERENCES

[^1]
[^0]:    AMS (MOS) subject classifications (1970). Primary 12A65, 12 A 70.
    ${ }^{1}$ Supported by NSF Grant MSC 7608184.

[^1]:    1. H. M. Stark, L-functions at $s=1$. III. Totally real fields and Hilbert's twelfth problem, Advances in Math. 22 (1976), 64-84. IV (to arpear).
    2. Riho Terras, On the convergence of the continued fraction for the incomplete gamma function and an algorithm for the Riemann zeta function (to appear).
