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1. Whatever the reason for the eighty years' delay in the publication of 
Kummer's collected papers,1 they now meet an audience whose interest in the 
number-theoretic contributions is, one expects, undiminished. If anything, the 
intervening years have given that audience a chance to catch its breath, and 
to absorb techniques ("/?-adic"2 in particular). The broad lines of Kummer's 
number-theoretic ideas now form an essential part of our heritage: it is 
fascinating to follow the details of their evolution. 

The collected works are in two volumes. Volume I consists of Kummer's 
number theory. It constitutes a unity of thought and spirit almost from first 
sentence to last. One of the joys of reading it is in the double spectacle: the 
steady train of mathematical content, unimpeded by lack of basic algebraic 
number theory; while here and there, to serve problems at hand, the deft, 
unobtrusive forging of pieces of present day technique. It is not hard to get 
into, even for those of us who have had little contact with the history of our 
subject. Cleft though one may think one is from historical sources, on reading 
Kummer one finds that the rift is jumpable, the jump pleasurable. The reader 
is greatly helped in this jump in two ways. Firstly, included in the volume is a 
continuum of well-written, moving letters from Kummer to Kronecker giving 
the details of many of Kummer's important discoveries as they freshly 
occurred to him (these, together with some letters from Kummer to his 

1 Weil, in his introduction, suggests that Hubert, who dominated German mathematics in the 
late 19th and early 20th centuries, had little sympathy for Kummer's "/?-adic" point of view, and 
asks whether this might not constitute a reason. 

2 Nowhere in Kummer's works will you find the word "p-adic" (nor, for that matter, "group"). 
The former term and concept were introduced far later by Hensel, but Kummer used the fact 
that formal power series in/? may define numbers modulop" for arbitrarily high values of n. His 
progress seems so untrammelled by the lack of these explicit notions and so natural to describe 
by means of them that in the present review we will use modern language for them where 
suitable, although in some other respects, we shall try to be more faithful to Kummer's (explicit) 
ideas and choice of words. 
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mother, form part of a description of Kummer's work by Hensel on the 
occasion of the centenary of Kummer's birth, also included in the volume). 
Secondly, there is an excellent introduction, in which Weil describes the main 
lines of Kummer's work, and explains its relations to Kummer's contem­
poraries, and to us.3 

Volume II is in four parts: 
1. Function theory. Here one finds his work on the hypergeometric function, 

and on repeated integrals of rational functions. For a close reading of his 
papers on "logarithmic functions of higher order", including corrections of 
some errors and misprints, see [4]. 

2. Algebraic geometry. His discovery of "Kummer surfaces" (quartic 
surfaces in P3 with 16 double points) seems, curiously enough, to be an 
outgrowth of his interest in the optical properties of biaxial crystals, and in 
the "Cyclides" of Dupin. The relation between these quartic surfaces and 
quotients of abelian surfaces (or 0-functions) was perceived only much later. 
One also finds here a number of papers describing actual plaster models (of 
the real loci, to be sure) of particular "Kummer surfaces", with special 
symmetries in evidence, etc. 

3. Aerodynamics and ballistics. 
4. Speeches and reviews. A surprisingly broad range of topics, including a 

long retrospective on the life and work of Dirichlet. 
Comments on the four main themes of Volume I are given in the four 

sections below. 
Page numbers to Volume I of the collected papers are signalled by the 

letter K (e.g., K 539 means p. 539 of Volume I of the collected papers). 
"Weil's introduction" means his introduction to Volume I. Bracketed num­
bers refer to the bibliography at the end. 

2. The discovery of ideal complex numbers (and Kummer's "reagents"). 

a. "Reagents". Kummer's "ideal complex numbers" Dedekind's "ideals", 
and Kronecker's "divisors" are successive, distinct discoveries. The particular 
intentions of the discoverers were quite different, and seen from their view, 
the three concepts appear to be almost independent. 

Kummer's "ideal prime complex number" is, in modern language, a homo-
morphism from a ring of cyclotomic integers to a finite field (to be slightly 
more accurate, it is the associated valuation). But his homomorphisms were 
constructed in a very special fashion; they were conceived in an interesting 
way and Kummer did not know Galois' work on 'finite fields'. We shall 
describe the steps of Kummer's construction, flitting from his language to 
ours. 

"Ideal complex numbers are comparable to the hypothetical radicals 
which don't exist in themselves, but only in combinations; fluor, in particu­
lar, an element which one cannot isolate, can be compared to an ideal prime 

3 A forthcoming book of H. Edwards on Fermat's Last Theorem gives a beautiful and vivid 
account of Kummer's times and thought and will make this subject accessible to an even wider 
audience. See also [1]. 
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factor. The notion of equivalence of ideal factors is, at bottom, the same as 
that of chemical equivalence . . . 

Comparing the methods of chemical analysis to those of decomposition of 
complex numbers one finds further surprising analogies. For, just as chemi­
cal reagents added to a dissolved substance yield precipitates, by means of 
which one determines the elements contained in the substance, so, the 
numbers we have denoted \p(a), as reagents of complex numbers, allow one 
to determine the prime factors contained in complex numbers by 'putting in 
evidence' a prime factor q, analogous to the chemical precipitate . . . (K 
443; 1851)" 

b. ^Complex numbers"). For Kummer, a always denotes a primitive Ath 
root of 1, and À an odd rational prime number. A "complex number" for 
him4 is an element of Z[a] and he will denote it f (a), thinking of the 
polynomial f(X) = *2J<xajXJ which gives rise to the complex number by 
substitution of a for X. This gives him ready notation for the conjugates of 
ƒ(«) (ƒ(<*')> ' = 1, . . . , A — 1). These complex numbers will sometimes be 
called real ("wirklichen") for the same notation is forced to serve the concept 
of ideal complex number. 

Consider the extraordinary fortune that Kummer has in dealing with the 
ring Z[a]. Firstly, although Kummer does not have the general notion of 
algebraic integers (this subtle notion is a later discovery of Dedekind, and 
Kronecker; its lack is a frequent cause of confusion in early work in number 
theory), Kummer's "complex numbers" are all the cyclotomic integers. Fur­
ther, all subfields of Q(a) are completely given by the periods of Gauss. 
Explicitly, let y be a primitive Ath root of 1. Then, for each divisor e of A — 1, 
any one of Gauss's periods rj, = Sj~oaY' * (ca^ these the periods of degree e) 
generate the unique subfield of degree e (call it Q(TJ) where 17 = TJ0). But the 
decisive and singular luck is that, in modern language, the 'decomposition 
law' in Z[a] admits a strikingly simple description: If p ^ A is a rational 
prime, of order ƒ in the group of units mod A, then/? splits completely in Q{vi) 
where 17 is a period of degree e = (A — \)/f (i.e., (p) = P, • . . . • Pe where 
the primes Pj have residue field F )̂ and the ideals ^ = P, • Z[a] remain prime 
in Z[a]. Up and 17 are related in this way, say that 17 is a period for p. 

c. Kummer's De numeris complexis . . . (1844, Breslau; republished by 
Liouville in 1847). Let us turn now to Kummer's first published work on 
"complex numbers" [10]. The subject is that of factoring "complex numbers" 
into prime complex numbers. To be sure, factorizations are to be taken up to 
multiplication by units; there are an infinity of these (A > 3) as Kummer 
knows, for he has the "cyclotomic units" (we shall call them circular units to 
avoid confusion, and we take them to be elements in the group generated by 
units of the form (a1 - aj)/{\ - a); i ¥=j). He is also aware of that other 
ambiguity: the failure of unique factorization: in a musing lament, beginning 
"Maximum dolendum videtur . . . " (to be recalled to us later (K 207) when 
he is in a jubilant state of mind) he bemoans this blemish on his "complex 
numbers", suggesting that perhaps one should seek another kind of complex 

4 The direct descendants of the "complex numbers" of Gauss and Jacobi [3, 6 275-280]. See 
also Eisenstein's Beitràge zur Kreistheilung (1844), p. 45, vol. i of [2]. 
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number, more closely analogous to "real numbers".5 The paper concentrates 
on the problem of expressing a rational prime /? as a norm, p = Nf{a). For 
this to be possible, p must be congruent to 1 mod À, a reasonable special case 
which avoids the encumbrance of residue field extension. It is natural for 
Kummer to actually obtain the factorization/? = Nf(a), for large quantities of 
/?'s, for reasons which are related to the particular cast of his discovery later 
of ideal numbers; these reasons therefore deserve explanation. If one wishes 
to determine whether a general complex number <p(a) is divisible by some 
prime factor dividing/), there are two ways of proceeding: One may calculate 
the norm of y (a) (which may be lengthy), determine whether it is divisible by 
/?, and go on from there, or, having a factorization p = Nf(a) at hand, one 
can form \p(a) = f (a2) • f (a2) « . . . • f(ax~l). Then, to test whether (p(a) is 
divisible by f (a) one need only check whether (p(a) • \p(a) has all its 
coefficients divisible by p. The quantity \p(a) is the first form of Kummer*s 
"reagents". In our terms, it is a uniformizer at all primes lying above/?, except 
the prime f (a), and it is a unit everywhere else. One might call it a complemen­
tary uniformizer. Multiplication by \^(a) and reduction modulo/? gives us the 
homomorphism from Z[a] to F^. For this 'test-for-divisibility-by-/(a)' to be 
efficient, it is natural to seek as simple as possible a \p(a) (lowest coefficients). 
Kummer took joy in this search, investing it with craftsmanlike pride, as is 
clear from a glance at his table (K 206-208) which ends with À = 23, the first 
case where unique factorization fails,6 e.g., the prime 47 fails to be expressible 
as a norm. As one discovers by reading his collected works, Kummer's 
passion for elegant elementary calculation endured. For example, in 1870, he 
took the trouble to explain his method of finding the 'simplest' ƒ (a) ("der 
Reinigung der complexen Zahlen von den sie behaftenden Einheiten ohne 
Schwierigkeit") and twice devoted short communications to providing, in a 
few cases,7 simpler expressions than appeared in the extensive factorization 
tables (A < 1000) of Reuschle. 

d. Kummer's unpublished 1844 manuscript.* An unpublished earlier paper of 
Kummer (Uber die complexen Primfaktoren der Zahlen und deren Anwendung 
in der Kreisteilung) submitted to the Berlin Academy of Sciences on April 21, 
1844, and withdrawn shortly afterwards, has just been brought to light by 
Edwards [1], In this paper, Kummer claims (wrongly, of course) to prove that 
every prime number /? congruent to 1 modulo À can be expressed as a norm 
P = Nf{a). This was therefore written before he had made his famous 
calculation for X = 23. This paper is undoubtedly also the one referred to in a 

5 "Real numbers" means rational integers. 
6 From then on it always fails [5], [9]. 
7 X = 29, 31; in these cases the ideal class group is noncyclic and Kummer wished to obtain its 

structure in an efficient manner. Despite the lack of (explicit) group theory, Kummer was 
sensitive to the question of noncyclicity of the ideal class group (this goes under the heading 
"sehr mysteriösen Irregularitat von Determinanten") and he determined all the instances of this 
phenomenon for low values of X. See especially [15] (also footnote K 956) and its application to 
X = 41 whose ideal class group is of type (11, 11). 

8 Not included in the collected papers. See [1]. 
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letter from Eisenstein to Stern [2, p. 793, vol. II] (English transi. [1]), in which 
he discusses his own work on higher reciprocity9: 

. . . You can hardly imagine how delicate these investigations are. There 
are difficulties in the very first elements of complex numbers, about which 
one knows nothing. 

Professor Kummer was fortunately able to take back his beautiful theory 
of complex numbers from the Academy . . . in time; it contained so much 
revolutionary material that I for one would have gone crazy; one can use it 
to prove that there is only one quadratic form for each determinant and 
other such nonsense . . . If one had the theorem which states that the 
product of two complex numbers can be divisible by a prime number only 
when one of the factors is-which seems completely obvious-then one would 
have the whole theory [referring to higher reciprocity laws] at a single blow; 
but this theorem is totally false and entirely new principles must be 
applied . . . 

Eisenstein's letter implies that he knew of the failure of unique factoriza­
tion, and its relation to Gauss's theory of binary quadratic forms, before 
Rummer's 1844 paper. In contrast, this was unknown to the French Academy 
until 1847 when Kummer, motivated by Lamé's announcement of a proof of 
Fermat's last theorem, wrote a letter to Liouville (K 298) informing him, 
firstly, of the failure of unique factorization for complex numbers, and 
secondly of its resuscitation ("on peut le sauver") by means of ideal complex 
numbers. It was Kummer's letter that led Liouville to republish Kummer's 
1844 paper [10] side-by-side with Lamé's purported proof. Liouville heralded 
this mathematical joust with a note (K 298) which ends: "C'est au temps à 
fixer la valeur de leurs travaux et à mettre toute chose à sa place." 

e. Homomorphisms. Kummer's next step is to investigate complex prime 
factors of norm// (letter to Kronecker of Oct. 2, 1844). For these, the natural 
intermediate field to work in is Q(TJ) where t) is a Gauss period of order e, 
ef = X — 1. As we know, given a complex prime factor ƒ (a) of norm/^, one 
can associate to it a homomorphism from Z[TJ, Tjj, . . . , TJ^J] to ¥p (the one 
determined by the prime of Q(TJ) 'over which (ƒ(<*)) lies'). In the course of 
[11] Kummer produces such homomorphisms. If Uj is the image of r/y, then he 
will indicate this 'homomorphism' by "?j = u, fql = w„ . . . etc." He uses, 
however, a fallacious argument when the prime of Q(rf) divides the norm of 
TJ - T},..10 This argument persists in his early papers, and it is only in 1856 that 

9 In his introduction (written before the withdrawn article was unearthed), Weil suggests that 
Eisenstein's letter might be alluding to an incorrect proof of Fermat's last theorem that Kummer 
supposedly submitted to Dirichlet (see Hensel's 'biography' of Kummer (K 54)). For a spirited 
account of these, and related historical matters, see [1]. 

10 He produces the ufs by working with a matrix with integral coefficients and attempting to 
invert it modulo p. Although the matrix has a nonzero determinant Z), it may very well happen 
that D == 0 mod;? . . . . For a discussion of this, related errors, and the ultimate correct argument 
replacing them, see [1] and Weil's introduction and notes. 

This is one of Kummer's errors that Weil discusses in some detail. Weil points out that 
Kummer's papers are surprisingly free of errors. He doesn't go into the questions raised by 
Vandiver concerning gaps in Kummer's later papers and it is reasonable not to do so. Neither 
does he correct the known errors in Kummer's tables, some of which were later corrected by 
Kummer himself. These numerical errors, however, could have easily been footnoted on the 
pages on which they occurred. 



BOOK REVIEWS 981 

he produces a correct argument. It is this error, also occurring in Kummer's 
expository paper (1851; J. Math. Pures Appl.) which is the subject of a letter 
from Liouville to Dirichlet recently found by Edwards [1]. 

"Ouvrons, je vous prie, le Mémoire de M. Kummer à la 
page . . . de mon jou rna l . . . " says Liouville, putting his 
finger on the problematic formula, and an accompanying 
"on en conclut aisément. . ." in the text. He then laments 
that neither he nor Cauchy nor anyone else he knows can 
make the conclusion easily, imploring Dirichlet for a 
proof . . . "aisément ou non". 

The pressing cause for Liouville's concern was that the Paris Academy was, 
at that time, preparing to award Kummer their prize for a proof of Fermat's 
last theorem (offered in 1850, but, to be sure, unclaimed) even though 
Kummer himself had not officially entered the competition. 

f. Ideal prime factors. Things are now set for that double stroke of insight 
which gushes forth a year later in the jubilant letter to Kronecker and the 
corresponding public communications: one can construct the test-for-divisi-
bility-by-/(a:) without actually having f(a)An fact, whether or not f (a) 
exists-and that these test themselves should be taken as ideal prime factors of 
p. Kummer saw that one can make do with far less than /(a) . What he 
wanted, in present-day language, is a local uniformizer for the prime of Q(rj) 
corresponding to the above homomorphism, which is a unit at all other 
primes of norm/^ and where TJ is a period for/? (cf. b above). As Kummer put 
it, one must find a \p(a) such that ^(TJ) = 0 mod/7 for the substitution r\ = w, 
and such that ^(Î?)^(T?2) * . . . » ^Wx) which is divisible by/7, is not divisible 
by/?2. Then, set: ^(T/) = vK1?2)* • • • • ^W1) (o n e *s tempted to call ^(TJ) a 
'complementary9 local uniformizer) and, by definition, the general complex 
number <p(a) contains the ideal prime factor belonging to TJ = W m times if m is 
the largest integer such that y(a) • ty(r))m is divisible by pm. Let us quote his 
definition of ideal prime factor (ignoring "multiplicities") and the flood of 
analogies illuminating it from his 1851 expository paper [13]. 

If a complex number f (a) satisfies the condition 

ƒ (a) =s 0 (mod q) for rç - t*r, 

we will say that ƒ (a) contains the ideal prime factor of the number q which 
belongs to the substitution 7) = ur • • • we believe that these factors render 
visible, so to speak, the internal constitution of numbers, so that their 
essential properties are brought to light. A complex number satisfying 
several of the above type conditions, even if it is not decomposable in 
complex factors, behaves rather like a composite number. . . Algebra, 
Arithmetic and Geometry offer numerous analogies to our theory. One 
decomposes, for example, rational and polynomial functions of one variable 
in linear factors, although these isolated factors exist only in special cases; it 
is to this end that imaginary quantities were created. In geometry one speaks 
of a line passing through the intersection points of two circles, even when 
these intersection points don't exist. In this example, the general property 
that the tangents drawn from an arbitrary point of this line to the two circles 
are equal (in length) is the analogue to the general property of the complex 
number "ƒ(a) — 0 (mod q) for y\ = wr", while the accidental property of this 
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line (that of passing through the intersection points of the two circles) is the 
analogue of the accidental property that the complex number ƒ (a) have an 
existant prime factor y (a). 

Finally the idea of considering ideal factors of complex numbers is, at 
bottom, the same as that which produced the complex numbers themsel­
ves . . . 

It is interesting at this point to turn to Dedekind who, in 1876, when 
describing the features of his own concept of ideal, says that he has no need 
of any new creation like that of Kummer's ideal numbers; for him it com­
pletely suffices to consider the system of really existing numbers which he calls 
an ideal. His curious objection to Kummer is that Kummer hasn't defined 
ideal complex numbers themselves but only the notion of divisibility by these 
numbers. 

To be sure, Dedekind, who had already conceived his "cut" definition of 
real numbers, had a predilection for grounding existence in set-theoretic 
constructions. 

The boldness of Kummer's discovery is surpassed only by the boldness 
with which he makes use of it. The reader is struck by the swift emergence in 
his papers of much of what is now algebraic number theory (in cyclotomic 
domains, to be sure) as crown and corollary of the theory of ideal complex 
numbers: equivalence, ideal class 'groups', finiteness of the class number, 
analytic techniques (the 'analytic formula' inspired by Dirichlet) and, more 
singularly unique to Kummer, p-adic analytic techniques. 

The only application of his theory given in his first two papers on ideal 
complex numbers is to determine the (ideal) prime decomposition of the Ath 
power of the 'Lagrange resolvents':11 

x + ax8 + a2x8 + . . . + ap~2xgP~ 

(here/? is a prime number congruent to 1 mod A, x is a primitivepth root of 1, 
and g is a primitive root modulo /?), generalizing a formula of Jacobi. Except 
for the introduction of ideal numbers, Kummer had already obtained this 
decomposition formula in his 1844 paper. By means of this decomposition 
formula (viewing it at a slant) one may obtain an ideal in the integral group 
ring of 

Gal(Q(exp(2*ri/A))/Q) = (Z/AZ)* 

which annihilates the ideal class group. (Anticipating Stickelberger's generali­
zation [8] we shall call it the Kummer-Stickelberger ideal ? which is essen­
tially (cf. [6]) generated by one element, the Kummer-Stickelberger element, 

, . I A 2 a . a - 1 G Q [ ( Z / A Z ) * ] 
A o 

where oa is the image of the integer a in (Z/AZ)*. Explicitly: 

S = Z[(Z/AZ)*] n *• Z[(Z/AZ)*].) 

11 Stickelberger [8] refers to this (or rather its generalization to composite \) as the "Kreisthei-
lungsresolvente"; Hubert refers to it as a "Wurzelzahl"; modern authors call it a "Gauss sum". 
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Except for the modern formulation, Kummer proves this. It is not surprising 
that Kummer should be seized by the importance of the 'Kummer-Stickel-
berger' element, for it dominates the study of the ideal class group; it is the 
link between the properties of that group and the Bernoulli numbers: it 
remains to the present day the (still poorly understood) keystone of p-adic 
analytic number theory. 

3. Kummer's congruence. This is usually stated as the following congruence 
between/^-integers: 

Bjm = Bm+{p.l)pn/m + (p- \)pn mod/?"+1, 

where Bm is the mth Bernoulli number and m > max(2, n), and m ^ 0 
mod/? - 1. (B2n+l = 0; B2 = 1/6, B4 = -1 /30 , B6 = 1/42, . . . ; here we 
have departed from Kummer's indexing.) 

Although one does find the above congruence for n = 0 in [13], Kummer 
fell upon a slightly different form of the general congruence ("ein ganz nettes 
Früchtchen meiner Untersuchungen") in the course of other pursuits and 
quickly saw that the above congruence is but the symptom of far broader 
relations; these broader relations have resurfaced recently to general mathe­
matical consciousness (beginning with the work of Kubota-Leopoldt) in terms 
of/7-adic interpolation of values of the zeta function. 

For k > 3 an odd integer, and c a /?-adic unit, consider the following 
'modified' value of the Riemann zeta function at s = — k: 

&\-k) = (I - ck+')(l - pk)Ç(~k), 

where f (— k) = — Bk_x/{k — 1) is the value of the ordinary Riemann zeta 
function at — k. 

Now the "generalized Kummer congruences"12 imply that if f(X) = 
1iakX

k E Z[X] is a polynomial whose values are congruent to zero modpn+1 

for all x E Z*, then ^ak^
p\- k) = 0 mod/?w+1. [To obtain the congruences 

which occur in Kummer's paper (K 361) from the generalized Kummer 
congruences, the reader should use the polynomial 

ƒ ( * ) = X2v(l - AT'-1)"*1 

Note the relation ƒ (x) = 0 modpn+l for x E Zp provided 2v > n + 1.] 
The most fluid language to express such relations is that of Z^-valued 

measures d[i on Z* (namely: bounded Z^-valued functions ƒ »-• fz*f • dfi on the 
space of continuous Zp-valued functions on Z*; equivalently: Z^-valued 
finitely additive functions on open and closed subsets of Z*). It is evident that 
if two functions on Z* enjoy the congruence/ = ƒ' mod/?w+1, then the same 
congruence holds for their integrals: 

f f'dii = f /'-dp. mod/?"+1. 

The "generalized Kummer congruences" are equivalent to the assertion 

12 As elegantly explained by Katz in his lectures at the conference on modular forms (Bonn, 
1976). 
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that (for any choice of/?-adic unit c) there is a measure d\ic on Zp such that 

[ xkdtic={\ - ck+l)Ç(-k) and f xk dy,c= ? c
w ( -* ) 

for all odd k > 3.13 

From this vantage point it is clear that the shape of such congruences is not 
restricted to Bernoulli numbers, but follows more generally from the existence 
of a measure. This is not far from the spirit of Kummer's explanation [13]. 

4. Fermat's last theorem. 
"Fermat's last theorem is, to be sure, more of a curiosity than a pinnacle 

of Science . . . " (K 281). 

A month after Lamé presented his purported proof of Fermat's last 
theorem to the Paris academy, Kummer sent the details of his own version to 
Kronecker. Soon afterwards the Beweis des Fermât9schen Sat zes der Unmög-
lichkeit von xx + yA = zx für eine unendliche14 Anzahl Primzahlen X [12] 
appeared. 

He initially proves the Fermât theorem under two hypotheses: 
A. The class number h of Q(a) is not divisible by X. 
B. Every unit in Z[a] which is congruent to a rational integer modulo A is a 

Ath power of a unit. 
But these hypotheses immediately change their form (see Dirichlet's re­

sponse to Kummer's communication and Kummer's response to Dirichlet, all 
in [12]). Hypothesis B follows from A, and hypothesis A admits further 
analysis leading Kummer to a deep study of the class number: One may 
separate the study of h into two parts which have strikingly different behavior 
h = h~ • h + . We have departed, again, from Kummer's notation. Kummer 
calls h ~ the first and h + the second factor. One can show that the ideal class 
group H+ of the maximal totally real subfield Q(a + a - 1 ) of Q(a) injects 
into the ideal class group H of Q(a). Letting H~ = H/H+ define h+ and 
h~ to be the orders of H+ and H~, respectively. The element a_x of 
Gal(Q(a)/Q) (cf. §2f) acts as ± 1 on H ± . 

The first factor h~ is amenable to analysis.15 Using the fact that the 
Kummer-Stickelberger ideal annihilates H~, the hypothesis that h~ = 0 
mod X implies a congruence of the form ^Lp

aZ\x~x(a) • a = 0 (À2) for some 
odd Dirichlet character x of conductor/?. This, in turn, is equivalent (after an 
elementary calculation) to saying that one of the first (X — 3)/2 Bernoulli 
numbers (of even index in my notation) are divisible by À. Indeed, Kummer 
shows that h ~ is not divisible by X if none of the first (X — 3)/2 Bernoulli 
numbers is divisible by À. 

13 The existence of these measures is equivalent to the existence of the/?-adic Kubota-Leopoldt 
zeta function possessing the standard properties. 

14 One still does not know an infinity of X for which Fermat's last theorem is true. See footnote 
17 below. Weil's comment about this is: "after such a step forward, Kummer was entitled to 
some optimism". 

15 h ~ is essentially determined by an appropriate norm of the Kummer-Stickelberger ideal [6]. 
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The second factor h + is the hard one. It is equal to the index of the circular 
units in the group of all units, but neither the direct definition of h+, nor this 
fact helps significantly in calculating it. A moment's reflection will show that 
one learns nothing about H + from the fact that the Kummer-Stickelberger 
ideal annihilates it. 

It is therefore a piece of luck for Kummer that he can show that if h ~~ is 
not divisible by A, then neither is h + .16 He thus reduces hypotheses A and B 
(and hence the truth of the Fermât theorem) to the hypothesis that X does not 
divide any of the first (X — 3)/2 Bernoulli numbers. 

We call such primes X regular; Kummer had no special term for them, but 
would usually refer to the irregular ones as "diese besondere Art von 
Primzahlen" or "Ausnahmzahlen".17 

Kummer's proof that hypotheses A and B imply the truth of Fermat's 
theorem for regular X occurs in various places in the collected works, is quite 
readable, and is, moreover, extremely well known. It would serve little 
purpose to repeat it here. Nevertheless a loose translation into geometric 
language of Kummer's method of descent may be helpful to some readers. 
We discuss only the "second case"18 of Fermat's theorem, which is the one 
requiring a 'descent'. The first case, however, also requires regularity of A. 

The second case. Here one considers the (finite) package of equations 
(curves over Q(a)): %: xx + yx = u • zx where u runs through a complete 
system of representatives for units modulo Ath powers in Z[a]. One supposes 
a solution given £ = (x0, y0, z0) where z0 = (1 - a)mz^ and x0, y0, Z'0ÎÊO 
mod(l — a). Call m the order of contact of £. We are in the second case if 
m > 0. By multiplication of x0, y0 by suitable powers of a we may suppose 
that they are both congruent to rational integers modulo (1 — a)2. 

The structure of Kummer's proof is as follows: By methods of congruence 
one shows that there is no such solution £ with m = 1 (even over the 
(1 — a)-adic completion). Next suppose m > 1; one constructs a diagram of 
curves over Q(a), 

16 His approach to this is not the modern one . . . to compare class field theory with "Kummer 
theory" via the 1-dimensional Galois cohomology isomorphism induced by the morphism of 
Gal(Q/Q(a))-modules Z/pZ^^ (=/rth roots of 1), which conveniently reverses the signs of 
the characters of the action of Ga l (Q(a ) /Q) . . . Rather, Kummer supposes that h+ is divisible 
by A. Then, some circular unit, which is not a Ath power in the group of circular units, is a. Ath 
power in the full group of units. Using this fact he deduces certain congruences which he shapes 
into the form of the appropriate congruences for Kummer-Stickelberger elements to insure that 
h" is divisible by A. His later paper where he shows, among other things, that if h + is even, then 
so is A", is an impressive elaboration of that calculation. 

17 At first, Kummer was disposed to regard irregularity as a rare phenomenon, for he had 
calculated the class number for all A < 100 ("nicht ohne grosse Mühe") and found only three 
such. That he held this opinion helps to explain why he was content to treat A-power reciprocity 
only for regular A (see §5). Volume I ends, however, with his conclusions following a similar class 
number calculation for the range 101 < A < 163 where there are five irregular primes. There, he 
guesses that, asymptotically, half the primes are regular, but this guess has undergone subsequent 
modifications. 

18 The separation of Fermat's last theorem into cases seems to stem from the work of Sophie 
Germain who gave an easily applied sufficient condition for the first case to be true. 
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ft ft , 
ü u °u 

where ^ -* % is a /^-cyclic covering, unramified over C, and VF —> VFM, is a 
projection to (possibly) another "Fermât" curve in the above package. There 
are, in fact, many such diagrams, and which one is to be chosen (the one 
which enjoys the excellent properties (i) and (ii) to be described below) 
depends upon the properties of the particular solution £ that one has 
(hypothetically) at hand. 

Kummer now lifts the solution | of % to a solution I of the /?-cyclic cover 
?f and this solution remains defined over the field Q(a). Here he makes use of 
regularity of the prime X (in the form of both hypotheses A and B), but if we 
grant ourselves class field theory, we can "comprehend" this step geometri­
cally by noting that | must be defined over a /^-cyclic extension of Q(a) 
unramified outside (1 — a) and (i) that the congruence hypotheses on £ rule 
out ramification at (1 - a) as well. Thus £ is defined over an everywhere 
unramified p-cyclic extension of Q(a) which is trivial, by the hypothesis of 
regularity of X. 

Lettinq £' denote the image of £ in ®üu, one obtains another solution of 
(possibly) another "Fermât" curve. Kummer then calculates (ii) the order of 
contact of £' to be m — 1. Downwards induction on the order of contact m 
then concludes the proof of the second case. 

As everyone knows, the arithmetic of Fermât curves (indeed of most curves 
over Q) remains as problematic today as it was in Kummer's time. 

The Fermât curves themselves have been observed by Fricke to be repre-
sentable in a natural way as quotients of the upper half plane by (noncon-
gruence) subgroups of finite index in SL2Z. In this representation, the "trivial 
solutions" are precisely the cusps. Some effort has recently been devoted to 
connecting the Fermât curves and modular (congruence) subgroups; it is yet 
too early to say what concrete applications to arithmetic may be obtained by 
this connection. 

For a modern reader the temptation is great to try to 'understand' 
Kummer's descent in terms of a descent argument on the Jacobian varieties 
7Aof the "Fermât" curves. 

To treat Fermat's last theorem for special cases of irregular À, Kummer [16] 
was naturally led to a closer study (i.e., mod À2) of the 'A-adic regulator', 
forcing further congruence relations on Bernoulli numbers, once a hypotheti­
cal nontrivial solution of the Fermât equation is given. Kummer's conditions 
on X require that there be a unique A-cyclic unramified extension of Q(a) and 
Kummer obtains it explicitly as a 'Kummer extension', but here it seems 
harder to find "geometric language" to lighten the reading.19 Will such 

19 The reader will be amused to find, in the midst of this thicket, a discursive three-page 
digression on what is, in effect, the theory of finite abelian groups. In modern terms, Kummer 
produces filtrations in finite abelian groups with cyclic successive quotients. 
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calculations find their systematization in the theory of the A-adic L series 
associated to the Grössencharaktere coming from Jacobi sums? 

5. Higher reciprocity. Let us consider cubic reciprocity, as an example of a 
higher reciprocity law. It is customary (following Jacobi) to work over the 
quadratic field Q(a) where a is a primitive cube root of 1. 

If f (a) is a prime in Z[a], and cp(a) is an arbitrary element of Z[a] such that 
both are prime to 3, and mutually relatively prime, one sets ( ̂ -A- ) equal to 

that power of a which is congruent to cp(a)W(a)~1)/3 mod 1 - a. One then 

sees that ( y ^ y ) = 1 if and only if cp(ct) is a cubic residue modulo ƒ (a). The 

symbol ( ~—r ) is a natural generalization of the Legendre symbol. One says 

that an element q>(a) is primary, or in primary form if it is prime to 3, and 
congruent to a rational integer modulo 3. Any ideal prime to 3 in Z[a] has a 
unique primary generator. The cubic reciprocity law for ideals prime to 3 then 
states that if f (a) and <p(a) are primes in Z[a] which are in primary form, and 
which are mutually relatively prime, and prime to 3, we have 

<P(«) \ / ƒ(<*) 
f (a) ) \ <p(a) 

Rummer's work on reciprocity may be viewed as a generalization of the 
above cubic case to A-power reciprocity, where A is a regular prime. 

Nowadays, following Hubert, we have the norm residue symbol, and 
'reciprocity laws' are conveniently viewed as a particular legacy of class field 
theory for an arbitrary number field K. This theory neatly separates what is 
'local' from what is 'global' and most decidedly does not shun the maximal 
abelian extension (the Hubert class field) of K; rather, the Hubert class field 
has center stage. A major objective of class field theory is to explain (and 
perhaps even to display) it. The idiosyncratic character of Rummer's re­
ciprocity laws, from our viewpoint, is that he utterly suppresses that which is 
our foreground, by working with A-power reciprocity over K = Q(a) where A 
is hypothesized to be a regular prime. This hypothesis enables him to for­
mulate his power residue symbols in a way which is strange to us, but 
probably appeared to him to be the natural generalization of symbols of 
Legendre, Jacobi, and Eisenstein. Namely, if f (a) is a "complex prime 
number" ("real" or "ideal"), prime to A, and cp(a) a "complex number" prime 

to A ("real" for the moment), let (-JTT) denote that power of a which is 

congruent to (p(a)Nf(a)~l/x modulo f (a). 
Rummer now proceeds to modify his symbol, and by using regularity of A, 

to attach a meaning to the symbol (-TT-T) when <p(a) is an ideal complex 

number. For principal ideals prime to A he pinpoints a specific generator <p(a) 
(in primary form) by suitable congruence conditions: <p(a) • (p(ot~x) must be 
congruent to a rational integer mod A and <p(a) must be congruent to a 
rational integer mod(l — a)2. For ideal complex numbers cp(a) let us now 
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modify the symbol by setting 

f v ( « ) \ , . / x \l/h 

\ f(a) J \ f(a) ) 
where x is a primary generator of the (principal) ideal <p(a)h where h is the 
class number. Kummer's reciprocity law then states 

t cp(a) \ = i f (a) \ 

\ /(«) ; I <p(«) / 
if f (a) and y (a) are ideal prime complex numbers, mutually relatively prime, 
and prime to À. Moreover, always under the hypothesis that \ is regular, 
Kummer gives /?-adic formulae for the symbols ( -—r- ) where e is a unit. We 

may most easily understand Kummer's work here, perhaps, by seeing how it 
can be derived with more modern techniques (norm residue symbols and 
class field theory). Weil's introduction explains this with great care. 

6. In summary, Kummer's number-theoretic concerns are impressively 
close to the concerns of modern students of number theory. The progression 
of his thought deserves and rewards close reflection. 
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