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This book is primarily concerned with the mathematical techniques useful 
in calculating the distribution of functions of random matrices X: n X p 
where X has a multivariate normal distribution. As motivation for both this 
review and much of the material in FarrelFs book, I will begin by posing a 
problem and discussing three possible approaches to solving it. Suppose X is 
an n X p random matrix (n > p) and X has a density f(x) with respect to 
Lebesgue measure, /, on the linear space of n X p matrices. Let S = XX = 
r(X) E >p< where Sp is the set of all/? X p nonnegative definite matrices (S is 
positive definite a.e.). The problem is to find the density function of S. 

APPROACH 1. Assume that the density ƒ (X) is a function of S as is the case 
when the elements of X are independent and normal with mean 0 and 
variance 1. Then ƒ (X) = g{XfX) for some function g. Hence, the density of 
S is g(S) with respect to the measure /x = / o T _ 1 on > . All that remains is 
to calculate the measure /x. Wishart did this in 1928 using a geometric 
argument which led to the density bearing his name (in the normal case). Of 
course, fi(dS) = c\S\{n'p~l)/2dS where c is a constant. 

When ƒ is not a function of X'X, then the above argument is not available. 
Two alternative approaches which can be used are now considered. 

APPROACH 2. The group (? (n) of n X n orthogonal matrices acts on the left 
of X by X -» TX, T E £(n). A maximal invariant function under this action 
is T(X) = X'X = S. The density of S with respect to the measure [x given 
above is q where q(r(x)) = ƒ f(Tx)v(dT). Here, v is the invariant probability 
measure on C(n). This result was used by James (1954) to derive an integral 
expression for the density function of the noncentral Wishart distribution in 
the rank 3 case. A result similar to the one above for general compact groups 
is due to Stein and will be discussed subsequently. 

APPROACH 3. Let Gp denote the group of p X p upper triangular matrices 
with positive diagonal elements. Also, let Vnp be the set of n x p matrices ^ 
which satisfy $'$ = Ip. V is called the Stiefel manifold. Each X which has 
rank p (those with rank less than p have Lebesgue measure 0) can be uniquely 
written as X = xpU with ^ E Vnp and U E Gp. Since S = XX = VU, a 
method for finding the density of S is to first find the joint density of \p and U 
and then "integrate out" ^ to yield the marginal density of U. With the 
density of U at hand, the derivation of the density of S is rather routine since 
the Jacobian of the map S<H> U (S = V'U) is easily calculated. To obtain the 
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joint density of $ and U9 note that f(X) = ftyU) is the density of (^, U) with 
respect to whatever Lebesgue measure becomes in Vnp X Gp under the 
transformation X -» (\p, U). An important result, usually proved via a Haar 
measure argument, is that the measure l(dX)/\X'X\n/2 becomes 
lii(dxp) ii2(dU) on Vnp X Gp where: ̂ i is the unique invariant (under f (n) 
acting on Vnp) probability measure on Vnp and /x2 is a right invariant measure 
on Gp. Thus, the marginal density of U with respect to /x2 is 
\U'U\n/2ff(\lj(U)ixl(d^)). This approach immediately yields the stochastic 
independence of \p and U in the case f(X) = g(X'X) considered in approach 
1. 

The above examples illustrate the type of problem and the mathematical 
techniques which arise in calculating multivariate distributions. For a 
thorough understanding of these examples, familiarity with Haar measure, 
transformation groups, matrix factorizations, and invariant differential forms 
is essential. Basically, it is this background material together with a large 
collection of examples that Farrell provides in these notes. The wide range of 
topics coupled with space limitations have necessarily restricted the amount 
of detail and number of proofs given. For example, in a short chapter on 
locally compact groups, the author discusses the existence and uniqueness of 
invariant measures on groups and quotient spaces, a useful result on factori­
zation of measures, modular functions, cross sections, and the relationship 
between solvability and the Hunt-Stein condition. 

In multivariate analysis, sample spaces are most often spaces of matrices 
which are also smooth manifolds (up to a null set). Further, the natural 
groups of transformations on these spaces are matrix groups. Therefore, to 
solve multivariate distribution problems, one needs to be able to manipulate 
and evaluate integrals with respect to differential forms over matrix spaces. 
Farrell's treatment of these topics begins with a discussion of exterior 
differential forms on manifolds. After calculating the explicit invariant 
measures on a variety of manifolds (lower triangular matrices, the orthogonal 
group, the Grassman and Stiefel manifolds), the author presents some useful 
decomposition results for n x p matrices. Applications of these results include a 
derivation of the density function for the sample canonical correlation coefficients 
and for the eigenvalues of a Wishart matrix. 

The idea of finding densities of maximal invariants by integrating densities 
with respect to a Haar measure is due to Stein. In brief, the situation is the 
following: a locally compact group G operates measurably on vY and /A is a 
left invariant measure on °X. A function r: ïY ~* °?) is maximal invariant 
under the action of G and ƒ is a density on vY with respect to /x. If X E vY 
has ƒ as its density, the problem is to find the density function of T = r(X) 
G L?) (with respect to some measure which must be found- see Approach 2). 
If G is compact and v is the invariant probability measure on G, then the 
answer is simple: namely, the density of T with respect to 8 ~ JU ° r _ 1 on ^\ 
is q{-) where q(r(x)) = ƒ f(gx)v{dg). An early application of this to the 
noncentral Wishart case where G = (? (n) is due to James. 

When the group G is not compact, the situation is much more complicated. 
The problem of finding a "nice" representation for a maximal invariant and 
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the factorization of the measure \i are intimately connected and basic to 
providing a reasonable solution to the original question. One approach to the 
problem, developed by Wijsman, uses Lie group theorv and the notion of 
cross sections. Schwartz has developed an alternative approach which is much 
closer to Stein's original approach. Farrell provides a detailed account of 
Schwartz's results (heretofore unpublished) and effectively uses the general 
multivariate linear model to motivate much of the theory. This section of the 
book provides the first teachable (not to mention readable) version of the 
theory that this reviewer has come across. 

James' agrument (see Approach 2) shows that the problem of finding the 
density function of the noncentral Wishart distribution reduces to evaluating 
an integral of the form \p(A) = ƒ exp[tr TA]v(dT) where A is an n X n real 
matrix, r E P (n) and v is the invariant probability measure on (? (n). When A 
has rank 1. the evaluation is not difficult and the answer is expressed as an 
infinite series in the one nonzero eigenvalue of AA'. T. W. Anderson derived 
a power series expansion for \p(A) when A has rank 2 and James did the same 
for rank 3 ^4's. The complexity of these power series increases drastically as 
the rank of A increases. Over the past twenty years, much theory has evolved 
in relation to zonal polynomial expansions of both \p(A) and more complica­
ted integrals over $(n). After presenting a large body of algebraic theory, 
Farrell provides three different definitions of the zonal polynomials of a real 
symmetric matrix, plus some results related to zonal polynomial expansions 
of functions of a matrix argument Certainly, the theory leading to zonal 
polynomial expansions is very deep and beautiful mathematics. However, it is 
the reviewer's opinion that the introduction of zonal polynomial expansions 
into multivariate analysis has yielded neither significant theoretical insight 
nor useful numerical results. 

Aside from a brief chapter on transform methods and one concerned with 
"random variable techniques," Farrell's book is about deriving distributions 
of functions of a normal random matrix using invariance and the mathema­
tics surrounding such considerations. As stated by the author, he assumes a 
great deal of his readers. A short list of prerequisites would include measure 
and function theory, invariant integrals, complex analysis, a solid course in 
modern algebra, and a knowledge of real manifold theory. Unfortunately, this 
puts Farrell's presentation out of the reach of many graduate students and 
research workers in multivariate analysis. However, calculating (or even 
describing) multivariate distributions is often not easy and invariance is by 
far the most useful tool currently available. 

For the most part, the book is written in the "definition, theorem, proof" 
style, but enough connective tissue is present to keep the reader's head above 
water. Armed with a plethora of reference books, the diligent student of 
multivariate analysis can and should profit from a thorough study of Farrell's 
book. The author has made a useful and welcome contribution to distribution 
theory in multivariate analysis. 
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