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Introduction. This will be a survey of recent developments in two areas of 
topological dynamics, "dynamical embedding" (Part 1) and the structure of 
minimal flows (Part 2). Part 2 contains some results published here for the first 
time. 

1. DYNAMICAL EMBEDDING 

Any sequence with values in a topological space or a probability space may 
be viewed as a "sample sequence" of a (nonunique) dynamical system or 
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stationary stochastic process. Such a general observation is of little value, but 
there are a number of instances in which the structure of the associated system 
is such as to yield new information about the original sequence. I shall 
describe a number of applications of this principle, most of which have sprung 
from ideas of Furstenberg, in §§1.1-1.14. But first I shall make brief mention 
of a recent paper by Furstenberg (received after the present paper was typed), 
which provides a quick illustration. 

A set A of integers has positive upper density if there exist a > 0 and 
arbitrarily long intervals / such that I contains at least a\I\ elements of A, 
| /1 = length of I. If A has bounded gaps (i.e. is "relatively dense"), one may 
take a = L"*1, where L is the maximum gap. Van der Waerden's theorem, one 
of Khinchin's "three pearls of number theory" [163], implies that every 
relatively dense set of integers contains arbitrarily long (finite) arithmetic 
progressions. It was conjectured by Erdös and Turân that the same conclusion 
obtains for sets with positive upper density. Roth [162] proved a set with 
positive upper density contains arithmetic progressions of length three (a 
non trivial result!), and Szemerédi, after settling the case of progressions of 
length four, proved the general result 

THEOREM A (SZEMERÉDI [160] ). Let A be a set of positive integers having 
positive upper density. Then A contains arithmetic progressions of arbitrary {finite) 
length. 

In [161] Furstenberg makes an equivalent formulation of the Erdos-Turân 
conjecture, in the language of ergodic theory, and proves the conjecture in this 
formulation. To describe the basic idea, let X = (0,1}Z, and let 7 be the left 
shift on X (Tx(n) = x(n + 1),*Q EX). Identify A QZ with the point 
xA E X, xA (n) = XA (nX n E Z, where x denotes characteristic function. 
Then let XA be closure {TnxA \n E Z}. It is straightforward to check that if 
y E XA, then any block {y(n)\-M < n < M) occurs somewhere in xA (in 
fact, XA is the set of points with this property). Thus, to say A contains an 
arithmetic progression of length k is to say there exists E XA and n > 0 such 
that y(0) = y(n) = y(2n) = • • • = y((k — \)n) = 1; what is the same, if 
UA = {y E XA\y(0) = l},then UA H TnUA D ••• f) T(k~l)nUA # 0 . Now 
suppose A has positive upper density. An elementary argument proves there is 
a Borel probability measure fi on XA such that (a) JU, is T-invariant 
(li(T~lB) = ji(B) for every Borel set B\ and (b) JJL{UA) > a, where a is as in 
the definition of "positive upper density". Therefore, Szemerédi's Theorem A 
follows from 

THEOREM B (FURSTENBERG [161]). Let T be a measure preserving transforma­
tion of a measure space (X,%}i) with }i(X) < oo. For all B E % and k > 0, if 
li(B) > 0, there exists an integer n > 0 such that 

IX(B n TnB n • • • n T^x)nB) > o. 
The proof of Theorem B is rather long and difficult, involving in part a new 

structure theorem2 for measure preserving transformations of finite separable 

2 ADDED IN PROOF. The structure theorm itself is due independently to R. J. Zimmer (preprint, 
U. S. Naval Academy). 
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measure spaces. The latter may be viewed as an ergodic theoretic analogue of 
the structure theorem for minimal flows which will be proved in Part 2 of the 
present paper. As Furstenberg notes, Theorem B also follows from Theorem 
A by an application of the ergodic theorem. 

REMARK. The easy case k = 2 of Theorem B is the "Poincaré recurrence 
theorem," which is proved using the shoebox principle. The proof of van der 
Waerden's theorem makes use of the shoebox principle (see [164] for the 
easiest proof), while Szemerédi's proof of Theorem A, in turn, makes use of 
van der Waerden's theorem. 

1.1. Uniformly distributed sequence generators. There exist sequences R 
= (A|,r2,... ) of positive integers with the following universal property: If G 
is any locally compact topological group and a = {an;n > 1} any sequence 
which generates a dense subgroup of G, then the sequence /? = {/?„}, fin 

= ar{ari - - - arn, n > 1, is "uniformly distributed" in G, in the sense that 
M 

(1.1.1) lim M - ' Z APn)=9Ha) 

exists for every continuous almost periodic or positive definite function on G 
(ƒ G &(G) or 9(G)). The limit (1.1.1) agrees on &(G) with the Bohr-von 
Neumann mean for almost periodic functions and on 9(G) with the Gode-
ment mean for positive definite functions [97], [57]. The construction of such 
uniformly distributed sequence generators R (u.d.s.g.)9s was given, along with 
explicit examples, in [148], [140]. I shall indicate the ideas involved in the next 
two sections. 

If G is a compact group, then &(G) = C(G), and the notion of uniform 
distribution given by (1.1.1) reduces to the generalization of Weyl's classical 
notion made by Eckmann [158], [30]. In this setting it is equivalent to require 
of /3 that whenever U Q G is an open set whose boundary has measure 0, 
limM_^00M~1 2/?li Xu(Pn) exists and is the Haar measure of t/, normalized 
so that G has measure 1. 

Whether G is compact or not our notion of uniform distribution is 
equivalent to a "Weyl's criterion". 

1.1.2. PROPOSITION. A sequence /? is uniformly distributed in G if and only if 

i M 

(«.1.3) lim ± 2 <n(fSn) = 0 
M—>oo M n==\ 

in the weak operator topology for every continuous nontrivial irreducible unitary 
representation it of G. 

The proposition is proved by using von Neumann's approximation theorem 
for almost periodic functions and Godement's representation theorem (a 
generalization of Bochner's theorem) for positive definite functions [97], [57]. 

Other generalizations (with examples and/or constructions) of uniform 
distribution, which generally require that (1.1.3) hold when the kernel of m has 
compact index (so that IT is necessarily finite dimensional), have been studied 
by Niven [98], Rubel [117], S. Hartman [60], Berg, Rajagopolan, and Rubel 
[11], and Benzinger [10]. Another notion, which requires (1.1.3) to hold in the 
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strong operator topology, occurs in Rindler [114]. I do not know if u.d.s.g.'s 
exist for Rindler's notion. 

The following theorem for G = Z corresponds to the classical theorem of 
Weyl [158] on the uniform distribution mod 1 of the fractional parts of real 
(irrational) polynomials. [ ] denotes the greatest integer function. 

1.1.4. THEOREM [151]. Let P(n) = a0 + axn + • • • + akn
k be a polynomial 

with real coefficients. The sequence jin = [P(n)] is uniformly distributed in Z if 
and only if either (a) k = 1 and ax = \/q for some integer q, or (b) the 
coefficients ax, Ö2> . . . , ak do not lie in a singly generated {additive) subgroup of 
R 

The proof of this theorem does not involve dynamics or ergodic theory. In 
the sense of Niven the sequence [an + /?] is uniformly distributed in Z 
whenever a is irrational [98], but in our sense it never is (by (a)). 

REMARK. It is an open question, I believe, whether a group G which contains 
a countable dense subset also contains a sequence /? which satisfies (1.1.1) for 
every continuous weakly almost periodic function on G (ƒ E W(G)). The 
question is meaningful because there does exist on W{G ) a unique "invariant 
mean" 9H(-), and W{G) contains A(G) U ^(G) [29], [27], [118], Our construc­
tion of u.d.s.g.'s does imply 

1.1.5. THEOREM. Let G be a locally compact topological group. If G contains a 
countable dense subset, G contains a uniformly distributed sequence. 

1.2. Weak mixing relative to a partition. In what follows (X,%fx) denotes a 
probability space and T a measure preserving transformation (endomor-
phism). That is, T: X -> X is «-measurable, and fi(T~l B) = fi(P), B G ®. If 
% is a separable Hubert space, 31 (%) denotes the group of unitary operators 
on % with the weak operator topology. Given measurable functions F: X 
-> a(3C) and h: X -» %9 define VFh(x) = F(x)h(Tx). Finally, if P is a 
partition of X into a finite or countable number of measurable sets, define a 
function to be P-measurable if it is constant on the atoms of P. 

1.2.1. DEFINITION [140]. With notations as above, T is weak mixing relative 
to P, or simply P-mixing if for any % and P-measurable F: X -> 21 (9C), every 
® measurable solution to VFh = h is essentially constant. 

If we take % = C and F = 1, we see that P-mixing implies ergodicity 
(h{Tx) = h(x), a.e., implies h is essentially constant). Also, if a general F is 
multiplied by f, |f | = 1, the P-mixing condition implies VFh = Çh has no 
nonconstant solutions. In particular (taking % = C and F « 1 again), T is 
wetf/c mixing if it is P-mixing. The spectral theorem may be used to show that 
if Tis weak mixing, then Tis P-mixing for the trivial partition P = {X}. 

1.2.2. Question. Do ergodicity or strong mixing (limn_*^ ii(A (1 T~nB) 
= fi(A)jji(B) for all A, B G %) have relative-to-P counterparts? 

If P is a partition, T~nP denotes the partition T~nP = {T~nA\A Œ P), 
and PQ denotes the join Pft = \Zk

n
=oT~kP. A typical element of Pft is 

A0 H T~XAX n ••• H T~~nAn9Aj G P, 0 < y < n. Thus, P# is at most 
countable, as is U^o^o • 

1.2.3. DEFINITION. A point x E X is generic relative to ( r ,P) , or simply 
(T,P)-generic, if for every n and B G PQ, 
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i M 

(1.2.4) lim J, 2 xB(Tmx) = n(B). 
M->oo M m=\ 

If T is ergodic (e.g., if T is P-mixing), countably many applications of the 
ergodic theorem imply almost every point x is (7, P)-generic. 

The lemma to follow generalizes a principle of Furstenberg [49]. 

1.2.5. LEMMA [148]. Let x E X be (T,P)-generic< and let F: X -> %{%) be P-
measurable. Then either the equation VFh = h has a nontrivial {i.e., not essential­
ly 0) measurable solution, or else 

i M 

(1.2.6) lim ^ 2 (F(x)F(Tx) • • • F(7"-'*)) = 0 

in the weak operator topology. 

The proof of the lemma involves only the definition of Hubert space and 
the fact it is self-dual. 

In what follows, P is further restricted to have infinitely many atoms, each 
of positive measure, and we order P in some way as P = {B{, B2,...}. Define 
r: X -> Z+ by r = 2*Li ^XBk (so t h a t r = k on B^). Finally, let rn(x) 
= r(r / î _ 1 JC), /i > 1, and R(x) = fa(jt),r2(jc),... ). 

1.2.7. THEOREM [148], [140]. Assume T is P-mixing. Then for every (T,P)-
generic point x, R(x) is a u.d.s.g. 

SKETCH OF PROOF. Assume a sequence a generates a dense subgroup of (7, 
let IT: G -> %(%) be continuous and irreducible, and define F = ^(a*) o n &/<-
Now for any n > 1, 

F(x)F(Tx) • • • FCr1"1*) = T ^ M ^ ) • • • *(«,„) = TT(/3J. 

Therefore, if x is (r,P)-generic, and if (1.1.3) fails, (1.2.5) also fails, and 
VFh = h has a nonzero solution. This solution must be constant a.e., say 
h = w E %, w ^ 0. Since \i(Bk) > 0, all /c, 7r(a )̂w = w, all k. As 77 is a 
continuous representation and a generates a dense subgroup, 7r(g)w = w, g 
G G. That is, 7r is trivial, and ft is uniformly distributed in G. 

REMARK. As remarked earlier, (r,P)-generic points exist when T is P-
mixing. The construction of u.d.s.g.'s is thereby reduced to the construction of 
T and P (as above) such that T is P-mixing. 

1.3. Construction of P-mixing transformations. For every integer m > 1 let 
Sm be the transformation of ƒ = [0,1) defined by Smx = mx (mod 1). Sm 

preserves Lebesgue measure on /, and if Pm is the partition Pm = {[j/m, 
(j + l)/m)|0 < 7 < m}, the (5m,^)-generic points are precisely the normal 
members to the base m (m-normal numbers). Almost every number is normal 
to every base (Borel [15]). 

Examples of normal numbers exist. For example, if m = 10, 

(1.3.1) x = .12345678910111213... 

is normal (Champernowne [21]). For more examples see [25], [26]. 
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If S is an endomorphism of (A',®,jut), and if Y C X is a set of positive 
measure, the Poincaré recurrence theorem [59] implies that for almost all y E K 
there exists q > 0 with Sqy E Y. Choosing # as small as possible there is 
defined (a.e.) a map T: Y -> F, 7> = 5 ^ , called the induced transformation. 
T preserves the measure JU, normalized on (and restricted to) Y (Kakutani [67]). 

Now let Y C I be an open set, and let W = dY. Use |-| for Lebesgue 
measure, We for the e-neighborhood of W, and define a number 8(W\ 0 
< 8(W) < l,by 

S ( ^ ) = l i m i n f ^ ö . 
e~>0 loge 

(The number 1 - 8{W) is the "upper Minkowski dimension" of W.) Below, Tm 

denotes the transformation induced on Y by Sm. P^ is the partition of Y into 
sets for which q (the first return time) = 1,2 

1.3.2. LEMMA [148]. Assume 8{W) > 0, and let Tm9 P
{m) be as above. If 

F: Y -> 21 (OC) is PM measurable, then any measurable solution to VFh = h is 
essentially piecewise constant with finite range. In case either 

(a) Y = (a9b) with (m9a9b) * (2,£,g) or (2, | , | ) , or 
(b) y ç ( 0 , l - l/m) or (1/m, 1), 

h is essentially constant. 

When 8{W) > 0, Jf has measure 0, and xr is Riemann integrable. In this 
case every m-normal number in Y is (Tm,P^) generic. In fact, if x is any m-
normal number, and if S^x E Y, then S^x is (Tm,P^) generic. 

If Y satisfies (a) or (b) of the lemma, then Tm is /^-mixing, and if 
0 < |K| < 1, pW is essentially infinite. Thus, u.d.s.g.'s exist. In case m = 10 
and Y = (jô,-fe), say, P^ is the partition into sets [q = 1), {q = 2), If 
x is as in (1.3.1), then S^x E Y, and R(S^x) is the sequence r{ = 14, r2 = 20, 

Thus, we have a concrete u.d.s.g. 

1.4. Well distributed sequences. Hlawka [65] has introduced the notion of a 
well distributed sequence in a compact group. The extension of the notion to 
arbitrary topological groups G is as follows: we say ƒ? = {;S„} is well distributed 
in Gif for all ƒ E &(G) U 9(G), 

i M 

(1A1) Jfe, ¥J i/(^) = W) 
holds uniformly in /: > 0. 

If G is a compact group which contains a countable dense subset, then 
according to Rindler [114], [115], G contains a well distributed sequence. The 
corresponding result for noncompact G seems to be open. In particular, it is 
open whether "well distributed sequence generators" (w.d.s.g.'s) exist (the 
definition is obvious). I shall make a few remarks on the problem. 

Call the point x in Definition 1.2.3 (T9P)-strictly generic if when Tmx is 
replaced by Tm+kx, (1.2.4) holds uniformly in k > 0. Now the analogue of 
Theorem 1.2.7 is true: If r i s P-mixing, and if x is (7", /^-strictly generic, then 
R(x) is a w.d.s.g. This is essentially proved in [148]. The problem now is that 
in the known examples, e.g., §1.3 and [148], [140], there are no strictly generic 
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points. On the other hand, in certain settings where there are strictly generic 
points, weak mixing and, hence, P-mixing fail [140]. 

1.4.2. DEFINITION, [86], [100]. Let J be a compact metric space and 
T: X -* X a continuous map. The "cascade" % = (T,X) is uniquely ergodic if 
there exists a unique Borel probability measure on X which is invariant under 
T. 

Invariant measures will always exist [86], and therefore the important 
condition in the definition is the uniqueness. If % is uniquely ergodic, and if /x 
is the unique measure of the definition, then T is ergodic relative to fx [100]. It 
follows from the work of Oxtoby [100] that if i/is an open set with /x(9£/) = 0, 
then all points x are (T,{U9 U

c}) strictly generic. If jtx is not atomic, there will 
exist an infinite partition P, all of whose atoms have positive measure, with the 
property that all points are (r,P)-strictly generic. 

1.4.3. Question. Is it possible to find 9C uniquely ergodic and P as above such 
that T is P-mixing? 

Recall that T is weak mixing if it is P-mixing, and therefore % must be 
rejected if T is not weak mixing relative to /x (or if /x is a point mass; i.e., if T 
has a stationary point). In this regard there is a remarkable theorem due to R. 
Jewett: 

1.4.4. THEOREM (R. JEWETT [66]) . Let T0 be a weakly mixing automorphism 
of a Lebesgue probability space (Y,%v). There exists a uniquely ergodic cascade 
9C — (r, X ), with X the Cantor set, and an invertible measurable map <p: Y -» X 
such that <pT0 — Tcp a.e. 

If we define (pv(A) = v(cp~~lA) for every Borel set A C X, then (pv = jtx is the 
unique invariant probability measure for T. Therefore T is weak mixing 
relative to /x. 

Jewett's theorem was extended to ergodic T0 by Krieger [85], to weak mixing 
one parameter flows by Jacobs [65], and to ergodic flows by Denker and 
Eberlein [28]. See also [84] for more references. 

It is probable that w.d.s.g.'s can be constructed using certain nonweak 
mixing transformations. For example, let 0 E R be irrational, and define 
Tx = x + 9 (mod 1), x G [0,1). TakeP to be a finite partition />= {[/y--j,/y) | 
1 < j < n}, where 0 = t0 < tx < • * • < tn = 1. I conjecture that if the tjs 
are rational, then, for all x, R(x) is a w.d.s.g. Since R(x) assumes only values 
1,2, . . . , « , "w.d.s.g." is in the sense that if G contains a = {a^ .. .,an) which 
generate a dense subgroup, the associated sequence ji is well distributed in G. 
Thus far the conjecture has been verified for finite groups G under an 
additional assumption on 9 ([142] that it have bounded partial quotients in its 
continued fraction expansion). 

For example, if Gk is the permutation group on k letters, Gk is generated by 
a_j = (12) and ax = (23 • • • k\). If we take n = 2, tx = | , and 0 = \ /5, the 
result mentioned above implies that the sequence fit = 11/«î asgncos2rçn/5 *s 

well distributed in Gk. I do not know a direct proof of this fact. 

1.5. A theorem in Diophantine approximation. Let S = [ox < a2 < • * •} be 
an increasing sequence of integers. A theorem of Weyl implies that, for almost 
all x, 2x is uniformly distributed modulo 1, where 2x = {anx}. On the other 
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hand, given any irrational number JC, one easily constructs 2 with bounded 
gaps such that 2JC is not even dense modulo 1 (e.g., onx E (0,|)modl). 
However, if 2 is a multiplicative semigroup which is not lacunary, that is, 2 is 
not contained in the set of powers of a single integer, the situation regarding 
density is as nice as possible. 

1.5.1. THEOREM (FURSTENBERG [48]). Let 2 be a nonlacunary semigroup of 
positive integers. For every irrational number x the sequence 2x is dense modulo 
1. 

If 2 is lacunary, it is easy to see that the set of x such that 2x is not dense 
has Hausdorff dimension 1 (but measure 0). In the case of such sparse, but 
nonlacunary, semigroups as 2 = {(2n3m)\n,m > 0}, for which the theorem 
was new, it was noted in [48] that there exist irrational x such that 2.x is not 
uniformly distributed. 

I shall outline Furstenberg's proof in the next two sections, partly for the 
purpose of describing his notion of "disjointness" in topological dynamics. 

1.6. Disjointness in topological dynamics. In what follows % = (2 ,^) , ^ 
= (2, y), . . . will denote flows; i.e., actions of a fixed semigroup 2 (the phase 
semigroup) by continuous transformations of compact metric spaces X, 7, . . . 
(the phase spaces). The image o f x G l j E y , , . , under a G 2 is denoted 
ox, oy, 

Given flows %j = (2, A}), y = 1, 2, the product %XX%2 = ( 2 , ^ X X2) is 
defined by o{xx,x2) = (oxx,ox2). A homomorphism % —^ % is a continuous, 
equivariant {<no = oir, o E 2), surjective map TT\ X -» Y. ty is said to be a 
factor of %. For example, %x and %2 occur as factors of %x X %2

 v*a the 
projections onto the respective coordinates. 

% is a minimal flow if the phase space contains no proper closed invariant 
set, or equivalently, if every orbit (2x) is dense. It is straightforward to prove 
that any factor of a minimal flow is minimal. On the other hand, the product 
of two minimal flows is not usually minimal. For example, in % X % the 
diagonal is a closed invariant set which is proper if % is not trivial. 

1.6.2. DEFINITION (FURSTENBERG [48]). % and %2 are disjoint flows if for 
every pair of homomorphisms % - ^ %j,j = 1, 2, the map 77j X m2, defined by 
77] X 7T2(x) = (fli(*),fl2(•*))> is a ' s o a homomorphism (i.e., surjective). 

A useful "internal" criterion for disjointness is contained in the following 
elementary proposition. 

1.6.3. PROPOSITION [48]. 9Cj and %2 are disjoint flows if and only if no proper 
closed invariant subset of Xx X X2 projects onto Aj, X2 under the coordinate maps. 

The proposition implies disjoint flows are relatively prime, i.e., have no 
common factors. For if %x, %2 are disjoint, and if 9Cy- ->^ %j = 1, 2, are 
homomorphisms, define A Q X{XX2 to be the set of (x^x^ with <nx xx 

= 7r2x2. A is closed and invariant and projects onto X{, X2 under the 
coordinate maps. Therefore A = Xx X X2, and h is trivial. 

Relatively prime flows are not necessarily disjoint, and therefore there is no 
"Chinese Remainder Theorem" for flows. (The reader will find it instructive 
to verify that the Chinese Remainder Theorem asserts that the natural flows 
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(Z,Z/flZ), (Z,Z/6Z), a, b E Z - {0}, are disjoint if they are relatively prime, 
i.e., (a,b) = 1.) For one thing, if SCj, %2 are disjoint, at least one must be 
minimal. But even when both are minimal, disjointness does not follow from 
being relatively prime [83]. However, it is an open question whether relatively 
prime minimal flows with abelian phase semigroup are disjoint, or, equivalent-
ly, if their product is minimal. 

A flow % is topological!)? transitive if every proper closed invariant set has 
empty interior. If 2 is a group, topological transitivity is equivalent to the 
existence of a dense orbit (Hedlund [63]) and in any case implies the set of 
x E X with dense orbits is residual. 

1.6.5. DEFINITION [48]. % is an F flow if there exists a sequence {Fn} of finite 
subsets of X such that (a) UnFn is dense, (b) Fn is invariant, and each o E 2 
is one-to-one on FfV and (c) if 2 W = {a E 2\ax = x,x E Fn), then 9CW 

= (2^n\x) is topologically transitive. 
One can prove every factor of an F-flow is an F-flow and every minimal F-

flow is trivial. Therefore, every F-flow is relatively prime to every minimal 
flow. In this case disjointness is implied when 2 is abelian: 

1.6.6. THEOREM [48]. Let %x and %2 be a minimal flow and an F flow, 
respectively. If 2 is abelian, %x and %2 are disjoint. 

SKETCH OF PROOF. Let A C Xx X X2 be a closed invariant set which projects 
onto A"], X2 under the coordinate maps. By Proposition 1.6.3, it will suffice to 
prove A = Xx x A"2, and this will follow if we prove Xx x Fn C A for all n (by 
(a)). To this end, fix n and choose a 2 ^ minimal set M Q Xx (nonempty, 
closed, 2 ^ invariant and minimal with respect to these properties; use Zorn's 
lemma). As 2 is abelian, a M is 2 ^ minimal for all a E 2 . Moreover, if 
a\F = r | F , oM = rM. (If rl = id on F , ar1 E a 2 w n r 2 W , and so oM 
H rM ¥" 0 . Minimality under 2 W implies they are equal.) It follows that if 
o\i...,ok is a complete set of representatives for 2 1 ^ , Uj=\OjM is 2 
invariant, hence all of Xx (as %x is minimal). Now to prove Xx X Fn C A, it is 
enough to prove M X Fn ç A, since U/^ ja^M X /J) = X, X /^. To this end, 
choose x2 E A"2 with dense 2 ^ orbit (by (c)). For some xx E Xx, (JCJ ,x2) E A 
by hypothesis, and if, say, xx E c -̂M, 2 ^ ( ^ ! , x 2 ) C A fl (oyAf X A^). Denot­
ing its closure by Ar, the choice of x2 implies A' projects onto X2 in the second 
coordinate. Now choose a so that oOj\Fn = id. Then A" = oojà' Q (M X A"2) 
n A, and as oX2 = AT2 (by (a) and (b)), A,r also projects onto A^ in the second 
coordinate. Therefore, if y E F , there exists x E M such that (x,y) E A. 
Since 2 w x is dense in M and S ^ y = {y), M X {ƒ} C A. Therefore, M X Fn 

Q A. 

1.7. Proof of Theorem 1.5.1 [48]. If 2 is a multiplicative semigroup of 
positive integers, there is a natural flow SC = (2,A"), X = [0,1), defined by 
x -> ox (mod 1). If 2 T^ (1), almost every point has a dense orbit, and 
therefore % is topologically transitive. Further, if there exists a prime p such 
that (/?,a) = 1, a E 2 , the sets Fn = {j/pn\0 < y < /?"} enjoy properties (a) 
and (b) of the definition of an F-flow, and therefore °X is an F-flow. If no such 
prime exists, replace 2 by a smaller semigroup for which one does. This can 
be done without destroying nonlacunarity. 
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If 2 = fa < a2 < • • •} is nonlacunary, it can be shown that 
\\mn_J,(X>{oJon+x) = 1, and this readily implies that if a closed invariant set A 
has a rational cluster point, then A = X. In particular, if 5 is closed, invariant, 
and infinite, A = B - B is closed, invariant, and has 0 as a cluster point. 
Therefore B - B = *. 

Now let A: E X be irrational, and let Y = 2*. In y we choose a 2 minimal 
set M. If M is finite, 2 is transitive on M, and this implies M consists of 
rationals. These must occur as cluster points of K, and therefore Y — X. If M 
is infinite, then by the above, M — M — X. But this cannot happen. In fact, 

1.7.1. PROPOSITION [48]. With notations as above, suppose M is a 2 minimal 
set and B a closed invariant set such that M — B = X. Then B = X. 

PROOF. 91L = (2, M ) and % are disjoint by Theorem 1.6.6. Let Z = M x B 
and % = (2,Z) be natural. The maps mx{m,h) = m and 7r2(m,b) = m — b 
define homomorphisms 2->^'9G. By disjointness T7J X 7r2(Z) ={(m9m — b)\ 
m Œ M,b E B} = M X X, and this clearly implies B = X. 

In the special case B = M above, M = X is impossible (because C:X is not 
minimal). Thus, M is finite, and Theorem 1.5.1 is proved. 

1.8. Quasiregular points and generic points. In this section I shall describe 
some recent work on generic points for cascades °X = (TyX) (§1.4), some of 
which will also play an important role in later sections. The notion of 
genericity is slightly different from, but in the same spirit as, the notion in 
earlier sections. 

Call a point x G X quasiregular for % if for all ƒ G C(X ) the limit 

i M 

(1.8.1) Jim ± 2 f{T"x) = \x{f) 

exists (Krylov-Bogoliouboff [86]). If fx G v?7(?X), the set of invariant Borel 
probability measures on X, then \x almost all points are quasiregular. This is 
proved by applying the ergodic theorem to a countable dense subset of C(X ). 
Since ?P7(9C) # 0 , quasiregular points exist. 

To each quasiregular point x there corresponds a unique /x = ixx G vP7 such 
that 

(1.8.2) Ax(f) = jxf{y)ixx{dy) (ƒ G C(*)). 

We sometimes write Ax = A^. 
A point x is generic for /x G c3/ if x is quasiregular, and Ax = AJ. Every 

quasiregular point is generic for some /x, and if it is ergodic (s= an extreme 
point of the convex set 6}j [13]), /x-almost all points are generic. If it is not 
ergodic, the set of it-generic points has it-measure 0 [101] and may even be 
empty (as for example happens when T is the identity). 

If X = [0,1) and Tx == rx (mod 1) for some r > 1, then every /x G vP7 

possesses generic points (Ville [152]). In fact, Colebrook [23] has proved that 
if /x G 9l9 the Hausdorff dimension of the set of it generic points is 
/zjU(r)/logr, where h^T) is the entropy of T with respect to it (defined in a 
later section). See also Volkmann [153]. A theorem of Parry [102] implies this 
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dimension is 1 only if JU, is Lebesgue measure (and the ju-generic points are the 
r-normal numbers). 

Now let fi be a compact metric space, and let X = 2N or Qz (N 
= {1,2,...}). The left shift is defined by (Tx)n = xn+i, x = {xn}. In this case 
Kakutani has proved each fi G 9j has generic points (Oxtoby [101]). 

If x G X, q > 1, define ffl to be the average of the (Dirac) point masses 
at x,Tx,..., Tq~{x. To say x is generic for JX is to say l i m ^ ^ $) = /x in the 
weak-* topology. To prove Kakutani's theorem let jit E ÇP7(

6X). By a theorem 
of Parthasarathy [103], [101] there exists a sequence xk of periodic points, 
Tqkxk = xk, such that the (invariant) measures $^ converge to /A. A /x-
generic point x is constructed by letting x agree with xx in coordinates 
1, . . . , tx, with x2 in ^ + 1, . . . , tx + /2> etc., where fj, /2, • • • are appropriate­
ly chosen (large multiples of qx, q2, . . . ). To discuss generalizations, a version 
of Bowen's notion of "specification" is necessary (Bowen [18]-[20]). The 
definition below is taken from Sigmund [133]. °X denotes a cascade and d(% •) 
a metric for X. 

1.8.3. DEFINITION. 9C satisfies specification if for every e > 0 there exists 
M(e) < oo such that the following is true: if xx, x2 G X, [cij,bj] C Z (or N), 
j = 1, 2, and/? are such that (i) a2 — 6j > M(e), and (ii)/? > 62 ~ #1 + ^(eX 
then there is a point * with period p such that for all / G [tf,-,^],./ = 1, 2, 
</(r;;c, r'jcy) < e. 

Examples of cascades which satisfy specification are the left shift (obvious) 
and a hyperbolic automorphism of the tf-torus (not obvious), i.e., one whose 
associated n X n integer matrix has no eigenvalues on the unit circle. For 
discussion of these other examples, see [19], [133]. 

Let 9C be any cascade. 9j(%) is weak-* compact, and therefore if x G X, 
the set, V(x), of weak-* cluster points of the sequence {^\q > 1} is a 
nonempty compact subset of <?/. V(x) may also be seen to be connected. Of 
course, x is quasiregular precisely when V(x) is a singleton. 

I now state a theorem of Sigmund, a special case of which was proved (with 
a quantitative statement) by Colebrook [23]. See also Eggleston [31]. 

1.8.4. THEOREM (K. SIGMUND [133]). Assume "X satisfies specification. If 
V C v?7 is nonempty, closed, and connected, there exists x G X such that 
V(x) = V. 

For the proof one makes use of the fact that the set {[i^\Tqx = x,q > 1} 
is dense in ^ [132], which generalizes the Parthasarathy theorem, to construct 
a sequence xk, qk, Tqkxk = xk and weak-* neighborhoods (in vP7) Wk of \kqk) 

such that (a) V is the set of cluster points of {(ji^)\k > 1}, (b) Wk n Wk\.\ 
¥* 0 , all k (this uses connectivity of V), and (c) Wk - /4?^ "converges" to 0. 
Now if [ak, bk ], k > 1, are suitably chosen, the specification property may be 
used to prove that there exists x G X such that 

lim max d(Tlx, T!xk) = 0 
k~*oo ak<Kbk

 v * ' 

("orbit specification lemma" [133]). For this x one uses (a)-(c) to prove 
V(x) C V and if certain additional conditions are satisfied (e.g., the sequences 
ak/bk> (ak+\ ~ bk)/(bk - akl a n d fe-i + <lk)/(bk-\ ~ ak-\) converge to 0), 
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then V(x) 2 V. (If each qk is taken to be prime, then V^x) = V, I > 1, where 
Vfa) is formed from (Tl,X) [23], [133].) 

If % satisfies specification, then X contains a dense set of periodic points, 
and % may be seen to be topologically strongly mixing ([133]; if U, V =£ 0 are 
open, then U D T~n V ¥= 0 for all large n). The second property implies for 
each / > 0 that Tl is topologically transitive, and therefore % is an F-flow 
(§1.6). However, Sigmund's theorem is not true for F-flows. Weiss has 
constructed an F-flow % and nonempty open sets Vn Q X, n > 0, with the 
property that for any x if {Tmx} visits each Vn,n^ 1, with positive frequency, 
it visits V0 with 0 frequency [157]. If {xk} is a dense set of periodic points with 
periods {qk}, then /x = 2A°=I ^~k~XK^ G ^I assigns positive measure to 
every nonempty open set. Thus, /x has no generic point. (Also, there is no 
ergodic measure which is positive on nonempty open sets.) 

1.8.5. Question. Do the quantitative theorems of Colebrook have generaliza­
tions; for example to hyperbolic automorphisms of the torus or to subshifts of 
finite type [102]? 

Kamae [68] has generalized the Ville-Kakutani theorem in a direction which 
has deep applications. Let 9Cbe a cascade, S ÇiVan infinite set, and let Vs(x) 
be the set of weak-* cluster points of {i^\n E S). If S = N, Vs = V, and 
in any case Vs C V. Denote by Tx C 2^ the set of S such that Vs(x) is a 
singleton, i.e., limw_^00.wGS/x^ exists, and let juf be the limit. 

In what follows %j is the left shift on X} = Qf,j = 1, 2, and if v G #/(9C), 
% = %i X 5C2'

 v\x- denotes the projection of v on XjJ = 1, 2. 

1.8.6. THEOREM (KAMAE [68]). With notations as above, let v e 9j(%) and 
f$ Œ X2 be such that [iî = v\x for some S G Tp. There exists a E X{ such that 
S E Tra o\ and HUR\ = v. If v\Xx ^ ergodic, a may be chosen generic for it. 

When X2 is trivial and S = N, the theorem reduces to the Ville-Kakutani 
theorem. In his proof Kamae employs a separate result, which I shall not state, 
to derive the second statement from the first. Below is a sketch of the ideas in 
the proof of the first part. 

The basic idea is to construct a sequence {ak} C X{ with the property that 
if W is any neighborhood of v, then Vs((ak,fî)) Q W for large k. Then, as in 
previous arguments, a is built up from {ak} by letting it agree with ot\ on 
[1,̂ 1 ), oc2 on [t\,t2), etc. The essential point of the construction of {am} lies in 
finding, for one fixed W, a point a with Vs((a, fi)) C W. It is convenient (and 
no loss) to assume J^has the form W = {V E 9j\ \(F,v') — (7*»|< e}, where 
F is continuous on Xx X X2 with values in R/, some / > 0, and (•, •) denotes 
bilinear pairing of measures and functions. It may further be assumed that 
F(x,y) = F{(xx,... ,xq),(yu . . . ,yq)) depends only upon the first q coordi­
nates. Now a will satisfy V*((a,(ï)) C W if and only if 

(1.8.7) Hm sup \(F9$p)) - (F9P)\ < e. 

Kamae constructs a probability measure À on X{ (not invariant) with the 
property that (1.8.7) holds for A-almost all a. The essential difficulties are 
already present when Ü2 is finite, which I now assume. 
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To construct A, auxiliary numbers L » q and M = RL » L are chosen to 
depend upon q and e. The coordinate functions on A\, Xy are denoted 
J i r p J = 1, 2, starting from the zeroth n = 0. ®L = « ( A ^ A p , . . . , A £ \ ) , 
the a-algebra of subsets of X2 generated by the first L coordinate functions, 
may be regarded in a natural way as a a-algebra in Xx X X2. In particular, the 
conditional expectation E(- \<$>L) on Aj X A"2 (using v) is defined, but may also 
be regarded as a %L measurable function on X2. Now define 

/$(*) = F ( r (*,/?)), * G A i , / > 0 . 

The measure X will be constructed with the properties (1) if / ¥= j9 the M-tuples 
( A $ , . . . , 4 / V M - I ) and (X$9... , ^ + M - I ) are independent, and (2) 

(L8-8) \k FiX " (L^Tl) 1 ^ ° ^I»L)(7^«| 

whenever L - 1 < i - [i/M]M < M - L - 9. If 0 < t < L - ?, the facts 
/*f = Hx2

 an<* i» e 3>/(9C) imply 

(1.8.9) 

ii^ \% E{F° ^I^X^'i») = 4 ^ ° ^l%V| 

<5 

« E S 

It can be assumed the set of i for which (2) holds has density at least 
- c/3, and that ||F|| < 1, and therefore by (1.8.8) -(1.8.9) 

<L8-io> *m
njA^%kFiX~Lx>Fv 

nGS 

< £ . 

By the independence assumption (1) and the strong law of large numbers, 
lim^^n"1 2 ? 4 {Ft - fXi Ft\) = 0, and since %(<*) = F ( r ( a , j8)), it follows 
that (1.8.7) holds for A-almost all a G Xx. 

To construct A, view Qf as a product of "clumps" Q,* = Qf X O,** X • • •, 
and define X = rj0 X ^ X • • • as a product of measures defined on the clumps. 
(This makes the independence condition automatic.) Now r\k is constructed as 
an average of L measures o*, 0 < t < L, where for each t, a* is constructed 
by viewing 2^ as a product of R + 1 clumps (RL = M), 

Q," = Q{ x Of x • • - x flf x Q,L-', 

fl- 1 

and writing af = T0 X TJ X • • • X rR. Now T0 and rR are arbitrary (e.g., 
r0 = 77', rR = 7TL~/ for some probability measure on S2j). If 1 < j < R - 1,7) 
is defined as the conditional distribution of ( A ^ , . . . ,X[]}{) given 

(X0
(2),... ,*£>,) = (fi„pr+l9... , / W - i X m = kM + t + (j- \)L. 
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If L — 1 < i < M — L — q, then because F depends only on the first q 
coordinates (in both factors Xx, X2), the integral (FhX) is effectively an integral 
(Fh7]k), where k = [i/M]. Secondly, rjk = LT{ 2/tTo <*** and for all but at 
most q values of / {Fho^) equals one of the summands in (1.8.8). This gives 
some idea as to why (1.8.8) is true. 

1.8.10. Question. To what extent does Kamae's theorem generalize? Is it true 
when 9Cj satisfies specification and %2 *

s arbitrary? 

1.9. Normal sequences and collectives. Von Mises [94] defined a collective to 
be a sequence x = {xn} of zeros and ones in which 1 occurs with relative 
frequency (say) \, and such that if r = (r(l) < r(2) < • • •} is any "selection 
rule", 1 also occurs in x ° r = {xT^} with frequency \. Such sequences cannot 
exist, but if the notion is suitably modified, they do. The definitions by Weiss 
and Kamae below are similar in spirit to one by Wald (Ville [152]). 

Let Ü be a compact metric space, and let % = {T,X) be the left shift on 
X = QN. If A is a Borel probability measure on £2, a sequence x E X is À-
normal if it is generic for /jt = XN (= A X À X • • • ). If r = (T(1) < r(2) 
< • • •} is a selection rule, a À-normal sequence is a r-collective if x o r is again 
X-normal [68]. Of course, if r is fixed, ju-almost all x are r collectives. 

There is a natural one-to-one correspondence between selection rules r and 
points £ = £T E (0,1} which have infinitely many ones. We say r is 
deterministic if for every *> E K(£T) (relative to the left shift) the partition 
P = {AQ.A^AJ = ( | | |(0) =y} , is measurable (?) with respect to Pf0 

= \fj^\T"jP. For example, if a > 1 the selection rule r(n) = [«a] may be 
seen to be deterministic. 

Next, T is said to be admissible if limsup^^T^)//?) < oo. 

1.9.1. THEOREM (WEISS [156], KAMAE [68]). Let r be a selection rule which is 
both admissible and deterministic. Then for any ÏÏ, A every X-normal sequence is 
a T collective. 

It was conjectured by Weiss that the converse to the theorem above would 
be true. The remarkable fact that it is true was proved by Kamae. 

1.9.2. THEOREM (KAMAE [68]). Let r be a selection rule, and let X be a 
nontrivial probability measure on £2. If every X-normal sequence is a r-collective, 
then T is deterministic. 

If one thinks of a selection rule as a "strategy", then the rules above are very 
special, being the same for any sequence encountered. Weiss and Kamae [69] 
define a set 5 C {0,1}* = U£L,{0, I f to be a selection rule, the "rule" being 
that Xj is selected if and only if (xl,x2,... ,*/--i) E S. See [69] for a number 
of interesting examples and questions. 

1.10. Disjointness in ergodic theory. In this section 9C, % . . . , unless 
otherwise specified, denote processes, i.e., endomorphisms T of probability 
spaces (X^X'fix)' (^3y> fty) • • •. The notions of product, homomorphism, 
factor, etc., carry over naturally to processes. For example, *X ~>,r ^ is a 
homomorphism if IT: X -» F is measurable, TTIIX = /jty, and TTT == TV a.e. 

Processes %x and %2 are disjoint if whenever %-**J %j,j = 1,2, are 
homomorphisms, mx X m2 is also; that is, TT| X <n2 //,x = (ix X ixx (Furstenberg 
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[48]). Disjointness may be viewed as "absolute independence" because it is 
equivalent to require that TT{~1 <8>X and wf! <$>x be independent sub-a-algebras 
of %x. Disjoint processes are relatively prime (a fact which is not trivial in the 
case of processes), and if two processes are disjoint, at least one is ergodic 
(compare with the corresponding fact for flows). 

It is necessary now to recall the notion of entropy in ergodic theory. Define 
y\{t) = -/log/, 0 < / < 1, with OlogO = 0. If P is a finite partition of X (all 
partitions are measurable), define the entropy of P by H(P) 
= 2ae/>*?Mfi))- Then> l e t t i n§ p0 b e the join V i 0 r " y > , the entropy of T 
relative to P is defined to be h(T9P) = lim„^(ƒ/(/>#)/(A* + 1)), the limit 
existing. Always, 0 < h(T,P) < H(P\ and h(T,P) = 0 if and only if P is 
measurable Pf° = \^2i T~->P (that is, P is deterministic relative to 7). Finally, 
h(T\ the entropy of T (Kolmogorov-Sinai invariant) is s\xpPh(T,P). If 
P^ = % , or if T is an automorphism and £% = ®x, then h(T) = h(T,P) 
(Kolmogorov-Sinai theorem). For a discussion of the elementary properties of 
entropy, see Walters [155]. 

When more than one invariant measure is considered on the same space, 
dependence of entropy upon the measure will be expressed by h^{T,P), h^{T\ 
etc. 

A process % is deterministic if h(T) = 0. It is a Pinsker process (process with 
completely positive entropy) if h(T,P) > 0 whenever P is a nontrivial partition. 
As noted in [48], "Pinsker's Lemma" is equivalent to the following: 

1.10.1. THEOREM ("PINSKER'S LEMMA"). If °Xl and %2
 are^ respectively, a 

Pinsker process and a deterministic process, then 9Cj and %2 are disjoint. 

Pinsker processes include Bernoulli shifts (the left shift relative to jut = \N 

or Az), ergodic automorphisms of tori, and x -» rx (mod 1), while deterministic 
processes include affine transformations of the torus (x -» x0 + ox, a an 
automorphism, x0 fixed) such that the integer matrix associated to a is 
unipotent. See [135] for a proof of Pinsker's Lemma. 

1.10.2. DEFINITION. Let 9C = (T,X) be a cascade. A point x G X is 
deterministic (relative to 7) if h^T) = 0 for all \x G V(x). 

In the special case that T is the left shift on 0^, Qr = {0 ,1 , . . . ,r - 1}, 
Rauzy [111] has given an interesting and useful characterization of determin­
istic sequences. For each s > 0 denote by Es the set of maps üs

r -» Qr. Given 
x = (x 0 , x j , . . . ) G X and M, s > 0, define 

(1.10.3) Ps(x,M) = min -^ 2 min(l, \xn - <p(xn+l,.. . ,xn + , ) | . 

If x is periodic with period < s, /?5(x,M) == 0. The lim sup and lim inf, as 
M -» oo, of (1.10.3) are denoted fi's(x) and fi"s(x). These quantities are 
nonincreasing in s, and their limits, as s -» oo, are denoted /}'(•*) and /?"(*) 
("lower noise" and "upper noise" of x). Always, 

0 < j8'(x) < P"(x) < (r - l)/r. 

1.10.4. PROPOSITION (RAUZY [111]). x G X = Qr
N « deterministic if and only 

iffi"(x) « 0. 
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For example, suppose x is deterministic, and fix e > 0. For each JU, E V(x) 
there exist, because h^(T) = 0, s and <p E Es such that if ^(7) = 
^(^O^i * • • • >Ji-i)> then ||AJ) — 2%Hi < e, where ^0 is the 0th coordinate, and 
||«Id is with respect to /x. By the weak-* compactness of V(x)9 there is a finite 
set {(sj,q>j E ESj)} such that supxGF/^miny||A

r
0 - T^H, < e. Now let s 

= max^, and choose S Q N so tnat (a) j6"(.x;) = hnv*oo;«es/*5(JC>,2)> and 
(b) S 6 T X (juf exists). If (sy,<fy) is associated to |ütf above, then as sj < ,̂ there 
is <p E £, withj^ = /9 . Now 

1 n 

e > ll*o "" TL\\\ = l i m ~ 2 k - <p(*/+i> • • • >*/+j)l > /?*(*)• 
neS J l 

Thus, /?"(*) < /?'£(*) < e, and letting e -* 0, /?"(.*) = 0. The converse has a 
similar proof. 

EXAMPLE (RAUZY [112]). Let r = 2 and define JC0 = 0, *„ = |/x(«)|, H > 1, 
where //,(•) is the Möbius function. If/» is prime, define vÂn) = 1 if /?2 } A, = 0 
if /?2|fl. Then xn = ü/? fy(w)« If / > 0, define xn

1^ = I I ^ / JJ,(/I). Then x^ is 
periodic of period s(l) = ]Jp^iP2, and xn

1^ # xn only if q2\n for some # > /. 
Define <p E £5(/), first as y(yn) = 4 / } , where JJ, = (4+i> • • • >*i+j(/))> ° < " 
< s(/). It is elementary that the points >>„ are distinct, and therefore for any m, 
if zm = (xm+i,... ,xw +^)) , there is a unique « such that zmyn = ƒ„ (multiply 
coordinate-wise). Define (p(zm) — <p(yn\ and then extend w arbitrarily to Es. 
Now <p(zm) — xm if and only if x$ = xm. As the set {m|x^ =£ xm) has upper 
density at most 2$ >/ l/#2 < 1/A we have fi^)(x) < 1//. Letting / -> 00, /T(;c) 
= 0, and x is deterministic. 

It follows from the Weiss-Kamae theorem and the above that if ,ax a2a3 

is a normal number to some base, then so is the number 
.ala2a3a5a1al0auan . . . ! 

1.11. The theorems of Weiss, Kamae, and Rauzy. I shall first sketch a proof 
of Weiss' Theorem 1.9.1, following Kamae. It is sufficient to prove that if T is 
an admissible and deterministic selection rule, and if x is a À-normal sequence, 
then for all s > 0 and ƒ E C(£T), 

1 M r 
( u u ) jfc M J.Mw-'V, «) = J>*-
(All sequences will be numbered beginning with 1.) The case 5 = 2 is typical. 

% denotes the left shift on Q" X (0,1} . Let A Q (0,1}N be the sequences 
with infinitely many l's, and set A ' = AU {0}. One verifies easily that 
p(tiN X A') = I for all v E <3P7(9C). Therefore, if we associate to £ E A the rule 
r^{n) = index of rcth occurrence of 1 in £, the function on QN X A', 

l o , (1.11.2) . W ) H V " ^ ^ : i ; 

being continuous is continuous a.e. v. In particular, if vn -> ^ weak-*, then 

Let A^ = {£ E A|€(l) = 1}, and let Am, m > 2, be {£ E A J T J C ) = m}. 
Then A^ = \J^l^1Am, If v E F((x,^T)), then because x is À-normal and T is 
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deterministic, VLN = \N and Hfon* = M satisfies h^(T) = 0. By Pinsker's 
Lemma, v = À X /x, and by (1.11.2), 

00 

(1.11.3) (g,v)= 2 MAJ(/,A2) = it^MX2). 

Now let S C AT be any sequence such that as M -* oo, M E 5, the left side 
of (1.11.1) converges to some number a and the measures jw^j converge to 
some v = \N X p. It will suffice to prove a = (ƒ, X2). Note that 
limM_>oo;Me5(M/r(M)) = //-(A )̂ > 0 because r is admissible. Now write 

j M ] T ( M ) - 1 

(1.11.4) " 7 

r(M) M ^ - ] j . . . 

By (1.11.3) and the preceding remark, the terms on the right approach 
M A j r 1 • ^ (AJ . (/,A2) = (/,À2) a s M ^ W , M G S , Thus, a = (/,A2), 
and (1.11.1) holds (for s = 2). 

Kamae's theorem, Theorem 1.9.2, is considerably deeper, relying both on 
the machinery developed in §8 as well as on the following generalization of a 
theorem of Furstenberg, in which, as Kamae notes, there was a gap. Let 
9C, = (T,tiN), %2 = (7,(0,1}*) be the shifts. 

1.11.5. THEOREM (FURSTENBERG [48], KAMAE [68]). Let ji E 9I(%2) be such 
that h (T) > 0. IfX is nontrivial, there exists v E 9j(%) such that P\QN = XN 

and v\fQi)N = jw, but the first coordinate functions Xx(x,y) = xx and Yx{x,y) 
= yx are not independent. {In particular, v # \N X JU,.) 

Suppose now that T is a selection rule and that every À-normal sequence is 
a r collective. We shall derive a contradiction from the assumption that some 
JU, E K(£T) has h^{T) > 0. Fixing such a /x, choose v E 9j(%) as in the 

theorem. If S E T̂  is such that JU£ = JU, then by Theorem 1.8.6 there exists a 
À-normal sequence x such that l^(x^r) = v. Because Xx, Y{ are not independent 
(and Yx is 0, 1 valued), there'exists ƒ E C(S2) such that (Yxf o xx,v) 
T̂  /x(A00)(/,À). Now if Ln = Card{m|T(m) < n), then Ljn tends to ^(A^) as 
n -* oo, n E S. Coupling this with the assumed normality of x o r, we have 

(YJoXl,,)= 1m \ i *($)/&) 
nSS J~l 

nes nm~{ 

which contradicts the choice of/. 
Rauzy has used the work of Kamae to give a remarkable solution to a 

problem about normal numbers posed by Mendes-France [93]. Define B(r) to 
be the set of r normal numbers and BL (r) to be the set of x E R such that 
x + B(r) C B(r). It can be shown that BL (r) is a linear subspace of R over Q, 
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and since it clearly contains 1, it contains Q. If x is irrational, associate to it 
the r-ary expansion of its fractional part, x = .bxb2 ••• (modi), and let 
b = (bx ,&2,.•. ) E Qj?. Call x deterministic to the base r if b is deterministic 
for the shift, and let D(r) be the set of r-deterministic numbers (UQ). The 
theorem of Rauzy is 

1.11.6. THEOREM (G. RAUZY [111]). BL{r) « D(r\ 

In a later paper [110], Rauzy characterizes those sequences {xn} of real 
numbers with the property that whenever y = {yn} is uniformly distributed 
modulo 1, {xn + yn} is also uniformly distributed. The condition is rather 
natural, but complicated to state, and the reader is referred to [110] for further 
details. 

1.12. Regularity and irregularity of uniform distribution. Let K = R/Z, and 
let 0 E K be irrational. If I C K is an interval, define Sn(9,I) 
= 2/=o Xi(j0)> % the Kronecker-Weyl theorem, 

(1.12.1) hm Sn&t-x) 

holds uniformly in x9 where | ƒ | is the length of /. Below we shall consider more 
delicate questions about the sequence {Sn}. 

Consider, for example, the sequence Sna - n/3 for any fixed a, (3 E R. If ƒ 
is defined on K by 

ƒ = *>>(«-£)X/ + e-^xi** 

and if / w ( J C ) = f(x)f(x + 6)- • f(x + (/i - 1)0), then 

ƒ<">(*) - exp2m(Sna - nfi\ Sn = Sn(091 - x). 

Therefore by Lemma 1.2.5, applied to P = {/,/c} and Tx = JC + 0, if for 
some JC, 

i M 

(1.12.2) Jim v . S exp(2m(Sna - /$)) = 0 

fails to hold, the equation h{x) = f(x)h(x + 0) has a measurable solution 
which is not essentially 0. Since \h(x + 0)\ = |/I(JC)|, |A| is constant, and we 
may take the constant to be 1. Therefore 

h(x)h(x + 0) = /(JC), and h(x)h(x + n0) - ƒw(JC), « > 0. 

Setting an = ƒ#ƒ w , a„ -» 1 as «0 -* 0 in AT. In particular, 

(1 12 3) Hm kÜ = !• 

Since (1.12.3) does not depend upon /?, we define Ta(9) to be the set of / such 
that if | /1 == r, then (1.12.3) holds. (We regard t as an element of K.) 

Let ||*|| be the usual metric on K (distance to nearest integer), and let {pjqn) 
be the sequence of convergents to 9 [80]. Define T°(9) to be the set of / E K 
such that / = 2^=i bnqn9, where convergence is understood in terms of ||-||, 
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and such that lim^^bnqn\\qn0\\ = 0. T°(9) 2 Z0, and if 9 has bounded 
partial quotients Tö(0) = Z0; otherwise, T°(9) is uncountable but of measure 
0. Also, r°(0) contains no rational, other than 0. If t G T°(9\ the bn's are 
determined for large n [149], and therefore it makes sense to define T®(9) 
= {* G r ^ l l i m ^ ^ a = 0 (modi)}. 

1.12.4. THEOREM [149], [151]. Ta(9) c ra°(0). 

The theorem was proved for a = \ in [149] and a proof was sketched for 
general a in [151]. A complete proof will appear in a forthcoming Rice Ph.D. 
thesis. 

The implications of Theorem 1.12.4 for (1.12.3) are as follows: 

1.12.5. THEOREM. With notations as above we have (a) if 9 has bounded partial 
quotients, then (1.12.2) holds for all \I\ G Z and (a, 0) « Z x Z ; (b) if 9 is 
irrational, then for almost all \l\, (1.12.2) holds for all (a,j8) Ï Z X Z ; (c) for 
any irrational 9 and \I\ it is true for almost all a that (1.12.2) holds for all /J; and 
(d) if 9 is irrational and\l\ rational, (1.12.2) holds for all (a, 0) g Z X Z. 

The point of (c) is that if | / | g Z0 but | / | G T°(0), the set of a with 
| / | G ra°(0) has measure 0 by the Riemann-Lebesgue lemma. A special case 
of (d) is proved by Rauzy [113]. 

Now define 

rj(0) = (t G r » | i \bn\qn\\qn0\\ < oo). 

We have 

1.12.6. THEOREM [149]. I]}2(20) c T1/2(0). 

In [149] it is proved that if t G T1/2(0) (/ ^ Z0) and if a = J, j8 = 0, there 
exists a choice of / = [0,/) or [/, 1) and uncountably many values of x such 
that the limit (1.12.2) does not even exist. Since r,/2(20) is uncountable when 
9 has unbounded partial quotients, Theorems 1.12.5 -1.12.6 may be combined 
to imply 

1.12.7. THEOREM. The limit (1.12.2) exists for all a, fa and \I\ if and only if 9 
has bounded partial quotients (when \I\ & Z9,(a,/3) ÇÉ Z X Z, it is 0). 

Returning to Theorem 1.12.5(c), note that for almost all a the statement is 
true for all na, n = ±1, ±2, This plus Weyl's criterion implies that if 
| / | £ Z9, then for almost all a the sequence {Sna - nfi) is uniformly 
distributed modulo 1 for every /?. In particular, if we set /J == |/|a, it follows 
that 

1.12.8. THEOREM. If 9 is irrational and \I\ g Z0, then for almost all a the 
sequence (Sn — n\I\)a is uniformly distributed modulo 1. 

The theorem implies that if 9 is irrational and | / | ÇÊ Z0, the sequence 
(Sn - n\l\) is not bounded for n > 1. For if it were there could not exist as 
arbitrarily close to 0 for which (S„ - n\l\)a is uniformly distributed modulo 
1. Thus we retrieve a theorem due to Kesten: 
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1.12.9. THEOREM (KESTEN [76]). Let 0 be irrational and I Q K an interval. If 
there exists x E K such that the sequence {Sn(0,I — x) — n\l\] is bounded for 
n > 1, then \I\ E Z0 (and conversely [62], [99]). 

There are some interesting and perhaps difficult problems to consider in 
connection with both our work and Kesten's Theorem. Let I Q K, and let E 
be the closed subgroup of R (not K) generated by |/ | and 1 — |/|. Of course, 
E = R if | ƒ | is irrational. Now set up the space X = K X E, and define Ton 
X by T(x,y) = (x + 0,y + Xi(x) ~~ Î D- Notice that the second coordinate of 
Tn{x,y), n > 0, is y + Sn - n\I\. Thus, by Kesten's Theorem, if | / | g Z0, 
there are no bounded orbits under T. 

1.12.10. Problem. If | / | g Z0, is (T,X) topological^ transitive? 
1.12.11. Problem. If | / | £ r°(0), is T ergodic relative to Haar measure on 

XI 
1.12.12. Problem. When T is ergodic relative to Haar measure, can there 

exist a locally finite invariant measure which is not a multiple of Haar 
measure? 

In connection with Problem 1.12.10, Nelson Markley has shown there 
necessarily exist points with semibounded orbits, and therefore (T,X) cannot 
be minimal (oral communication.) In connection with the second problem a 
special case is contained in K. Schmidt ([121], 0 = (\/5 — l)/4, | / | = \) and 
Conze and Keane ([24], 0 irrational, | ƒ | = \). As for the third, the locally finite 
assumption is necessary, not only to prevent trivial counterexamples, but also 
because there exist infinite nonatomic measures on K which are invariant and 
ergodic under rotation by 0 [122], [123]. 

For later reference I shall state here another theorem in the same spirit as 
Kesten's. 

1.12.13. THEOREM (FURSTENBERG, KEYNES, SHAPIRO [51]). Assume 2| / | 
£ Z0. If x — x' £ Z0, the sequence Sn(0,I — x) — Sn(0,I - x') is unbounded. 

1.13. The construction of prime flows. I shall begin with some "soft" 
counterparts to certain results from the previous section. The axiomatics are 
taken essentially from [149]. 

Let (X,0) be a compact abelian group and an element which generates a 
dense subgroup. Let A be a compact abelian group, and ƒ: Fc -> A a 
continuous map defined on the complement of a closed, nowhere dense set 
F Q X.l shall call (f0) admissible if (à) at each point of F, ƒ has at most two 
cluster values, while at some point it has two whose difference generates a 
dense subgroup of A, (b) ƒ has no nonzero period, and (c) (F - F) D Z0 
= {0}. 

Lei A = U„EZ(F-h n0), and define mx E Az, x G Ac', by mx(n) = 
f(x + n0). Since mx+g = omx, where a is the shift, the closure M of 
{mx\x E Ac} is a-invariant. 

1.13.1. PROPOSITION [149], [108], [51]. If (f0) is admissible, then ^t = (o,M) 
is a minimal flow. The map rnmx — x, x E Ac, extends to be continuous on M. 
Moreover, w~lx = {mx}> x E Ac, and, in general, if <nm\ = (nm2, then m^(n) 
¥= m2(n) for at most one value of n. 
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Next let N = M X A, and define T(m,\) = (om,m(0)\) on N. 

1.13.2. PROPOSITION [149]. If (ƒ,0) w admissible, then 91= (7,AT) M a 

In [149] the proposition is proved for A the group of order 2, but the same 
proof works in the general case. The idea is that if N' = &((m0, 1)), m0 E M 
fixed, where 0(-) denotes orbit closure, then, for each m, {X\(m,X) E Af'} is a 
coset of a closed subgroup A0 (= Am0). If /*(m) denotes the coset, then h is 
continuous and h(om) = m(0)h(m). The set £ of x such that h has two values 
on 7T~Xx is closed, and (c) may be seen to imply it is dense, if nonempty. Thus, 
E = 0, meaning in particular, that for each x, {m(0)\m E <n~xx) is contained 
in one coset of A0. By (a) then, A0 = A, and % is minimal. 

EXAMPLE. X = K, 0 E K irrational, / Q K an interval with | / | g Z0. Let 
a, ft E K with a ¥^ 0, and assume ] 8 E A , where A is the closed subgroup 
generated by a. Define ƒ on 7° as ƒ = a - (3 and on (Ie) as ƒ = —/}. Then 
(ƒ,0) is admissible. (Note that F = 37.) Now if i e ƒ and A? > 0, a 
straightforward calculation reveals that Tn(mx,0) = (rnx+„9,S%a — np\ 
where 5^ = S„(0,1 — x). The following theorem is a consequence of the 
minimality of 91 above: 

1.13.3. THEOREM. With notations and assumptions as above, if x, y E K and 
e > 0 are given, the set 

(1.13.4) {S£a-nP\\\x + n9-y\\ <-e] 

is dense in A. In particular, if a is irrational, then (1.13.4) is dense in K. 

Taking ft = a\l\ in the theorem leads to another proof of Kesten's theorem. 
A different ƒ can be used to prove Theorem 1.12.10. Taking a = \/q, /} 
= 1 — l/<7 leads to 

1.13.5. COROLLARY. With notations as above the set {n0\q\(n + S*)} is dense 
in K. (Here q\s means "q divides s".) 

I call Theorem 1.13.3 a "soft" counterpart to the corresponding results of 
§1.12 because first of all it depends only upon 0's being irrational and a ¥= 0, 
and second it is a minimality theorem, whereas the results of §1.12 correspond 
to unique ergodicity (of 91) theorems (see [49], [149]). When A is nonabelian, 
very few "soft" results are known (see [142]). 

Furstenberg, Keynes, and Shapiro [51] base their proof of Theorem 1.12.13 
(and Kesten's theorem) on a principle of Gottschalk and Hedlund [58]: If 
°X = (T, X ) is minimal, and if A E C(X ), x0 E X are such that 2/Lo h(TJx0) 
is bounded for n > 0, then there exists g E C(X) such that g(Tx) - g(x) 
= h(x). (The converse is trivial.) From this they infer 

1.13.6. PROPOSITION ([51]; SEE ALSO [107]). Letiçx,x0 eX, 8 ER be such 
that 2jLo (Xi(Tnxo) "" S) is bounded for n > 0. Let M be the orbit closure of 
m, m(n) = Xi(Tnx0), in (a,{0,1}Z), and assume (o,M) is minimal Then there 
exists a nonzero g E C(M) such that g(om) = exp(27rid)g(m). 

Kesten's theorem is proved, for example, by taking S = 11\ and noting that 
any eigenvalue for (a, M ) is also a (measurable) eigenvalue for rotation by 0; 
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that is, exp(27r/S) = Qxp(2mkg) for some k. Thus, if (S*° - nô) is bounded, 
then \I\ E Z6. A further application of this approach is made by Shapiro in 
extending a theorem of W. Schmidt. Let a be a sequence in K, and define B(a) 
to be the set of real numbers 5 such that for some interval / the sequence 
2,jL\ (xi(aj) ~" 5) is bounded. With the additional restriction that 8 = |/|, 
Erdös [44] conjectured B(a) is countable. This was proved by W. Schmidt, and 
the restriction 8 = 11\ removed by Shapiro: 

1.13.7. THEOREM (W. SCHMIDT [ 124] -[126]; L. SHAPIRO [130]). For any 
sequence a Q K, B(a) is at most countable. 

I shall now digress with a definition of "prime flow." 
1.13.8. DEFINITION. A minimal flow 6X = (2,X) is prime if whenever 

9C -*m % is a homomorphism, either % is trivial or TT is an isomorphism (one-
to-one, onto). 

If 2 is abelian, then for each a E 2, aX is a closed invariant set, whence 
oX = X if 9C is minimal. But then o also defines a homomorphism from 9C to 
% and so if % is prime, o is one-to-one. Thus, we may as well assume 2 is a 
group in the abelian case. 

It is easy to construct prime flows. For example the homogeneous flows 
(Z,Z/pZ),p prime, and (PSL(2,R),P1(R)) are prime. However the construc­
tion of a prime cascade % = (T9X) (2 = Z abelian) with X infinite was done 
only recently by Furstenberg, Keynes, and Shapiro [51]. Some notations and 
definitions will be necessary. 

Points x, y G X are proximal for 5C if the orbit closure of (x,y) for 9C X 9C 
contains a point of the diagonal. Write xPy oryPx. It is not difficult to see that 
if 9C = (T9X)is minimal with Tinvertible, if X is infinite, and if xPy whenever 
x, y lie in distinct orbits, then 9C is prime. However, the question of whether 
such an 9C exists has not been answered (I believe). In [51] a less restrictive 
criterion for primeness is introduced: 

1.13.9. DEFINITION [51]. 9Cis a POD-flow if (i) 9C is "totally minimal" (Tq is 
minimal for any q # 0), and (ii) for all x ^ y there exists n ¥= 0 such that 
xPTny. 

1.13.10. PROPOSITION [51]. Every POD-flow is prime. 

The proposition is proved by noting that if 9C -»7r % is not an isomorphism, 
then there exist x *£ y with <nx = my. The POD property then implies 
{{z,w)\<nz = <rrw} contains the graph of Tn for some n *=£ 0, and therefore Tn 

acts as the identity on Y. But Tn must act minimally on y, because it does on 
X, and therefore % is trivial. 

I shall give the main idea of the construction in [51], although the T 
constructed below will not be continuous. A continuous one is constructed by 
"pulling points apart", i.e., passing to a symbol space. 

Let 0 E K be irrational, and let I Q K be an interval with 11 \ g Z0. Let 7' 
be a second (distinct) copy of /, and let cp: I ~> ƒ ' be the natural identification. 
Now let X = K U /', and define T as 
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(px, x G /, 
Tx - \<p-lx + 9, x G Z\ 

x + 0 otherwise. 

One computes that if / = /(/?, x) is the largest integer with S* + / < A, then 

(11311) r , = ( * + /*' tf + ' - * 

The minimality of r*, # > 0, follows, for example, from Corollary 1.13.5. 
Now let x,y G K not belong to the same orbit under T, and consider the 
sequence 

(x + l(n9x)0) - (y + /(/?,v)0) = (A: - ƒ + (/(*,*) - l(n<y))0\ 
n > 1. If this sequence has 0 for a cluster point, then (1.13.11) implies 
xPTy, xPy, or xPT~ly, and property (ii) of POD follows easily. Now as n 
increases by 1, l{n,x) — l(n,y) changes by 0 or ±1. Therefore, if 

sup|/(«,x) - l(n,y)\ = oo, 
n 

the sequence (l(n,x) - l{n,y))0 will be dense in K, and by the above we will 
be done. If the sup is finite, then suplS/L^ — Sf^y^\ < oo, and these two 
facts imply sup/IS/ — Sf\ < oo. Since x — y £ Z0, this contradicts Theorem 
1.12.13, and therefore 9C is POD. To understand the "continuous version" of 
% see [51]. See also [78]. 

Since this section was written 1 have received a preprint by L. Shapiro [131] 
in which he extends his work and work of Schmidt on the torus to the torus, 
in the spirit of Theorem 1.13.7. 

1.14. Interval exchange transformations. Let a = (a ] , . . •, <x„) be a probabil­
ity vector, and let r be a permutation of (1,2 n). Define /?0 = 0, ft 
= 2j=i otj, i > 1. Denote by aT the vector (aT_ip«T-i2^ • • • »aT-i„)> a n d form 
ft" correspondingly. The (<X,T) interval exchange T is defined on [0,1) as 
Tx = x - ft,),! + ft(2)-p x G [ft-!,/?,-), 1 < i < /i. Note that T is simply 
a right continuous, piecewise order preserving isometry of [0,1). (See [3], [70], 
[134], [72].) 

In case n = a and r = (12), then Tx = x — ax (mod 1) is just a rotation. 
As n increases, the interval exchanges grow rapidly more complicated. We say 
T is minimal if every orbit is dense (even though T is not continuous). The 
strongest minimality result is due to Keane: 

1.14.1. THEOREM (M. KEANE [72]) . With notations as above, suppose 
Tmfi; = Tn/ij implies i = j and m = n. Then T is minimal. 

Keane calls his condition the "infinite distinct orbit" (i.d.o.) condition. It is 
satisfied, for example, if (a,r) is "irrational and irreducible", that is, if 
T(1, 2 , . . . J ) = (1,2, . . . J ) impliesy' = /?, and if a^, . . . , an are independent 
over Q. 

It was conjectured by Keane that every minimal interval exchange is ergodic 
with respect to Lebesgue measure, even uniquely ergodic, but this has proven 
to be false. (It is true for n = 2 or 3 [72].) For n = 5 Keynes and Newton [77] 
give an example in which minimality holds but ergodicity does not. In spirit, 
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their example amounts to taking 6 G K irrational, / an interval with | /1 £ Z0, 
and noting that T: K X {±1} -* K X {±1}, defined by T(x,e) = (x + 9J(x)e\ 
where ƒ = — 1 on /, = 1 on 7C, is isomorphic to a minimal interval exchange 
with n = 5. If 0 has unbounded partial quotients, and if / G Yy2(26) (§1.12), 
then for some I with | ƒ | = f or 1 - f, ergodicity will fail [149]. In turn, Keynes 
and Newton conjectured that if Lebesgue measure is ergodic, then T is 
uniquely ergodic. But this is also false, as Keane [73] supplies a counterexam­
ple with n = 4 (as small as possible). Keane's example is, in addition 
irrational. 

REMARK. The fact that a minimal interval exchange can be ergodic without 
being uniquely ergodic actually follows from the Keynes-Newton example. 
For if T is a minimal (a,r) interval exchange, and if /x is an invariant 
probability measure, then /x is nonatomic and assigns positive measure to 
every nonempty open set. Thus, cp(x) = /x([0,x)) defines a homeomorphism of 
[0, 1), and defining Tx by T{(p(x) = <p(Tx), Tx is an (a\r) interval exchange, 
where aj = /x([/?,_!, /?,)). Since cp/x is Lebesgue measure, Lebesgue measure is 
ergodic for 7f if /x is ergodic for T. If /x is not unique for 7, then (pxi is not for 
7f, but Tx is still minimal. 

Keane [73] conjectures that if r is an irreducible permutation, almost every 
(a,r) interval exchange is uniquely ergodic. The construction he employs in 
[73] suggests strongly that an auxiliary transformation on the "body" of 
interval exchanges will be of use in settling his conjecture. More precisely, let 
A„_j be the simplex of probability «-vectors, and let Pn* be the set of 
irreducible permutations r which in addition satisfy (a) r(j + 1) ¥= r(j) + 1, 
all ƒ, and (b) rir"l (n) + 1) ¥= r(n) 4- 1.3 if (<*, T) G An_, x P* satisfies the i.d.o. 
condition, and if 1 < / < «, it is possible to prove the transformation induced 
on [/?/_!,/?/) is an (a',r') interval exchange, (a',r') G An_x X Pn*. Thus, we 
have a map Qi,: kn_x Pn* -> A„_! X i£* defined a.e. If v(r) = rank{£« 
- E^y^j}}, where E y = 1 for y > i and 0 for j < /, it turns out that v(r) 
= V{T') above. 

1.14.2. Problem. Is Qh restricted to the set {(a,r) G Aw_! X Pn*\v(r) 
= const.} ergodic? 

1.14.3. Problem. Does 0/ have an invariant measure equivalent to Lebesgue 
measure? 

When n = 2 or 3 (the cases in which the conjecture is already known), the 
answers to both questions are yes. For n — 2 the measure is infinite, while for 
n = 3 we do not yet know whether it is finite or infinite. Keane's conjecture 
would be true, for example, if the measure exists and is finite for n > 4. 

Keane [71], [75] has established a connection between billiards on polygonal 
billiard tables whose corner angles are commensurable with 77 and interval 
exchange transformations. I will not describe the connection here, but Keane 
does obtain, as a consequence of his minimality theorem, that for almost every 
(beginning) reflection angle from a fixed side, every trajectory is dense in the 
table. (See also [159].) Statements concerning the distribution of the trajecto­
ries could be made if one could prove the associated interval exchanges are 
ergodic, or better, uniquely ergodic. 

3 Also (c) T(T~^X - 1) =É ri - 1, (d) either r ~ | j ¥= r j - 1 or rn + 1 ^ rn. 
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It is interesting to note that when the table is square, certain skew products 
arise naturally. Identify one side, L, of the table with (0, 1), and denote a 
reflection from L by position (x) and angle of rebound (a), where 0 < a < TT. 
Beginning at (x,a) the next reflection from L will have the form (x\a) or 
(x\ IT - a) (there is one (x, a) which ends up in a corner, and this we ignore). 
Now let X = (0,1) X [a, IT - a), and define T: X -» X by T(x,0) = (x\/3) or 
(V,7r - /?) as above. For example, if a satisfies 1 < cota < | , and if we set 
0 = 2(cota — 1), it can be shown that (T,X) is isomorphic to the skew 
product on A: X {±1} defined using 0 and ƒ = %^t) - <3C[, 1}, t = 1 - 0. That 
is, S(x,e) = (x + 0J(x)e), (x,e) E ATx{±l). (The correspondence is (x,a) 
~ (JC, 1) and (;c,7r - a) ~ (1 — JC, — 1).) Now even though \I\ = 0, it is proved 
in [149] that the skew product is uniquely ergodic (more precisely 91 in the last 
section is uniquely ergodic) if 0 is irrational (i.e., if cota is irrational). From 
this one easily infers that the trajectory of a ball bouncing off L at an angle a 
is uniformly distributed on the table. 

REMARK. Even in the case of a triangular table, little, if anything, seems to 
be known about density of trajectories if one of the corner angles is not 
commensurable with IT. 

Finally, I should mention that powerful techniques for dealing with 
"expansive" maps exist and may prove useful in connection with Problems 
1.14.2 -1.14.4. See, for example, Sacksteder [120], Adler [1], Keane [74], and 
Walters [154]. 

2. THE STRUCTURE OF MINIMAL FLOWS. 

While the notion of a minimal flow occurs in Birkhoff [12], it is only recently 
that efforts have been directed at uncovering the structure of arbitrary 
minimal flows. The first important structure theorem is the Furstenberg 
structure theorem for minimal "distal" flows [50], and this was followed by the 
structure of "point-distal" flows (Veech [146], Ellis [38]), and a structure 
theorem for arbitrary minimal flows (Ellis, Glasner and Shapiro [40], McMa-
hon and Wu [90], McMahon [88]). In this section I shall prove a theorem, 
containing those above, which says roughly that the class of minimal flows 
(with fixed phase group) is the smallest class of flows containing the trivial flow 
and closed under (a) homomorphisms, (b) projective limits, and (c) three 
"building blocks" which will be specified later. It would be impossible to 
exaggerate the importance of the ideas and papers of Furstenberg and Ellis to 
the study of minimal flows. 

2.1. Statements of results. In what follows G will be a locally compact, T2 

topological group. Flows % = (G, X ) will be assumed to satisfy the additional 
requirement that the map L(g, x) = gx be continuous from G X X to X. 
Unless otherwise specified, X is required to be compact, T2 but not necessarily 
metrizable. 

The Ellis separate continuity theorem [35] implies the following two state­
ments, which will be important in later sections: (i) If G is a locally compact 
T2 space which is also a group, and if multiplication is left and right 
continuous, then G is a topological group; (ii) in the first paragraph above, if 
L(g, x) = gx is only assumed to be continuous in each variable separately, it 
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is still jointly continuous. Namioka [96] has a nice generalization of the Ellis 
theorem with applications to other disciplines (e.g., Banach spaces). 

A bitransformation group [34] is a triple (G,X,H) such that (a) (G,X) and 
(H,X) are commuting flows (ghx = hgx.g E G, h E H,x E X\ (b) H is 
compact, and (c) (H,X) is strongly effective ("effective" means hx = x for all 
x implies h = id; "strongly effective" means hx = x for some x implies 
A = id). By (a) and (b) there is a natural flow % on K = A///. If 9C -»* ^ is 
the canonical homomorphism, then (c) implies for all x E X that h -* hx 
defines a homeomorphism between H and 7r~lnx. %-^'ïï6ë (or % or TT) is 
called a group extension of % % -*m % is an almost periodic (a.p.) extension if 
there exist a group extension % ->7r" ty and a commutative diagram 

z — — x 
(2.1.1) \ . I 

The trivial flow will be denoted 0. The equicontinuous flows are the a.p. 
extensions of Ü. 

9C -»*" ̂  defines an almost automorphic (a.a.) extension [146] or almost one-
to-one extension if the set Am = {^k""V is a singleton set} is nonempty Am is 
an invariant set, and therefore if % is minimal (resp. also metrizable), then 
Am *£ 0 implies y^, TT"1^,,. are dense (resp. residual). To explain the terminol­
ogy, call a point x E X an a.a. powf for 90 if whenever g„ is a net in G such 
that X\r&vgvx = x', then also lim^g^T1 xf = x. 9Cis an a.a. flow if there exists an 
a.a. point with dense orbit. Every a.a. flow is minimal, and the principal 
structure theorem is 

2.1.2. THEOREM [138]. If % is an a.a. flow, there exist an equicontinuous flow 
^ and a homomorphism % -»7r ty such that TT~~X Am is the set of a.a. points. % is a 
minimal equicontinuous flow if and only if%is minimal and every point is an a.a. 
point. 

Theorem 2.1.2 is the basis for the main theorems about "almost automor­
phic" functions [138] which were introduced by Bochner [140]. 

% -*m % defines a proximal extension if xPx' (§1.13) whenever mx = mx'. If 
this proximality is uniform on 7t~xy for each y, in the sense that for every 
nonempty open set U there exists g E G with g7r~ly C £ƒ, then 9G-V ^ is 
highly proximal (h.p.) (McMahon and Wu [92], J. Auslander and S. Glasner 
[7]). Any minimal a.a. extension is h.p. (and proximal), while h.p. implies a.a. 

if X is metrizable [92], [7]. 
Let % ->* ^ be a homomorphism of flows, and let a be an ordinal number. 

By a tower of flows of height a between % and % we shall mean a set of flows 
and homomorphisms {%p ->^' %p\p' < /? < a) with the properties (a) 6X0 

= % %a = 5C, TT-̂0 = 7T, (b) if ft' < ft < ft then mw* = mpymw, and (c) if 
/? < a is a limit ordinal, then l i m ^ ^ X ^ = %fi. Different kinds of towers 
lead to different names for the extension 9C -** ty. 
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Extension Property of %fi+x ->**+^ %p 

/-extension [50] a.p. for each /? < a 
A /-extension [146] a.p. or a.a. for each /? < a 
/Y-extension [40] a.p. or proximal for each /? < a 
//^/-extension [7] a.p. or h.p. for each fi < a 

It is necessary to define one last kind of extension. Let % -** <% be a 
homomorphism, and define Rv = {(x,x')\irx = irx%%m = (G.R^). %->wty 
defines a weak mixing extension if $,„. is topologically transitive (§1.6). (When 
X is metrizable, it is equivalent to say that <&„. has a point with dense orbit 
[63].) 

What follows is a general structure theorem for homomorphisms of minimal 
flows. The construction of the diagram (2.1.4) is due to Ellis, Glasner and 
Shapiro [40] (see also McMahon and Wu) although in special cases it occurred 
previously in Veech [146] and Ellis [38]; the proof of the weak mixing 
statement is due to McMahon [88] for X metrizable, while the general case is 
new. 

2.1.3. THEOREM. Let <5C-»7r($ be a homomorphism of minimal flows. There 
exist canonically determined minimal flows 6Xa and % and a commutative 
diagram 

(2.1.4) 

such that (a) 9Ca is a proximal extension of % and a weak mixing extension #ƒ%, 
and (b) % is a PI extension of% If X is metrizable, Xa is metrizable. 

Ellis, Glasner and Shapiro call 9C a "9S flow" if when % = 0, <na is an 
isomorphism in (2.1.4). In §2.7 I will discuss some of their criteria for % being 
vPfi. 

Let fX ~^>m % be a homomorphism of minimal flows. A point x E X is ^-
distal (77 is understood) if whenever (x,x') E Rv and xPx', then x = x'. When 
ty = ÏÏ, the prefix is removed, and we speak of distal points. % -»7r % defines a 
distal extension (distal flow if ty = Ü) if all points in X are ^-distal (distal). 
Distal flows were first studied by Ellis [33] who credits Hubert with the notion. 
Certain results in [33], e.g., that a zero dimensional distal flow with finitely 
generated phase group is equicontinuous, led to the conjecture that distality 
implied equicontinuity. However, L. Auslander, Hahn and Markus [9] and 
Furstenberg [50] gave examples of minimal distal nonequicontinuous flows on 
certain compact nilmanifolds, thus proving the conjecture to be false. Perhaps 
the most important single breakthrough for the theorems under discussion was 
Furstenberg's structure theorem for minimal distal flows [50]. This theorem 
was extended by Ellis to (minimal) distal extensions [37], where began the 
"algebraic theory" of minimal sets. 
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The notion of a distal flow was generalized by J. Auslander and Hahn [8] 
(see also Knapp [83]). We say 3C -*v <ty defines °X as a ty-point distal flow (point 
distal if ty = fi) [146] if there exists a ^-distal point with dense orbit. 
Assuming ^ is minimal, 9Cis also minimal (J. Auslander and Hahn [8], Knapp 
[83], Veech [146], but the argument goes back to Ellis [33]). 

The structure theorem 2.1.5 below is due to Furstenberg for minimal distal 
flows [50], to Ellis for ^-distal flows [37], to Veech [146] for ^-point distal flows 
(ty = £2, but the general result was mentioned) having X metrizable and a 
residual set of ^-distal points, and to Ellis [38] in its present form (using an 
idea from Bronstein [20]). In the first two cases above °X ->* ̂  is an ƒ-
extension, and so the %a, % in (2.1.4) do not enter. The idea of using a 
diagram such as (2.1.4) for a structure theorem occurs in [146]. 

2.1.5. THEOREM. Let % -»,r ty be %-point distal and assume either G is o-
compact or X is metrizable. In the diagram (2.1.4) LXa is an h.p. extension of"X, ira 

is an isomorphism, and % is an H PI extension of L?J. If X is metrizable, replace 
"h.p." by "a.a." and "HPI" by "AI". 

It was pointed out in [146] that the structure theorem implies that a ^-point 
distal flow with metrizable phase space has a residual set of ^-distal points. A 
direct proof of this fact has not been found. 

The constructions of canonical towers in [146] and [38] on the one hand and 
in [40] on the other, though similar in spirit, are formally different. However, 
it was observed by J. Auslander and Glasner [7], using Ellis' structure theorem 
in [38], that the towers are in fact the same. In §2.3 I shall give a direct proof 
of this fact. 

Question. Is Theorem 2.1.5 true with no separability hypothesis? This is open 
for distal flows. It is not even known whether every nontrivial minimal distal 
flow has a nontrivial equicontinuous factor (a fact which is true for point distal 
flows with the separability assumption [50], [146]). 

The techniques which will be developed in later sections are in part new and 
will be used to give a partial solution to a problem posed by Furstenberg. Let 
°X be a minimal cascade (homeomorphism) on a compact metric space, and 
assume % has no nontrivial equicontinuous factor. Then <X X ?X is topological­
ly transitive (Keynes and Robertson [79]). In fact, Furstenberg proves that if 
ty is any minimal cascade, %Xty is topologically transitive. He raises the 
question [48] as to whether 6X X °7* is topologically transitive whenever ^ is 
topologically transitive. This is false in general; however we do have the 
following (as a special case of a more general result): 

2.1.6. THEOREM. Let CX be an incontractible minimal flow, and assume "X has 
no nontrivial equicontinuous factor. Let ^ be a topologically transitive flow having 
a dense set of almost periodic points (e.g., a minimal flow). Then fX X ^ is 
topologically transitive. 

"Incontractible" will be defined in §2.3. (Every minimal flow with nilpotent 
phase group is incontractible.) A point x is an almost periodic point (for ?X) if 
P(x) is a minimal set. 
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2.2. Generalities on flows. Denote by c? = Ö(G) the Banach algebra of 
bounded left uniformly continuous (l.u.c.) functions on G and by S = S(G) 
the maximal ideal space of Q. The map g -* sg defined by sg(f) = /(g), ƒ 
E (2, embeds G homeomorphically as an open dense subset of S. Often g and 
sg will be identified. S enjoys a universal property: if A is a collection of maps 
from G to some compact T2 space, and if A is jointly l.u.c, then A has a jointly 
l.u.c extension to S. If K is a compact subset of G, and if L(g, •): G -» S is 
left multiplication by g, then A^ = {L(g, -)|g E K) is jointly l.u.c. The 
extensions of L(g, •) to S therefore define a yfow §(G ) = S = (G, S ). (We 
write L(g, s) = gs interchangeably.) 

For each fixed s E S, the map L(-,s) extends to S yielding a binary 
operation L(s',s) = s's which is left continuous but not, in general, right 
continuous. The operation may be proved to be associative, and therefore S is 
a compact (T2) semigroup with left continuous multiplication. 

The reasoning above applies to any flow % so that L(s, x) = sx is defined 
on S X X and continuous in the S coordinate. Notice for any x that 
6(x) = Gx = Sx, because G is dense in S. (Applying this to (x,x') E A" X X, 
we see that xPx' if and only if sx = sx' for some s E S.) In particular, if 9C is 
point-transitive, meaning &(x) = X for some x, the map L(-,x) defines a 
homomorphism from S to 9C Thus S is the "universal" point transitive flow [34]. 
(Any point transitive flow of which S is a factor is isomorphic to S, and 
therefore S is unique up to isomorphism.) The following theorem is a classical 
result of Ellis [39] when G is discrete. The general case will be proved in the 
Appendix. 

2.2.1. THEOREM. If G is a locally compact topological group, the flow S(G) is 
strongly effective. 

If % is any flow the set E(%) = {L(s, -)\s E S] may be regarded as a 
semigroup of transformations of X. With the point open (Tychonoff) topology, 
E(LX ) is compact T2 with multiplication left continuous. £(9C ) contains a dense 
subgroup G of continuous maps (corresponding to G), and left multiplication 
by G is continuous on E(%). (S = (G, E(°X)) is a flow defined by L(g,s) = gs. 
One has E(&) « E(%) by a natural correspondence.) E(LX) is called the 
enveloping semigroup or Ellis semigroup of 9C It is clear by the definition in 
terms of S that if °X -^m % is a homomorphism of flows, there is an induced 
homomorphism £ ( « ) - ^ E(^) (and S(?X) -V7 &(^)). 

For the moment, let E be a compact, 7̂  semigroup with left continuous 
multiplication. Following Ellis [32] we note that if % is the set of nonempty 
closed subsemigroups of E, then % contains a minimal element, H. If x E /ƒ, 
then Hx E 9C, meaning 7/JC = # . In particular, H0 = {h E ƒƒ |/zx = A} # 0 , 
and //0 E TIC. Thus, 7/0 = H, x2 = x, and £ contains an idempotent. 

A nonempty set / C E is an ideal if EI Q I (more properly left ideal, but 
there will be little occasion to consider right ideals). / is a minimal ideal if 
/ # 0 and if I contains no proper ideal. As Ex is a closed ideal for any 
x E £, and as £JC C / for any x E 7, Ex = I is closed if / is a minimal ideal. 
Existence of minimal ideals is established by Zorn's lemma on the set of 
nonempty closed ideals. 
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Let / be a fixed minimal ideal. If x G ƒ, lx is also an ideal, meaning lx — I, 
and H = {p G l\px = x) is a closed subsemigroup. By the above, H 
contains an idempotent w, and therefore if J (I) = J is the set of all 
idempotents, I — UueJuI. If p E w/, and if # E / is such that qp — w, then 
(w#)/? = u also. As w# E w/, it follows that w/ is a group with identity u. Now 
suppose u, v G J and p G ui D vl. Choose q G ul with /?# = w. Since 
vp = p, u = vu = v (p'u = p\ all/?' E /, because the set of such/?' is an ideal 
containing u). Thus, ƒ is a disjoint union of groups (Ellis [32]). 

REMARK. If E contains a dense subgroup G which acts continuously, the 
minimal ideals in E are the G minimal sets. In this setting it can be proved that 
if / is minimal, and if § -»" 5 is a homomorphism of flows, then 7r(p) = pa for 
some fixed a G I (J. Auslander [4]). Thus, m is an isomorphism(Ellis [39]). 

Let 9C be a minimal (in particular, point transitive) flow, and let S ->" % be 
a homomorphism. If I C S is a closed nonempty ideal, ni is an invariant 
closed set, hence all of X. In particular, if ƒ is a minimal ideal, there is a 
homomorphism § ->7r 9C. The result mentioned in the last paragraph may be 
used to prove § is unique up to isomorphism as a universal minimal set (Ellis 
[39]). Theorem 2.2.1 implies $ is strongly effective. 

Associate to G two cardinals. The first, a, is defined to be 1 if [G: Ge] is 
finite, where Ge is the connected component of the identity, and otherwise 
a = Card[G : Ge]. The second, b, is 1 if Ge is compact, and otherwise b = 2C. 
It can be shown that S contains ab minimal ideals. If G is discrete and a > 1, 
then each minimal ideal has at least 2C idempofents. 

There are two useful characterizations of almost periodic (a.p.) points 
(points with minimal orbit closures): a "concrete" one due to Gottschalk and 
Hedlund [58], and an abstract one due to Ellis [32]. A set L C G is left 
relatively dense (l.r.d.) if there exist gj, . . . , gk G G with Uj=\gjL = G. 

2.2.2. PROPOSITION. A point x G X is an a.p. point for x if and only if whenever 
U is a neighborhood of x, {g G G\gx G U) is l.r.d. 

2.2.3. PROPOSITION. The following are equivalent for x G X: 
(1) x is an a.p. point for %. 
(2) x G lx for any minimal ideal I C E(6X) (or C S). 
(3) If I is a minimal ideal, then x — ux for some u G J. 

REMARK. If x, xf G X, then by the last proposition (ux, ux') is an a.p. point 
for 9C X 9C. Therefore, if uxPux\ ux — ux' (it is impossible to leave the 
diagonal). Now suppose xPx' is a closed relation. If xPx\ then as (ux,ux') 
G ®(x,x'\ uxPux'. By the above ux = ux'. This implies P is an equivalence 
relation (Clay [22]). In general, P is not an equivalence relation, and when it 
is, it may not be closed (Shapiro [129]). 

REMARK. If x G X, u G J, then u(x, ux) = (ux, ux), and so xP(ux). If xPy 
implies x = y, then ux = x, u G J (and conversely if 9C is minimal; for if 
vy = y, v G J, the fact vx = x implies v(x,y) = (x,y); thus xPy implies 
y = x). 

REMARK. The set {g G G\gx G U) in Proposition 2.2.2 is a generalization 
of the translation numbers from Bohr's theory of almost periodic functions 
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[14b]. (The idea of a translation number occurs at least as early as the thesis 
of E. Esclangon [45].) 

2.3. The functor 2%. If X is compact, T2,2
X will denote the space of 

nonempty closed subsets of X. X has a unique compatible uniformity Öl which 
determines the Hausdorff uniformity %*. A base for 9l* is the set of all 
a*, a E % where a* = {{A,B)\B C a[A]dLXiàA Q a[B]}. 2X is compact, 7J, 
and metrizable if X is metrizable. Any flow % gives rise naturally to a flow 
(G,2X) which we denote by 2%. 

If % -**• ̂  is a homomorphism of minimal flows, 97ad : 7 -* 2* is defined by 
77ad>y = m~xy. 7rad is equivariant, upper semicontinuous and continuous if and 
only if m is an open map. The construction to follow was introduced in [146] 
to circumvent certain difficulties which arise when m fails to be open. 

Assume X is metrizable so that 2X is also metrizable. The set Y$ of points of 
continuity for 7rad is then invariant and residual. Let K* = 7rad Y0 C 2X. 
^* = (G, Y*) is a flow, and there is a natural homomorphism ^* 
-»a ^ (on^y = ^ G ^o)- The minimality of ^ and continuity of 7rad at 
points of Y0 imply (a) ^* is minimal, and (b) a"1 y = {*rad.y}, ^ E Y0, i.e., ^* 
is an a.a. extension of % 

Now define X* Q Xx2xby X* = {(x,A)\x Œ A <E 7*}. Set 9C* = (G, 
X*) and let 9C* -»T 9Cand 9C* -»** ̂ * be the coordinate maps. It is routine to 
check that 90* is a minimal a.a. extension of 9C and 7r* is an open map. Of 
course X* is metrizable, and the diagram 

(2.3.1) 

is commutative. 
A fruitful generalization of the "shadow diagram" (2.3.1) was made by Ellis, 

Glasner and Shapiro [40] (see also McMahon and Wu [90]). In what follows 
X is not assumed to be metrizable. If A E 2*, s E S(G\ then sA has two 
possible interpretations, either sA = {sa\a E A), which may not be closed, or 
sA is the image of the "point" A E 2X under s which is a closed set (i.e. 
another point of 2X), Following [40] we denote the latter by s <> A. Always 
s A C s o A, but usuallyJhey are distinct. If A C X is an arbitrary set, s o A 
is understood to be s <> A. 

Let I C S be a minimal ideal, and let / = J (I). (The construction below is 
in fact independent of the choice of /.) If y E K, define Iy = {p E ƒ | py ~ y) 
and Jy = /(/>,). We have ^ = UwGy uly (disjoint union of groups). For each 
u E Jy define C^(y,u) = C(j;,w) = u o (u<n~xy). As a set, C^y.u) C TT"1^ 
and as a point (in 2*) C„(y9u) has a minimal orbit closure. One may prove 
(cf. [40]) that if p E /, v E J satisfy vp = />, then/? o C9(y,u) = Cv(/y,!/). It 
follows that 

Y' = 6(Q(j,W)) = ƒ o C O M I ) - ( Q ( / , t ; ) | y E » E X}. 
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%' is a minimal flow, and if o'(Cv(y\v)) = ƒ , <$' ->a l^ is a homomorphism 
of minimal flows. If y E y, u, v E Jy, the discussion above implies u 
o Cv(y,v) = Q(j,w) = u o Cv(y,u), and, therefore, Cv{y,v)PC„{y,u). That 
is,<?J' is a proximal extension of % 

As before, set X' = {(x9A)\x <E A Œ 7'}, and let ft' ->T' ft, ft' ->"' ^ be 
the natural maps. ft' is a minimal proximal extension of ft and the map TT' is 
open. Of course the shadow diagram 

(2.3.1') 

is commutative. The advantage of (2.3. 1') over (2.3.1) (in some cases they 
coincide, see below) is that TT' enjoys a somewhat stronger property than 
simply being open. For i f / E Y\ s a y / = Cv(y,u), then 7rad/ = Cv(y,u) 
X (Q(^,w)}. Therefore, C^(y\u) = 7rad/. This brings us to 

2.3.2. DEFINITION (ELLIS, GLASNER AND SHAPIRO [40]). Let ft ->77 ^ be a 
homomorphism of minimal flows. We say TT defines an RIC extension 
(relatively incontractible) if C(y,u) = 7Tàdy for all y E y, u E ^ . ft is 
incontractible if it is an RIC extension of £2. 

In (2.3.T) TT' defines an RIC extension; TT is RIC there if and only if a', r' 
are isomorphisms. 

2.3.3. DEFINITION. We say ft -»17" ^ satisfies the Bronstein condition if / ^ 
contains a dense set of a.p. points. 

The significance of Bronstein's condition [20] will be made clear in §2.6. If 
TT is an RIC extension, then G(uTT~xy X im~xy), u E Jy, is a dense set of a.p. 
points in Rw9 and therefore IT satisfies the Bronstein condition. It also follows 
that in (2.3.1') r X r(R^) is the closure of the set of almost periodic points it 
contains, because if z' E R^ is a.p., r X r(z') is a.p. On the other hand, if 
z = {x\,x2) E Rw is an a.p. point, say uz = z, then xx, x2 E C(y,w), 7rjC| 
= j \ Thus, 

(x!,x2) = TXT((X1 ,C(^,W)),(X2 ,C(>' ,W))) , 

and so r X r{R^) is the closure of the a.p. points in R^. In particular, 

2.3.4. LEMMA. Let ft -»* ^ .wtfwjfy //ze Bronstein condition. In (2.3.1') we toe 
r X r ( ^ ) = ^ . 

A more direct generalization of (2.3.1) has been given by J. Auslander and 
Glasner [7]. With notations as above, set y* = / o ir&dy, X*= {(x,A)\ 
x E A E y*}. If X is metrizable, then y*, X* coincide with the objects in 
(2.3.1). In any case (2.3.1) is again defined (and independent of y, /), and 77* 
is an open map. This time, however, a and T define h.p. extensions but possibly 
not a.a. extensions. (Given y E y, Zorn's lemma and the fact aâdy E 22 is 
used to prove there exists A E oâdy such that if B E aad>\ B Q A, then 
5 = ^j. Choose/? E / with/? o 77"^ = A. It is straightforward to check that 
p ° aadj> = {A}, and a is h.p. Similarly for T.) 
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In the structure theorem for point-distal extensions it is h.p. rather than 
proximal extensions which play a role. Since it is more convenient to work 
with (2.3. r) , it is natural to ask for a condition guaranteeing that (2.3.1) and 
(2.3.1') are identical (i.e., <?J* = <?J', °X* = 9C', etc.). I shall prove 

2.3.5. THEOREM. Let % -~»7r % be a homomorphism of minimal flows, and 
assume either X is metrizable or G is o-compact. A necessary and sufficient 
condition for (2.3. 1') and (2.3.1) to coincide is that for some y G Y, Duej C(y, u) 

The theorem provides an intrinsic proof of a result of J. Auslander and 
Glasner [7] which was proved using the structure theorems themselves. 

2.3.6. COROLLARY. Let % - ^ <$ be such that there is a % distal point, and 
assume either X is metrizable or G is o-compact. Then (2.3.1) and (2.3.1') 
coincide. 

PROOF. Let x be ^-distal, the set mx = y. If u G Jy, then because xPux, and 
mux = y, we have x = ux. Therefore, x G C(>\ u). Since u is arbitrary, 
x G Duej C(y,u), and Theorem 2.3.5 applies. 

I shall prove Theorem 2.3.5 only in the metrizable case. The extension to a-
compact G is made by "approximating" 5C ->7r c?) by homomorphisms of 
minimal flows with metrizable phase spaces. The theorem turns on the 
following 

2.3.7. PROPOSITION. Let % -»7r ty be a homomorphism of minimal flows, and let 
X be metrizable. Let (p: Y -* 22 be an equivariant Borel map such that (a) 
cp(y) G 2v'Xy,y G Y, and (b) ^ = {y G Y\DAB(p{y)A * 0 } is a second 
category set. Then for some y G Y, cp(y) = {n xy). 

I shall first derive the theorem from the proposition. Define <p(y) = {C(y, u) I 
u G Jy). Then <p is u.s.c, hence Borel. If we assume Y^ ¥= 0 , then Y^ being 
invariant, is dense. It follows easily that if y is a point of continuity of <p, then 
y G Yy. As the points of continuity comprise a residual set, Y^ is residual. By 
the proposition <p(y) = {7r~]y} for some y, or iTxy = C(y,u), u G Jy, for 
some y. Thus, Y' D 7* # 0 , and being (invariant) minimal sets, they must 
coincide. 

To prove the proposition, define D: 22* -» 2X U {0} by £>(A) = DAe\A. 
D(') is u.s.c, hence Borel, and therefore \p(y) = D(<p(y)) is a Borel map from 
Y to 2* U { 0 } . Since 7 and 2* U {0} are compact metrizable and \p is 
Borel, there exists a residual set 7̂  C Y such that i//|y is continuous. The 
equivariance of xf/ implies that Y^ may be assumed to be invariant. (See below.) 
Now Yyf, H Yy ¥" 0 , because 1̂  is second category, and therefore Y^ D Y^ is 
dense in 7^. Since 0 is an isolated point of 2X U ( 0 } , fy n )^ = fy. Now 
letj^ G Y^ be any point of continuity for 7rad. G /̂( y) is a dense subset of X by 
minimality, and therefore limsupg _^(gy) = *n~xy. By continuity, \p(y) 
= 7r_1j>, and therefore (p(y) = [tr^y) as claimed. 

REMARK. An observation by Ellis [38] is useful for an iteration which will be 
carried out later using (2.3.1'). It is that if x G A' is a c?j-distal point, then for 
any A G Y' such that x G A, (x,A) G X' is a ^ distal point. For suppose 
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(x',4') E ( T T T 1 ^ . Then A' = A, and if x'Px, JC' = x. Thus, (jc',i4')jP(M) 
implies (x\A') = (x,y4). 

The invariance of Y^ used in the proof of the proposition may be obtained 
from the following lemma. 

2.3.8. LEMMA. Let %, % be flows with metric phase spaces {W,DW), (Z,DZ), 
and let ƒ: W -» Z be an equivariant map. If A Q W is a residual set such that 
f\A is continuous, then also f\GA is continuous. 

PROOF. Suppose \imkgkak = ga, ak, a E A. Replacing gk by g~lgk and 
using equivariance of ƒ and continuity of g we may suppose g = e. Because A 
is residual, Ak = A D gk

l A is residual for each k, and we may choose 
bk E Ak such that (i) Dw(gkbk,gkak) < \/k, (ii) Dz(gkf(bk\gkf(ak)) 
< \/k. By (i) l i m ^ g ^ = a, and since a, gkbk E A, \imkf(gkbk) == f (a). By 
(ii), limkf(gkak) = \imkgk(f(ak)) = ƒ (a) also. 

The following result is another consequence of Proposition 2.3.7. 

2.3.9. PROPOSITION. Let % —^ ty be a homomorphism of minimal flows with X 
metrizable, and let A Q X be an invariant Borel set such that X(y) = A D 7r~xy 
is closed and nonempty for each y. Then 

(i) ifX(y) is a singleton for each y, IT is an a.a. extension, 
(ii) if\(') is a Borel function from Y to 2X, then \(y) = ir"xy for some y. 

In (i), let \{y) = {ƒ(>>)}< If B Q X is Borel, f~l B = TT(B D A) is a 
continuous one-one image of a Borel set, hence Borel. Thus (i) follows from 
(ii). Of course (ii) follows from Proposition 2.3.7 using y(y) = {A(y)}. 

2.4. Almost periodic extensions. Let % ->"" % be a homomorphism of 
minimal flows, and let % be the compatible uniformity for X. Define Pm Ç Rv 

by /J. = r\aEqi(Ga O R^). Pm is called the relative proximal relation {proximal 
relation if ty = 2). The argument for Clay's result (§2.2, see [22]) shows that 
if P^ is closed, it is an equivalence relation. As mentioned earlier, P„ is generally 
not an equivalence relation, and when it is, it is generally not closed. Of 
course, GP^ = ^ . 

Now assume % is a distal extension of fy (^ = A). If y E Y, u E Jy, then 
w* — x, x E 77"^ (see Corollary 2.3.6). Fix y and set up % = HxGlïï-\y 9CX, 
90̂  = 90. Define z G Why z(x) = JC, x E TT-1;;. Clearly, wz = z, w E ^ , and 
so Z = 0(z) is a minimal set (Proposition 2.2.3). There is a natural commuta­
tive diagram 

(2.4.1) > \ JT 
ft >v 

Let /?, p', q E / be such that /?z = /?'z and qy = ƒ. For each x E 7r~! ƒ> <7* 's 

a coordinate of z (the qxth) and therefore p̂ rx = p'qx. That is, /?#z = p'qz, and 
we have a natural pairing Z X ly -» Z defined by L(pz,q) = /?^z. If g E />,, 
uq = q, u Œ Jy, choose #' E w^ with ##' = u. Then L(L(pz,q),q') = p<7#'z 
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= pz, and so L{*,q) is invertible. It is also continuous, and so if we let H be 
the set of maps {L(*,q)\q G Iy},(H,Z) is a "flow" (except that H may not be 
a topological group). Note that the actions of G and H on Z commute, and 
^ = %/H. Moreover, H acts strongly effectively. For if pqz = pz, the ^-
distality of 9C implies qx = x, x G 77"" V- That is, ^ = id in ƒƒ. Ellis calls 
(2.4.1) a "group-like extension" [37]. 

Now define Qm = naG<^Ga 0 Rm. Qm 2 ^ is the relative regionally proxi­
mal relation {regionally proximal relation if ^ — 12). If Ö„. = A, then P„ = A, 
and (2.4.1) is defined. But this time one finds that (a) H has separately 
continuous multiplication and is therefore a topological group, and (b) the 
pairing (H,Z) is separately continuous and therefore a, flow. In other words, if 
Qm = A, % is a group extension of % and 9C an a.p. extension. Conversely, if 9C 
is an a.p. extension of % one sees that Q^ = A. 

The first a.p. extensions were the isometric extensions introduced by 
Furstenberg [50]. What follows is a straightforward generalization of Fursten-
berg's notion: 

2.4.2. DEFINITION. Let % -*" % be a homomorphism of minimal flows. % 
shall be called an F-extension of ty if for each z G Rm — A there exists 
8 G C(/^) such that 

(a) 8 > 0, S|A - 0, 
(b) G8 - 5, 
(c) 8(z) > 0. 
If 9C is an F-extension of % then Qm = A. For if z £ A, choose 5 G C(/?w) 

as in (a) -(c), and let a G 9lbe such that a n /*„ C {z'|8(z') < £fi(z)}. Then 
z ^ G a f l R„, meaning z & Q^. Conversely, if 9C is an a.p. extension of % 
% is an F-extension. This is not a difficult result and will not be proved here. 
It follows from more difficult results in the next section. We have 

2.4.3. PROPOSITION. Let 9C~>,r % be a homomorphism oj minimal flows. The 
following are equivalent: 

(i) % is an a.p. extension of % 
00 Gr = A, 
(iii) % is an F-extension ofty. 
Let E^ be the least closed invariant equivalence relation which contains Q^. 

%/E^ is the largest almost periodic extension of ^ "below" 9C. When 
% = 5, ijEm is the largest minimal a.p. extension of % in the sense that any 
other minimal a.p. extension of ^ is a factor of 9/£ff. 

REMARK. Let % be the largest minimal a.p. extension of % and let 
% - ^ %%= 9C/FW be as above. There is a commutative diagram 
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Define Rnn = {(x,w)\7rxx = TT2W}. Then it is possible to show ^ ^ is itself a 
minimal flow. (For % = £2, G abelian this is proved (and used) in [150].) 

2.5. Topologies associated to minimal flows. The classical characterization of 
distality, due to Ellis [33], states that % is a distal flow if and only if E(%) is 
a group. This played a major role in Furstenberg's structure theorem for 
minimal distal flows (and also contributed to the early false conjecture that 
distal flows are equicontinuous). 

Let 9C be a minimal distal flow with (for now) metrizable phase space. 
Furstenberg's idea is to endow X with a weak(er) topology with respect to 
which the elements of E(%) are homeomorphisms. With the weak(er) point-
open topology E(%) has multiplication separately continuous (and inversion 
continuous). Should either of the weak topologies be T2, they both are and (a) 
E(%) is a topological group in its "regular" topology, and (b) % is an 
equicontinuous flow. In general, the weak topologies are Tx but not T2, and so 
Furstenberg employs an ingenious fiberwise "Hausdorffization" to prove that 
if % ->w ^ is a nontrivial extension of % it is possible to "insert" a nontrivial 
a.p. extension of ty below %. A transfinite induction, beginning with ^ = Q, 
proves 9C is an /-flow. 

REMARK. The condition that a group K be compact, with multiplication 
separately continuous and inversion continuous, occurs so frequently that I 
shall refer to K simply as an "F-group." 

A different procedure for defining weak topologies was given by Ellis [37] 
and used by him to prove his structure theorems [37], [38]. The idea of 
attaching "Furstenberg topologies" to point-distal flows occurs in [146], where 
Hausdorffization and shadow diagrams were used to prove the structure 
theorem. Below I shall sketch the (natural generalization of the) Furstenberg 
topologies of [146] and prove they are equivalent to Ellis' topologies. The latter 
fact has been proved independently by Ellis, Glasner and Shapiro [40]. 

Fix a minimal flow % and let 2 be the set of continuous pseudometrics on 
X. If o G 2 define Fa on X X X by Fa(z) = infgEGa(gz). Fa is invariant and 
u.s.c., which implies for all z G X X X (resp. all a.p. z G ^ X X ) and p G S 
or E(%), 

(2.5.1) F0(z) < Fa(pz) (resp. = F0(pz)). 

If x G X, a G 2, e > 0, define Ueo(x) = {x'\Fa(x,x') < e}. Ueo is open be­
cause Fa is u.s.c. The following lemma is basic and is due to Furstenberg [50]; 
see also [146]. 

2.5.2. LEMMA. If u & J, z = (xx,x2) are such that uz = z, and if o G 2, e 
> 0 are such that Fa(z) < e, then there exist p G 2 and 8 > 0 such that 

REMARK. If x'2 G X and uxf
2 — x2, then Fp(x2,x2) = 0. Therefore x2 

G Ueo(xx). (This also follows from (2.5.1) directly.) Define Ue
u
0(x) = Uea(x) 

n x(u). 
The lemma implies the set So(w) = {U"a(

x)\x E X(u),e > 0,a G 2} is a 
basis for a topology g(w) on X(u). If x, x' are distinct points of X(u) the fact 
that x and x' cannot be proximal implies F0(x,x') > 0 for some a, and 
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therefore S(w) is 7J\ The remark following Lemma 2.5.2 implies any open cover 
© = {£/"} from $o(w) corresponds to an open cover & = {U} of X, and 
therefore has a finite subcover. That is, (X(u),^(u)) is compact. 

Each y E w/ (/ a minimal ideal in S or /:(£)) maps ^(w) to itself and by 
(2.5.1) is an "S(w) isometry". Therefore y is an g(w) homeomorphism. Let 
K{u) = ul, and place on K(u) the point-open (g(w)) topology, $*(w). 5*(w) is 
compact and Tx if ƒ C £(£), but usually not Tx if ƒ C 5 (because the action 
of K on X{u) may not be effective if ƒ C S). Multiplication is separately 
continuous, and, because Fa(x,yx) = Fa(x,y~lx), x E X{u\ y E K(u), inver­
sion is continuous. That is, (#(w),g*(w)) is an F-group. 

REMARK. It is not true in general that X{u) is G invariant or that G has a 
natural homomorphism into K(u). These facts are of surprisingly little 
consequence. 

REMARK. If x E X(u), define Xx: K(u) -» X(u) by \x(y) = yx. By defini­
tion of $*(")> \x(') is continuous for each x. Now let ,4 be a nonempty index 
set, and choose z E XA such that wz = z. Setting Z = 6(z), Z is a minimal 
set, and Z(u) carries its g(w) topology. Because the uniformity of XA is 
generated by the uniformities of its factors (X), it follows that a net zv in Z(u) 
is S(w) convergent if and only if it is ^(u) convergent in each coordinate. 
Therefore, if we define \z(y) = yz, y E K(u), \2(-) is continuous from (K(u), 
$*(w)) to (Z(w),g(w)). If we set A = ^(w) and take z with z(x) = JC, JC 
E A'(w), and if / Q E(%), so that K(u) is effective, then Az(-) is one-to-one. 
However, because $(w) is not 7̂ , we cannot infer immediately that X2 is a 
homeomorphism. In fact, it is, as will be seen later. 

REMARK. Let / C S or £(9C) and let 9C -»* ̂  be a homomorphism of 
minimal flows. By equivariance and continuity, X(u) -** Y(u) is onto and 
equivariant with respect to K(u). (Use <nu and TTK(U) if / ç £(9C).) As 
pseudometrics on Y pull back to pseudometrics on X, m is $(w) continuous and 
g* (w) continuous. I shall later prove m is ^(u) closed, which is not obvious. 

I shall now describe the Ellis topology [34]. Fix a minimal ideal / C S(G) 
or £(6X), u E J (I ), and. identify g E G with sg E S(G) or £(9C). If V Q G 
is a set such that u E (K)°, define A(K) = F D /, so that w E /*(K)0 (relative 
topology). As ƒ is a minimal set, Proposition 2.2.2 implies the set Vu 
= {g E G|gw E /*(F)0} is open and l.r.d. If p E h(Vu\ then /? = lim„g„ for 
some net in Vu, and because pu = p for any /? E /, l im^w = /? also. By 
definition of Vu, gvu G h(V) Q h(V), and therefore p E /j(K). That is, 
h(Vu) C A(F). On the other hand, if p E /z(K)°, choose a net gv in K with 
lim^g^ = p. Again gvu -> p, and therefore g,w E h(V) for large J>. Therefore, 
gv E Kw f or large v, and so ;? E TJ(KW). The inclusions/Î(K)° C /z(Kw) C h(V) 
imply 7z(K) = /*(Kw) , and therefore 

2.5.3. PROPOSITION (ELLIS [34]). Ifu E V°, then (Vu)u = Vu. 

REMARK. The inclusion h(Vu) C /z(K), plus the proposition, imply the sets 
{h(V)\u E (F) , Vu = F} form a base for the neighborhoods of u in /. 

Let 9C be a minimal flow, and fix u E «/, x E A'(w). If f/ is a neighborhood 
of x in A' and F C G an open set such that Vu = K, define 

(2.5.4) [t/,n„= y/(/nxw. 
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I shall demonstrate that these sets comprise a basis for g(w). As they also 
comprise a basis for the topology defined by Ellis [34], the two must coincide. 

Let x E X(u), o E 2, e > 0 be given. Choose a neighborhood U of x such 
that o(x,z) < e, z E [/, and use the fact ux = JC, plus the remark following 
Proposition 2.5.3 to find an open set V such that Vu = V and Vx Q {]. If 
g E V and z e g ^ t / f l X(u\ then a(gx,gz) < a(gx,.x;) + o(x,gz) < 2e. 
Thus, z E f/^oM» and as z is arbitrary, [t/, K]w C U^a(x). Conversely, let 
[£/, V]u be given containing x 6 (/ D X(u). There exists a E 2 and e > 0 
such that [z\o{x,z) < e} C £ƒ, and there exists ^ £ Ksuch that V0u = V0 and 
a(x,z) < e/2, z E PQ*- ^ is l.r.d., and therefore there exist gj, . . . , gk E G 
with G = UjLigj'1 V0. Choose a' E S and e' > 0 so that if a V , * " ) < e', 
then o{gjX\gjx") < e/2, 1 < j < A:. I will now prove £//^(x;) C [£ƒ, K]M. To 
this end fix z E t/e"a'(*), and choose g G G with a'(g.x\gz) < e'. There exists 
7 with gjg E ^ , and by choice of a', e', o(gjgx,gjgz) < e/2. Therefore, 

aC^gygz) < o(x,gjgx) + o(gjgx,gjgz) < e/2 + e/2 = e. 

But this implies gygz E (/ or z E (gyg)"1^ C [£/, ^ ] M C [(/, F]M. Thus, 
Ufo(x) C [[/, K]M, as claimed. We have 

2.5.5. PROPOSITION (SEE ALSO [40]). The sets [£/, V]u of'(2.5.4) form a basis for 
R(H). 

The proposition leads to the elegant characterization of g(w) closures due to 
Ellis, Glasner and Shapiro [40]. Below, topological entities are understood to 
be with respect to the "regular" topologies unless <̂ (w), S*(w) are specified. It 
is convenient here to assume / C S, so that u o A is defined. 

2.5.6. PROPOSITION (ELLIS, GLASNER AND SHAPIRO [40]). If A c X(u\ then 
cls (̂w) A — u o A n X(u) = w(w o ,4). (Recall that u o A = M o J,) 

PROOF, (M o J ) n A"(w) C u(u o A) Q u o (u o A) = u ° A. Therefore, u 
o A n A^w) = w(w o ,4). A point x E A"(w) belongs to cls^M) A if and only if 
[(/, K]w H A # 0 whenever £/ is a neighborhood of JC and Kw = u. This, in 
turn, is if and only if there exist nets xv in A, gv in G such that gv-> u and 
g ^ -» x. That is, if and only if x E u o A and wx = x. 

2.5.7. PROPOSITION. Lef 6X ~>7r % be a homomorphism of minimal flows. Then 
X(u) -*7r y(w) w an onto ̂ (u)-continuous and ?y(w)-closed map. 

PROOF. We have only to prove <nA is ^s(u) closed in Y(u) if A is g(w) closed 
in X(u). It is easily checked that 7r(w o ,4) = u <> <nA, and therefore if w(w o m A) 
# nv4, there exists x E u o A with TTX E W(W <> TT/4) but not in m A. However, 
ux E u(u ° A) Q u ° A also, and as A = w(w o A) because A is g(w) closed, 
7TX = 77WX E m A. Thus, 77,4 is $(u) closed. 

2.5.8. COROLLARY [40]. Let 9C -»,r ^ 6e a homomorphism of minimal flows, and 
suppose IT is one-to-one on X(u). Then m is an $(u) homeomorphism. 

REMARK. If 77 is one-to-one on X(u) for one u it is for all u (since 
X(u) ->v X(v) is one-to-one for v E J). This implies 77 is a proximal homomor­
phism. Conversely, if 77 is proximal, 77 is one-to-one on X(u) for all u. 
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If I Q E{%), u E /(ƒ), then I{u) = ul (= K{u)) carries its own %{u) 
topology, defined using the flow S = ((?,ƒ). We shall prove (/(w),g(w)) and 
(A^(w),5*(w)) are homeomorphic. First suppose lim^/?r = /?(g(w)). For each 
x E X{u), 3 —>** % is a homomorphism of flows, and therefore 

^{u)limppx = ^{u)\im\x{py) = A^/?) = px. 

Since x is arbitrary, the definition of g*(w) implies ^{u)\\mvpv = /?, and the 
injection (7(w),g(w)) -»' (A^(w),g*(w)) is continuous. For the reverse map, set 
up Xx{u) and z with z(x) = JC, JC E A » , as before. If Z = 6(z), Z(w) = uZ, 
there is a commutative diagram (A (̂y) = yz) 

(/(a), g(M)) ? • (I(u), g*(*0) 

r 
(Z(M), g(w)) 

in which all maps are one-to-one and known to be continuous. As Az is also 
closed, i~l is also continuous. We have 

2.5.9. PROPOSITION. Let %bea minimal flow, and let I Q E(%) be a minimal 
ideal. For each u E J (I), (I(u),%(u)) and (I(u), $*(w)) are the same. In 
particular, (7(w),S(w)) is an F-group. 

2.6. The relativized equicontinuous structure relation. Recall that if % ->v ty 
is a homomorphism of minimal flows, then Ev is the "relativized equicontin­
uous structure relation," the least closed invariant equivalence relation con­
taining Q„. The theorem to follow is new and will be the principal result of 
this section, ƒ is a minimal ideal in S (for now) and u E J a fixed idempotent. 

2.6.1. THEOREM. Let % -V ty be a homomorphism of minimal flows which is an 
RIC extension. IfxŒ X(u), then for every relative g(w) neighborhood a of x in 
U7T~~1<ÏÏX ( = X{u) PI 7T~17TX), we have E^x] Q u o a. 

One of the consequences of Theorem 2.6.1 is the following result which has 
been obtained independently and earlier by Ellis (oral communication): 

2.6.2. THEOREM. Let % —^ % be a homomorphism of minimal flows which 
satisfies the Bronstein condition {Definition 2.3.3). Then Qm = E„; i.e., Q^ is 
already an equivalence relation. 

If %-*"% 2;->Xc?J are homomorphisms, define <&„x = {G,R„X), where 
R^x - {{x,z)\irx = \z}. {%,„ = &„.) (Similarly, given 9Cy- ^%j = 1, 
...,n, define ^ ^ . . . W | | . ) I shall say {TT,X) (resp. (TT, , . . . ,irn)) satisfies the 

generalized Bronstein condition (g.B.c.) if the a.p. points are dense in R„x (resp. 
/ ^ ^). Another consequence of Theorem 2.6.1 will be 

2.6.3. THEOREM. Let ^ C - » ^ be a homomorphism of minimal flows which 
satisfies the Bronstein condition, and suppose that E„ = R^. If °Z -*x ty is a 
homomorphism offiows such that 2 is topological^ transitive and if (77, A) satisfies 
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the generalized Bronstein condition, then $lVt\ is topologically transitive. 

REMARK. If % -»* ^ is an RIC extension, and if 2 -H>X ty is such that 2 
contains a dense set of a.p. points, then I claim (TT, X) satisfies the g.B.c. To see 
this, let w = (x,z) G i?ffÀ, and let Wbe a neighborhood of w. The projection 
of W onto the first coordinate is a neighborhood of x which under m is sent to 
a neighborhood U oî TTX = y = \z. X~x U is a neighborhood of z and we may 
choose z' E \~x U such that z' is an a.p. point and (x\z') G W for some 
x' G A". Suppose uz' = z', and note that u © {wn~Xtnx') = TT'^TTX' because TT is 
RIC. There exist nets gv in G and xj, in wrr~X7rx' such that gv-+ u and 
g ^ -» x'. Then l im^g^^z ' ) = (x\z'). As gp(xj„z') is an a.p. point for each 
v, our claim is established. Therefore, in the special case ty = Q (% incontrac-
tible), Theorem 2.6.3 implies Theorem 2.1.6. A simple induction based on 
Theorem 2.6.3 implies the following, which in the metrizable case is due to 
McMahon [88]. 

2.6.4. THEOREM. Let 9C -^ % be a homomorphism of minimal flows, and 
suppose for each n > 2 that (77,77,..., m) (n times) satisfies the g.B.c. Then 
%„^... ,TT) '** topological^ transitive. 

In connection with Theorem 2.6.2, Ellis proved [38] that the Bronstein 
condition implies Em = Q^P^ "Unrelativized" versions (ty = Q) of the theo­
rem were proved in special cases by Peterson ([105]; G abelian) and Ellis and 
Keynes ([42]; X{u) contains an orbit). A different characterization of the 
(unrelativized) equicontinuous structure theorem is given in [150] (G abelian) 
and [143] (G amenable) and can be used to identify it with the regionally 
proximal relation (cf. [105]). 

In what follows I shall combine the approaches of [50], [146] and [38], [40]. 
Let % -t* % be a homomorphism of minimal flows, fix y G Y{u), and set 

W = X(u) n iTxy. Wis g(w) closed (because {y} is) and therefore compact. 
Set r = { y £ K{u)\yn~xy C ir~xy}. Then T is an g(w) (= g*(w)) closed 
subgroup of K{u), hence an F-group. Also, T is transitive on W (but possibly 
not effective). 

If x G W we use Nx to denote the set of (relative) g(w) neighborhoods of x 
in W. Define E{x) = DUŒNx clsg(ll) (/and T(x) = {yG T\yx G E(x)}. Both 
E(x) and T(x) are g(w) closed, and for all x G W, y G T we have 

(2.6.5) T(yx) = yT(x)y-x. 

T(x) is trivially expressed as 

(2.6.6) H*) = ^{y G T\yx G clsg(w) I/} 

and clearly contains 

(2.6.60 F 'W = ^ clsSM b G r ^ * G Uî-

However, because T is transitive and the map I(u) -*Xx X(u) given by 
\x(p) = px is g(w) c/ased, we have for each U G Nx that cls^Mj {y G T| 
yx G (/} = {y G T|y;c G cls^(w) U). That is, T'Oc) = T(x). It is'not difficult 
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to see that T'(x) is a group, and therefore T(x) is a group (Ellis [38]). Now 
(2.6.5) implies E(x) = E(x') if x' E E{x\ or even if E(x) n £ V ) # 0 . 
Therefore, the relation xEV if x' E JE'(X) is an equivalence relation. By (2.6.5), 
E(yx) = yE(x), y E T. In fact, if y E ƒ is arbitrary, and if i> E ƒ is such that 
vy = y, then E(yx) = y .EC*) in the sense that if E(yx) is formed with respect 
to (X(v),i$(v)) and vM9 then £(y.x) = yE(x). This is because the map 
(X(w),g(w)) ->" (^(f), S(f )) is, by (2.5.1), a homeomorphism. 

Now let L = W/£ with the g(w) quotient topology, and denote the 
canonical map by W - ^ L. For any x E W the map TĴ  = /jtXx induces a 
continuous map from T/T(x) with the quotient (ft(w)) topology to Ŵ. 
Moreover, this map is one-to-one. Now let x, xf E M̂  be such that \ix ¥* \ix'. 
There exist U E Nx, U' Œ Nx> such that c l s ^ U n C1S (̂M) £/' = 0 . Define 
r^(jc") = (y E r|yx" E 4}. I shall prove%(*)?(*) n I ^ ( J C ' ) I V ) = 0 , 
which implies T/T(x) is 7J. Therefore, L is T2 and T/T(x), L are homeomor-
phic. Now by (2.6.6)-(2.6.6') we have for any y E Tü(x) that T(yx) 
Q clsS(M) ^(yx) = cls (̂w) Ta(x)y~\ or, what is the same, yT(x) 
C clŝ (M) ^(x) . Let U0 = cls (̂w) £/, U'Q = clŝ (M) £/', and note that, as ob­
served earlier, clsg(M) Tv(x) = 1^0*), cls^w) T^(x') = I^Cx')- It follows that 
r ^ W r W Ç I^Oc) and TV>(X)TIX) C r^(x) are disjoint. 

Next, define T0 = nxEWT(x) = flyeryn^oh"1 (anY fixed xo E **0- ro is 

a normal subgroup of T, and by arguments similar to the above H = T/T0 is 
T2. As H is also an F group, the separate continuity theorem implies H is a 
topological group. Note also that because T is $(w) compact, the canonical 
map T ->A H is closed. Now from the triangle of natural maps 

r * — > H 

r 
r/ix*) 

we infer that T̂  is continuous because ô  is continuous and À is closed. It 
follows that L is a homogeneous space of //. 

Let 50 be a continuous //-invariant pseudometric on L. Lift 50 to an Ĵ (w) 
continuous, T invariant pseudometric on W9 retaining the notation 80. Note 
that if (x]9x2) = z & E9 then S0 can be chosen with 80(z) > 0. For any 
z E Wx W, g E G, such that gz Œ W X W we have wgw E T, wgwz = gz, 
and therefore 80(£

z) ^ S0(uguz) = S0(z). It follows that S0(£
z) = S0(z), g 

E G,z Œ WXW defines fi0 on R'^u) = G{WX W) Q R^. The following 
lemma is elementary [50], [146]. 

2.6.7. LEMMA. For every e > 0 there exist o E 2 awd e' > 0 SWC/J that if 
z E #;(w) and F0(z) < e', /fe?/i ô0(z) < e. 

I now make the assumption that % is an RIC extension of % which implies 
7?̂  = R^(u). Let / Ç S be a minimal ideal (u E / now and wy = .y), and 
recall that if p E i/7, v E ƒ, then/? o C(>>, w) = C(#y,i>). If z E 7^, z = (xj, 
x2)9 and if ^ = ƒ , let / / = {/? E /|#y = ƒ}, and define 
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8(z) = suplim sup ô0(z„), 
(2.6.8) PeIy 8>-+pigpZp->* 

noting that 5 is u.s.c., invariant, and 8{z) > 50(z), z E R^u). In particular, if 
z E Wx W does not belong to E, there exists 80 such that 8(z) > 0. 

2.6.9. LEMMA (COMPARE WITH [50], [146]). With notations as above, 8{-) 
defines a pseudometric on TT~~xy\ y' G Y. 

PROOF. Let xx, x2, x^ G TT""1/* and set z = (xj,x3), z' == (xj,x2), z" 
= (x2,x3). Given e > 0 there exist p E I, py = ƒ , and nets g„, (xi[,x$) 
E WXW, such that g„ -*/?, gr(xf,x|)^-^ (JC, , ̂ c3 ), and limmfv80(gp(x\,x$)) 
> S(z) - e. In the topology of 2X, gvW ~* C(/,t>) (ip = ƒ>)• Therefore, after 
passing to a subnet, if necessary, we may suppose x\E Wand gvx\ -» x2. Set 
zv = (jcf,jc5), z; = {x\,x\\ z»v = (JC5,JC5). Then 

8(z) < 6 + liminf 50(&,z„) < e 4- limsup 80(gvzv) 
V p 

< e + limsup{ô0(g,z;) + 80(gvz
fl)} 

< £ + S(z') + 8(z"). 

Letting e -* 0, our claim is established. 
An immediate consequence of Lemma 2.6.7 and the fact that Fa is u.s.c. is 

2.6.7'. LEMMA. For every e > 0 there exist a E 2 and e' > 0 (r/*e same as in 
Lemma 2.6.7) swc/z that ifzER^ and Fa(z) < e', //2ert 5(z) < e. 

Now define Ac, c > 0, by 

(2.6.10) 4 = | z G Rjimjnî S(z') < S(z) - c} . z 
z'<ER 1T 

Because 8 is u.s.c. and invariant, Ar is closed and invariant. Moreover, if 
Ac = 0 , c > 0, then 8 is continuous. I shall prove Ac = 0 by contradiction, 
in a fashion similar to that in [50], [146]. 

If Ac =£ 0 , there is a minimal set Z C Ac. Let °I - ^ bX be the map onto the 
first coordinate, and form the sets C^x^v), x E X, v E / , vx = x. Of course, 
Cfoiv) C {X}X7T~17TX C / ^ . 

If we restrict z, z' in (2.6.10) to lie in Z, we obtain a closed invariant set 
A;. C Z. AS % is minimal, either A; = 0 or A; = Z. If A; = Z, 8\z has no 
point of continuity. However, being u.s.c, 8\z has a point of continuity. 
Therefore à'c = 0 and ô is continuous on Z. (Since 2 is minimal, 8|z is 
constant.) 

Now fix z G Z and use the definition of Ac to find a net zv -> z in 7?̂  such 
that S(z„) < ô(z) - 3c/4. Write z = (*j ,x2), z„ = (xf ,x2), and choose w, w„ in 
7 with wz = z (z is an a.p. point!) and uvx\ = xf. Matters may be arranged 
so that l i m ^ C ^ f , ^ ) = C^{xx,v) exists. Possibly v # w, but at least fXj 
= xx. Recall that w o C^{x,v) = C^ux^uv) = C^x^,u). Choose a net gT in 
<7 such that gT -» w. Of course, gTz -» z, and gT C ^ , v) -» C^, w) (in 2X). 

If a G % (the uniformity for A"), choose gT so that 
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(i) (xj9gTXj) G aj « 1, 2, and 
(ii) (gTCpfo, i/), CM(^, «)) G a* (§2.3). 

Denote the dependence on aby ha = gT. Use the continuity of //a to find *> 
such that 

(i') (xJ9haXj) G a, and 
(ÏY) {haCAxl^lC^xx.u)) G a*. 

Set (wf,n>2) = (x\,xV2), and pick w" G C^Cxf,^) such that fe,^") e «• 
NowlimaAa(wf jfpf) = 2, and(wf 9w2) G Z. Since limtt/ia(w2,W2) = (^2^2) 
G A, we have from Lemmas 2.6.9 and 2.6.7': 

limsup|8(Afl(wf ,wg)) - 5 (^K,Wf)) | < limsup 8(ha(w$9w%)) - 0. 
a a 

But this contradicts the fact that 8(ha(wf,W%)) = 8(2) and 8(wf ,u>£) = 8(zy) 
< 8(z) — 3c/4. Thus, Ac = 0 , and 8 is continuous. _ 

Now return to the general (non-RIC) case, and define R^{u) = R^u). As 
essentially noted in §2.3, R^u) is the closure of the a.p. points in R^. If 
%' -»*' <$' is as attached in (2.3.r), then by the argument for Lemma 2.3.4, 
r X TR^ = R^iu) (= R^ if 77 satisfies the Bronstein condition). Under r, X(w) 
and A"(w) are g(w) homeomorphic (Corollary 2.5.8) and, therefore, W, T, L, 
etc. may be formed using IT' instead of -zr with the same result. Let 8 be as 
constructed above, except on R^. If c > 0 the set Ac of z G /^(w) such that 
there exist Zj, z2, T x T(^-) ^ * a n d |8(zi ) - S(z2)| > c is closed and invariant, 
and, therefore, if nonempty, contains an a.p. point. However, if z = (xx,x2) 
G R^iu) is an a.p. point, say uz = z, there exists z' = (x\9x2) G 7?^, wz' 
= z' with T X T : ' = Z. If z" = (x'î,.*^) G / ^ satisfies r X TZ'' = z, then 
because T is proximal, ux\ = *î and wx'2 — *2- Thus, 8(zr) = 8(uz") 
= 8(zr/), meaning z £ Ac. Thus, Ac = 0 , and 8 may be regarded as an 
element of C(/?^(«)). As C(/,w') is homeomorphic under r to some fiber of 
6X' -*v' %\ it follows that 8 defines a pseudometric on C(y\u') for all 
ƒ G Y, u' E / , w'/ == y . In particular, if IT satisfies the Bronstein condition, 
and if xx, x2, x3 G ir~~ly (uy = y), then 

S(xt, x3 ) = 8(ux\, WX3 ) < 8(uxx, wx2 )
 + 8(ux2, wx3 ) 

= 8(x^x2) + 8(x2,x3). 

That is, 8 defines a pseudometric on ir^y. It follows that 8{z) = 0 defines an 
invariant closed equivalence relation. 

Denote by ^ the set of functions 8 which arise by the above procedure. By 
the last paragraph, if IT satisfies the Bronstein condition, the set 

E'„^{z E ^|S(z) - 0, all 5 G 2 J 

is a closed, invariant equivalence relation. We note first that Qm C E'm. For if 
z G Qm9 there are nets zv in / ^ and gv in G such that zv-* z and g„z„ -» H> 
G A. If 8 G 2„, then 8(z) = lim„8(zv) = lim„ 8(g„z„) = 8(w) = 0. Since S is 
arbitrary, z E £'„, and since z G gff is arbitrary, Q^ Q E^. By definition, 
therefore, En Q E'w. Now let 9C' - ^ <$' be as in (2.3.1'). The construction of 
8 E ^ above makes it evident that rXr(E^) = E'v, and as T X T(Ö^) 
C g^, it will follow that E'„ Ç Q Ç Em if we prove Q^ = £ ^ . In other 
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words, Theorem 2.6.2 is true under the Bronstein condition if it is true for RIC 
extensions. In order to prove this, it is necessary first to prove Theorem 2.6.1. 

Let W, T, u be as in our earlier discussion, and fix x G W. As before Â  is 
the set of $(w) neighborhoods of x in W. Our goal is to prove u o a 2 E'^x] 
for which purpose we may suppose a has the form a = W D Uea(x) for some 
6 > 0, o G 2. Define Ta = Ta{x) = {yG T\yx G a}, so that Ta = T~l. One 
proves readily that u o a = u ° (Tax) = (w o T J i Because (w o 1̂ ) n T 
= clŝ (M) Ta, u o Ta 2 r(x). In fact, if y G Ta, T(yx)y Q u o Ta, or what is the 
same by (2.6.5), yT(x) Q u <> Ta. That is, raT(x) Q w ° Ta, and applying w 
once more (u ° Ta)r(x) Ç u o Ta. 

Suppose y G (w o r j n T is not an g(w) interior point. There exists a net 
yv in T, y„ Î « o ra, such that ^{u)X\mvyv = y. For large v it must be that 
ylyy"1) G yTa, or y G ray„. Therefore, if A denotes the g(w) interior of 
u o Ta (2 Ta), the set {^,Tay (y £ w o Ta)} is an open cover of T. Choose a 
finite subcover v4, ray l5 . . . , Tayn. Recall that Iy = {p G l\py = y},Jy 

= J (I) H 7V (w G ^ ) . As usual, ^ = UveJyvIy = U ^ i T . 
If v G ^ belongs to (u ° Ta)y/-, then u = uv G a (w <> ra)Y/> or w G 

(w o rjy,-. It follows that y"1 G (u o ra) fl T. Now because (a) Ta = T "̂1, (b) 
(T,g(w)) is an F-group, and (c) c l s ^ Ta = (w <> Ta) n T, it follows that 
yy- G (M O r j fl T, contradicting our choice of y,-. We conclude that u ° I ^ - , 
j = 1, . . . , «, contains no element of ^ . 

Now define l'y = w o T. Clearly, T^T C /J,, and therefore if J' = Jy D Iy, 
Vy = U^ey^r. Also, because m is an RIC extension, Vyx = (w <> T)x = u 
o (Tx) = iTxy. Now certainly /J = « ° T = UjLi(w o Ta)yj U w o A, and 
so, by the result of the preceding paragraph, Jy Q u o A. Since Ta Q A 
C u o Ta, w o A = w o Ta, and therefore because (w ° Ta)r(x) Ç w ° Ta, vT(x) 
Q u o Ta for every v E Jy. 

Now suppose (x,xr) G £^, and choose v G Jy with i>x' = x'. Since £^ is 
invariant, u(x,x') = (x,wxr) G JE^, and it follows that uxf G E(x) = T(x)x. 
Then x' = I/(KX') G i/£(x) = vT(x)x. Since t>r(;c) Ç u o Ta, x' G u ° a, and 
we have proved Theorem 2.6.1. 

2.6.11. PROPOSITION. Let % -->7r ty be an arbitrary homomorphism of minimal 
flows, and let JV9 T, x G A^w) fl H/, Nx be as above. If z G (l f lÊ^i/ ° a, /Â AÏ 
(X,Z) G Ô,r. 

PROOF. NOW it is convenient to suppose a G Nx is of the form a = W 
H Ugei/g-1 £/, where also Kx Ç U. To say z G u o a is to say there are nets 
/^, #„ in G and x̂ , in U such that (a) g"1 xv G ^ , (b) hvg^x xv -> z, (c) hv -> w, 
and (d) g, G F. By (a) (hvgv'

xxv,hvx) G ^(H^X J^) ç Rv. Therefore if 
^ y ÔÎ» ftp ' 

K(hv8v~x xv>hx) = ( ^ ^ ^ ) E u x u c\ Rm, 

by (d) and our choice of *„, K It follows that {hvgv"
x xv,hvx) 

G G(t/X £/ n i?7r).Because f/ is an arbitrary neighborhood of x, (z,x) 

Proposition 2.6.11 and Theorem 2.6.1, together with the discussion preced­
ing the proof of the latter, combine to imply Theorem 2.6.2. It is left for us to 
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prove Theorem 2.6.3. Recall that 9C -*m % is a homomorphism of minimal 
flows satisfying Bronstein's condition and also Em = Rv. 2 -»A ty is a homo­
morphism and (77, X) satisfies the generalized Bronstein condition. % is topol­
ogical^ transitive but possibly not minimal. 

Initially we suppose m satisfies the stronger hypothesis of being RIC Let 
A Q RwX be a closed invariant set with nonempty interior, and let (x9z) E A 
be an a.p. point, where u(x9z) = (x9z). Set̂ y = <nx = Xz. There exist neigh­
borhoods U of x and U' of z such that Ux U' D Rn\ Q A9 and we may 
choose V Q G with Fw = V and Kx C [/, Vz Q Ij\ If x' e a = X(u) 
H m~xy H Ugej/^"11/» say x' = g"1*", then 

(x'.z) = g " V , ^ ) E g-Ut/X U' H ^ f X ) C 04. 

It follows from Theorem 2.6.1 that 

u o (ax{z)) = (u o a)x{uz) — (u o a)x{z) = 77_1^{z} C GA. 

Now the set Z' = {z E Z\(x,z) E 4̂° for some x E X] contains GU'. Since 
2 is assumed to be topologically transitive Z' is dense, and by the above 
Z" = {z E Z\TT~XXZX{Z} Q A) is also dense. Now if A ¥= Rv^9 Ac n R„x is 
open and invariant, and the set Z'" = {z E Z\(x,z) E Ac n R„ for some x] 
is open and dense. Since Z" n Z'" = 0 , we have reached a contradiction, 
and therefore A = 7 ^ x . Theorem 2.6.3 is proved for RIC extensions m. 

To sketch the general case, assume m and (T7,A) satisfy the B.c. and g.B.c. 
We generalize (2.3.1') by setting Yf = {{C^y9u)9Cx{y9u))\y E Y,u E J9uy 
= y). While % is not necessarily minimal, it is still true that ty' is minimal. 
Furthermore, because (77, X) satisfies the g.B.c, and because homomorphisms 
map a.p. points to a.p. points, % contains a dense set of a.p. points. This 
implies each z E Z belongs to at least one C\(y9u)9 and therefore if we set 
X' = {(x,(A9B))\x EA9(A9B) E Y'\Z' = {(z9(A9B))\z E B9(A9B) 
E Y'}9 there is a commutative diagram 

in which a, r are proximal, 9C' -»77 %' is RIC, and T is topologically transitive 
and has a dense set of a.p. points. By the remark following the statement of 
Theorem 2.6.3, (V, A') satisfies g.B.c. Because 77 satisfies B.c. and Ew = R^9 we 
have Erf = R^. By the first part of our proof above, R^y is topologically 
transitive. The natural generalization of Lemma 2.3.4 implies a X r ( i ? ^ ) 
= R^x, and because topological transitivity is closed under homomorphisms, 
R„x is topologically transitive. Theorem 2.6.3 is thereby proved. 

2.7 Another proximity relation, Let 9C -^7r ̂  be a homomorphism of minimal 
flows. Define U^[x]9 x E X9 to be the set of z for which there exist nets gv in 
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G and zv in m xmx such that zv -» z, gvzv -* z,gvx -* x. It is clear that 

4M c t/.M c e j 4 
2.7.1. Question. Let ^C-V7^ satisfy the Bronstein condition. Does U^x] 

= Ö [x] for all x? 
It is perhaps too much to hope that the answer is "yes". On the other hand, 

it will develop that if for all y E Y, u E Jy, the set uiTxy is dense in m~xy 
(e.g., if % is ^-distal), then the answer is "yes". 

If z EX, denote by %2 the set of all (regular) neighborhoods of z in 7r~l7rz. 
Define for each ƒ E y a set %\(y) Q ir~xy, 2\(y) = {z\u o U n wn~xy has 
nonempty g(w) interior, u E Jy, U E %z). (lî u ° U f) um"xy has nonempty 
$(w) interior for one u E Jy, it does so for all w E ^.) ^\(y) is closed. The 
argument in the lemma to follow is due to Furstenberg [50]; see also Veech 
[146] and Ellis [38]. Set T = uly for some u E Jy. 

2.7.2. LEMMA. Let H C I be a closed set such that HT = 77, and suppose 
every v E J (H) has the property that v'W H W # 0 , f ' E 7(7/ ), W E ?!„. 
Then H^ y C 2j(^). 

PROOF. Fix x E Hir~~xy, and let t> E 7(77) be such that I/JC = x. If (/ 
E 91^, let Ha = {h E H\hx E £/}, and note that our hypothesis implies 
HÖY = 77. As 77 is compact and 77̂ , y is open, y E I\ there exist yj, . . . , yn 

E T such that UjL !#(/?,• = 77. Now if t> E J(77), vT f) v <> 7 7 ^ is ft(i/) 
closed, and since vT C \Jv ° Huyj,v ° Hvyj has ^(i/) interior for some ƒ But 
(^r, $(i>)) is an F-group, and therefore vf (~) v ° Hy has (̂t>) interior. Now 
choose fij, . . . , 8m E vT with \JÏL\ôj(v o Ha D vT) = vT, and apply similar 
reasoning to conclude that v ° U 0 viT~xy has g(v) interior. Thus, x E 2i(>>) 
as claimed. 

To construct 77 with the properties in the lemma, regard (Iy,T) as a (right) 
flow, and let 7/ C 7̂  be a T-minimal set. Then 77 has the desired property 
(Ellis [38]). Thus, 2x(y) # 0 . 

2.7.3. LEMMA. Let z E 2j(j/), and suppose x E ir~xy, v E Jy are such that (a) 
vx = x, and (b) * E Dy^^v ° £/. 77ze/? z E i4[*]. 

PROOF. By (b) there exist nets zv in m~xy and g,, in G such that zv -» z, gyz^ 
-* x, and g,, -» i/. By (a) g„.x —> i/* = *, and therefore z E £4[.x]. 

2.7.4. PROPOSITION. Assume °X -»7r c^ satisfies the Bronstein condition, and let 
y E Y be such that 2x(y) = 7r~xy. Then for all x E ir~xy we have t/Jx] 
= Ev[x] = QM' 

PROOF. Fix x E 7r~xy, v E Jy such that vx = x, and let z E E„[x]. If 
U E 31 z, then t> o [/ n ^7r-1^ has g(i>) interior, and as it is also g(y) closed, 
it contains vyT(z)z(T(z) as in §2.6) for some y = y(U) E T. Regard 
{vy(U)\U E 9lz} as a net, and choose a convergent subnet (regular topology) 
vyv, say lim î/y,, = p E Iy. For any 1/ £ b l 2 , yy„r(z)z C v o JJ for large J>, 
and therefore /?T(z)z Ç i/o (/, ( / e 9l2. Since y ( i / o ( / ) £ i ; o ( / , i>/?r(z)z 
QvoU9UG9Lz. If JC' = ipyz, y E T(z), then z E {/„[*'] C QM\ 
= T^x'] by Lemma 2.7.3. Since E^z] = UvGjvT(z)z (§2.6), x = i//?yz for 
some y E T(z) and so z E V^[x\. Since z E 7^[x] is arbitrary, the proposition 
is proved. 
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A consequence of Lemma 2.7.2 (and the remark following it) together with 
Proposition 2.7.4 is 

2.7.5. THEOREM. With notations as above suppose UIT"1 y is dense in IT"1 y for 
ally E Y, u E Jy. Then Em = Um (= {(x,z)|z E t4[x]}). In particular, if'Xis 
%distal9Ev = Uv. 

In case ty is trivial, the proposition implies 

2.7.6. THEOREM. Let %be a minimal flow, and suppose that %X°X has a dense 
set of a.p. points. The equicontinuous structure relation for % is then Um, where 
% -»7r Q is the constant map. 

PROOF. In this case 2\(y), fi = {y}, is closed, invariant, nonempty, hence 
all of X. Apply the proposition. 

2.7.7. Question. With notations as above let 2{ = UyS K2j (y). Is 2j a Borel 
set? If X is metrizable, is the map y -> 2j(^) E 2X Borel? If the answer is 
"yes" Proposition 2.3.9 implies 2,(>>) = 7T~~ly for a residual set of y, so that 
Ujix] = Ev[x] for a residual set of x. 

Now let fi be the first ordinal whose cardinal exceeds the density character 
of A\ If y E Y, u E Jy, define closed sets 2a(y,u), a < /?, inductively as 
follows. 2 0 = 77~1>\ If 2 a ' is defined, a' < a, and if a is a limit ordinal, set 
2 a = r V < a 2 a ' . If a = a' + 1, 2 a is the set of z E 2 a such that 1/ 
o (U n 2a ') n W7T_1/ has a point of 2a> in its g(w) interior. The remark 
following Lemma 2.7.2 implies Hir~xy Q 2 a for all a. An argument in [146] 
shows 2 a = 2 a + 1 for some a < /?. Denote this set by 2(>>,w). So far as I 
know, this construction depends upon u. 

2.7.8. LEMMA. Let St-*77" ty satisfy the Bronstein condition. If 2(>>,w) /'s /ictf # 
perfect set, then % is a flnite-to-one a.p. extension of°^. 

PROOF. . If z E 2(<y, u) is isolated, then [uz] has g(w) interior in um~xy. This 
implies (u*n~xy, g(w)) is 7̂ , and therefore 9C is an a.p. extension of <%. But then 
m~xy = WTr"1 ,̂ and as W7r_1 is compact and discrete, it is finite. 

The following lemma is essentially taken from Ellis [38]. See also McMahon 
and Wu [90]. 

2.7.9. LEMMA. Assume there exist an E tyl(X) such that n%L\an D R„ = A. 
If E^ = R^, then for all x E X, u E Jy such that ux = x, we have xPz for a 
residual set of z E 2(77\x, u). 

PROOF. For each n, G(an n Rv) O ({x} X 2(7rx,w)) is open dense in {*} 
X 2(77\x, w). Apply the Baire category theorem. 

2.7.10. THEOREM. Let 9C -*" ^ satisfy the Bronstein condition and otherwise be 
as in Lemma 2.7.9. Then R^ = Pj>. 

PROOF. If (x,x') E R^, ux = x, there exists by the lemma z E 2(7rx,w) 
with xP^z and ux'Pmz. Thus xP^ux' and as x'Pmux\ xP^x'. 

2.7.11. COROLLARY (ELLIS [38] ). Le/ % ->* ^ te as in the theorem. If % has 
a ty-distal point, TT is an isomorphism. 
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2.7.12. COROLLARY (ELLIS, GLASNER AND SHAPIRO [ 40] ). Let % -** % be as 
in the theorem. If P^ is an equivalence relation (e.g., if proximal is an equivalence 
relation), then % is a proximal extension of % 

2.7.13. COROLLARY (ELLIS, GLASNER AND SHAPIRO [ 40] ). Let % -** % be as 
in the theorem and suppose P^[x\ is countable {e.g., the proximal cell of x is 
countable) for some x. Then IT is an isomorphism. 

PROOF. If ux = x, and if 2(7™:, u) is a perfect set, then any residual subset 
of 2(7TX,W) is uncountable. As Pm[x\ n 2(77*, u) is residual, ^(tnx,u) is not 
perfect, and by Lemma 2.7.8, 9C is an a.p. extension of % Since Rv = Em = A, 
m must be an isomorphism. 

2.8 The canonical tower. Ellis, Glasner and Shapiro [40] attach to an 
arbitrary minimal flow a canonical tower of minimal flows, the relativized 
version of which I shall sketch here. In the case that 9C is a point distal flow 
with metrizable phase space and a residual set of distal points, the Ellis-
Glasner-Shapiro tower reduces to the tower constructed in [146]; when further 
6X is distal, both towers reduce to Furstenberg's [50]. 

Let % -*7r ^ be a fixed homomorphism of minimal flows, and let y E Y, u 
E Jy, x E m~xy be fixed with ux = x. The construction below, which is taken 
from [40], [54], can be shown not to depend on the choices of y, u, x, and 
I C S. Let W = um~xy, T = uly, and let /? again be greater than the density 
character of X. Define sets Aa, x E Aa C W, a < (5 by A0 = W, and if Aa> 
is defined for a! < a, 

a < a 

n 
ueNx 

(a = limit ordinal) 

C1S (̂M) (U H Aa>) {a = a' + 1) 

where Nx are the g(w) neighborhoods of x. Since x E Aa, Aa ¥=• 0 for each a. 
As in the last section there is an ordinal a < ft with Aa = Aa+X. The least 
such a is denoted a(7r). 

Let Z = {2x)aM, and define coa E Z, a < a(ir) by 

<*a(a') 
Cuo Aa,, 
\uo Aa, 

a' < a, 
a' > a. 

Since wwa = coa, ^ a = (G,0(coa)) is a minimal flow. The assignment aaa'(gcoa) 
= g°>a>, g E G, a' < a, extends to a homomorphism % —>aaa' %>. Also, 
define xa Œ X X Z by xa = (x,ua), and let °Xa = (G,0(JCJ). 9Ca is also 
minimal, and there are natural (coordinate) homomorphisms %a —^ \ , °Xa 

~>Ta 9C. For each a, ra is proximal and 7ra is RIC (see [40]). Setting %a 

= %a/E7Fa (= ^a/Qira ^ Theorem 2.6.2) there is a natural diagram 

X « - - - ' i i - - x n 

\ * *<*+! 

xce+l a(7r) 

\ *+ l Ta(7T) 

y y a ^ y a - f l ^a+1 yce(7r (w) 
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in which %a is an a.p. extension of % and \ + l a proximal extension of %a for 
each a. Thus, \ ( * is a PI extension of % As £_ v = RV/ . Theorem 2.6.3 

implies 9Ca(^ is a weak mixing extension of \u). Also, 90^) is a proximal 
extension of 9C. Thus, Theorem 2.1.3 is proved, («(TT) is countable if X is 
metrizable, in which case Xa^ is also metrizable.) Now it can also be shown 
that the diagram 

is the same as (2.3.r). Therefore, if X is metrizable or G a-compact, and if 9C 
has a ^-distal point, Corollary 2.3.6 and the remark preceding Lemma 2.3.8 
imply that for each a, %a+\ is an h.p. extension of %a and %+j an h.p. 
extension of %a. The projective limit of h.p. extensions is also an h.p. 
extension, and Theorem 2.1.5 follows. (That TT^ is an isomorphism is Ellis' 
Corollary 2.7.11.) 

2.8.1 Question. Let 90 be a point distal flow. Does 9C have an invariant Borel 
probability measure? 

The question is open even for a.a. flows (which are point-distal). If 9C is 
distal, the answer is "yes" and was obtained by Furstenberg using his structure 
theorem [50]. This result may be used to generalize the fixed point theorem of 
Ryll-Nardzewski [118] as follows (see [137]): 

2.8.2. THEOREM. Let X be a weakly compact subset of a Banach space B, and 
let 2 be a semigroup of bounded linear operators on B which leaves X invariant. 
7/2 is norm distal on X, the closed convex hull of X contains a fixed point f or 2. 

Appendix. In this Appendix I shall prove Theorem 2.2.1, the discrete case of 
which is due to Ellis. 

Suppose g E G, p E S (G) are such that gp = /?. We are to prove g = e, to 
which end we let gv be a net in G convergent to p. The assumption gp = p 
implies lim,(/(gg,) -ƒ (* , ) ) = 0, ƒ E e. 

Let U be a compact symmetric neighborhood of e, and use Zorn's lemma to 
find a set A Q G which is maximal for the property Ua O A = {a}, a E A. 
Notice that if x E G, then x E Ua for some (possibly not unique) a E A. 
Thus, we may write gv = avav, av E £/, av E A. Passing to a subnet if 
necessary, assume lim^ av = a E U exists. 

Let B = aA = {aa\a E A), where a is as above. If V is a neighborhood of 
e such that V = V~l and a"1 V2a Q £ƒ, then for all b E B, Vb f) VB = {6}. 
Fix such a F, and let bv = aa„, where #„ is as in the preceding paragraph. 
Since \\mvbv{apav)~ = e and gv = a ^ , we have lim^g,,^1 = e- In partic­
ular, if ƒ E 6, 

lim/(Z>„) = lim/te,) = lim ƒ (gg„) = lim /(gft,). 

There are two cases to consider. 
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Case 1. There exist a neighborhood W of e and an index P0 such that 
ggv ÇÈ WB if J> > v0. We may suppose W C K so that if b,b' G B are distinct 
points, Wb H M>' = 0 . Let cp > 0 be a continuous function on G such that 
<p(e) = 1 and <p s 0 on Wc. Define ƒ E 6 by 

f( \ ^ fv(xb~l)> x G Wb,b G B, 
\ 0 otherwise. 

A moment's reflection shows ƒ(x) = max^G5cp(xô""1) for all x, and as the 
family {(p(xb~l)\b E 5} is jointly Lux., ƒ is also l.u.c. Since f(bv) = 1 and 
f(gbv) = 0, we have reached a contradiction. 

Case 2. Passing to a subnet if necessary, assume b'v E B are such that 
lin^g^O;)"1 = <?, so that also \\mvgbv{b'v)~

x = e. Notice that \\mv{f{bv) 
~~ f(K)) = limf,(/(g6„) - f{b'v)) = 0. This will be seen to be impossible 
unless g = e. Call a finite or infinite sequence from B a string if either (a) 
2 = {b} is a singleton, or (b) if whenever b' follows b in 2, then go E Ko'. 
From our choice of V it follows that for each b E B there is at most one b' 
such that (b,b') is a string. Decreasing V if necessary so that g""1 K2g C (/, 
there exists at most one b" E B such that (b'\b) is a strong. These remarks 
imply the set of maximal strings partitions B (although strictly speaking a 
string 2 is not a subset of B because 2 may be periodic). 

If g ¥= e, we may choose V small enough that (/?, b) is not a string, and 
therefore in a maximal string 2, successive elements are distinct. Because of 
this, there exists on 2 a {0,1,2}-valued function ^ with the properties that (i) 
^ = 1 if 2 is a singleton, (ii) \*{b') - ^{b)\ > 1 if b, b' are successive 
elements of 2, and (iii) if 2 is periodic, ^ has the same period. Now "coalesce" 
the different ^ 's into a function on B. If b,b' E B are such that gb E Vb\ 
then (6,6') are successive elements in some maximal string, and \^(b) — ^(6')! 
> 1. Now let <p be as in Case 1 (taking W = V). Define ƒ on G this time as 

f(x) = m&xbGB
<i'(b)(p(xb~~l). Again ƒ E S. By our choice of bv, b'v we have 

gbv E VVV for large p, and therefore (bv,b'p) are successive elements in a 
maximal string for large v. By the choice of bv,b'v, ^ , and ƒ we have 

0 = lim|/(«g,) - f{gv)\ = lim|/(g*,) - fib,)] 
V V 

= lim |ƒ(*>;)-ƒ(M> i-
V 

This is a contradiction and therefore g = e. 
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