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Introduction. This will be a survey of recent developments in two areas of
topological dynamics, “dynamical embedding” (Part 1) and the structure of
minimal flows (Part 2). Part 2 contains some results published here for the first

time.
1. DYNAMICAL EMBEDDING

Any sequence with values in a topological space or a probability space may
be viewed as a “sample sequence” of a (nonunique) dynamical system or
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stationary stochastic process. Such a general observation is of little value, but
there are a number of instances in which the structure of the associated system
is such as to yield new information about the original sequence. I shall
describe a number of applications of this principle, most of which have sprung
from ideas of Furstenberg, in §§1.1-1.14. But first I shall make brief mention
of a recent paper by Furstenberg (received after the present paper was typed),
which provides a quick illustration.

A set A of integers has positive upper density if there exist a > 0 and
arbitrarily long intervals I such that I contains at least || elements of 4,
|1| = length of I. If A has bounded gaps (i.e. is “relatively dense”), one may
take o = L~!, where L is the maximum gap. Van der Waerden’s theorem, one
of Khinchin’s “three pearls of number theory” [163], implies that every
relatively dense set of integers contains arbitrarily long (finite) arithmetic
progressions. It was conjectured by Erdds and Turan that the same conclusion
obtains for sets with positive upper density. Roth [162] proved a set with
positive upper density contains arithmetic progressions of length three (a
nontrivial result!), and Szemerédi, after settling the case of progressions of
length four, proved the general result

THEOREM A (SZEMEREDI [160]). Let A be a set of positive integers having
positive upper density. Then A contains arithmetic progressions of arbitrary (finite)
length.

In [161] Furstenberg makes an equivalent formulation of the Erdds-Turan
conjecture, in the language of ergodic theory, and proves the conjecture in this

formulation. To describe the basic idea, let X = {0, l}z, and let T be the left
shift on X (Tx(n) = x(n + 1),x(-) € X). Identify 4 C Z with the point
x4 € X, x4(n) = x4(n), n € Z, where x denotes characteristic function.
Then let X, be closure {T"x,|n € Z}. It is straightforward to check that if
Yy € X, then any block { y(n)|-M < n < M} occurs somewhere in x, (in
fact, X, is the set of points with this property). Thus, to say A contains an
arithmetic progression of length k is to say there exist y € X, and n > 0 such
that y(0) = y(n) = y(2n) = -++ = y((k — 1)n) = 1; what is the same, if
Uy ={y € X;|y(0) = 1}, then U, N T"U,; N - N Tk-Dy, # & Now
suppose A has positive upper density. An elementary argument proves there is
a Borel probability measure p on X, such that (a) w is T-invariant
(W(T~'B) = w(B) for every Borel set B), and (b) w(U,) > a, where « is as in
the definition of “positive upper density”. Therefore, Szemerédi’s Theorem A
follows from

THEOREM B (FURSTENBERG [161]). Let T be a measure preserving transforma-
tion of a measure space (X, B, u) with W(X) < oo. For all B € B and k > 0, if
w(B) > 0, there exists an integer n > 0 such that

wBn T'BN - n TEk-DnB) >0,

The proof of Theorem B is rather long and difficult, involving in part a new
structure theorem? for measure preserving transformations of finite separable

2 ADDED IN PROOF. The structure theorm itself is due independently to R. J. Zimmer (preprint,
U. S. Naval Academy).
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measure spaces. The latter may be viewed as an ergodic theoretic analogue of
the structure theorem for minimal flows which will be proved in Part 2 of the
present paper. As Furstenberg notes, Theorem B also follows from Theorem
A by an application of the ergodic theorem.

REMARK. The easy case k = 2 of Theorem B is the “Poincaré recurrence
theorem,” which is proved using the shoebox principle. The proof of van der
Waerden’s theorem makes use of the shoebox principle (see [164] for the
easiest proof), while Szemerédi’s proof of Theorem A, in turn, makes use of
van der Waerden’s theorem.

1.1. Uniformly distributed sequence generators. There exist sequences R
= (n,n,...) of positive integers with the following universal property: If G
is any locally compact topological group and a = {a,;n > 1} any sequence
which generates a dense subgroup of G, then the sequence B = {B,}, B,

= a,a, -, n > 1,is “uniformly distributed” in G, in the sense that
M
(1.L.1) lim M~' 3 f(8,) =9()
M—o n=1

exists for every continuous almost periodic or positive definite function on G
(f € &G) or 9(G)). The limit (1.1.1) agrees on &(G) with the Bohr-von
Neumann mean for almost periodic functions and on $(G) with the Gode-
ment mean for positive definite functions [97], [57]. The construction of such
uniformly distributed sequence generators R (u.d.s.g.)’s was given, along with
explicit examples, in [148], [140]. I shall indicate the ideas involved in the next
two sections.

If G is a compact group, then &(G) = C(G), and the notion of uniform
distribution given by (1.1.1) reduces to the generalization of Weyl’s classical
notion made by Eckmann [158], [30]. In this setting it is equivalent to require
of B that whenever U C G is an open set whose boundary has measure 0,
limy_,, M~ M| xy(B,) exists and is the Haar measure of U, normalized
so that G has measure 1.

Whether G is compact or not our notion of uniform distribution is
equivalent to a “Weyl’s criterion”.

1.1.2. PROPOSITION. 4 sequence f3 is uniformly distributed in G if and only if

M
(1.1.3) Jim 7\17,21 7(8,) = 0

in the weak operator topology for every continuous nontrivial irreducible unitary
representation 7 of G.

The proposition is proved by using von Neumann’s approximation theorem
for almost periodic functions and Godement’s representation theorem (a
generalization of Bochner’s theorem) for positive definite functions [97], [57].

Other generalizations (with examples and/or constructions) of uniform
distribution, which generally require that (1.1.3) hold when the kernel of 7 has
compact index (so that 7 is necessarily finite dimensional), have been studied
by Niven [98], Rubel [117], S. Hartman [60], Berg, Rajagopolan, and Rubel
[11], and Benzinger [10]. Another notion, which requires (1.1.3) to hold in the
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strong operator topology, occurs in Rindler [114]. I do not know if u.d.s.g’s
exist for Rindler’s notion.

The following theorem for G = Z corresponds to the classical theorem of
Weyl [158] on the uniform distribution mod 1 of the fractional parts of real
(irrational) polynomials. [ ] denotes the greatest integer function.

1.1.4. THEOREM [151). Let P(n) = ag + ayn + - -+ + a,n* be a polynomial
with real coefficients. The sequence B, = [P(n)] is uniformly distributed in Z if
and only if either (a) k = 1 and a; = 1/q for some integer q, or (b) the
coefficients ay, ay, ..., a; do not lie in a singly generated (additive) subgroup of
R.

The proof of this theorem does not involve dynamics or ergodic theory. In
the sense of Niven the sequence [an + B] is uniformly distributed in Z
whenever a is irrational [98], but in our sense it never is (by (a)).

REMARK. It is an open question, I believe, whether a group G which contains
a countable dense subset also contains a sequence 8 which satisfies (1.1.1) for
every continuous weakly almost periodic function on G (f € W(G)). The
question is meaningful because there does exist on W(G) a unique “invariant
mean” (), and W(G ) contains A(G) U 9(G)[29], [27], [118]. Our construc-
tion of u.d.s.g.’s does imply

1.1.5. THEOREM. Let G be a locally compact topological group. If G contains a
countable dense subset, G contains a uniformly distributed sequence.

1.2. Weak mixing relative to a partition. In what follows (X, %, ) denotes a
probability space and T a measure preserving transformation (endomor-
phism). That is, T: X — X is %-measurable, and W(T~!B) = w(B), B € . If
9 is a separable Hilbert space, %(JC) denotes the group of unitary operators
on JC with the weak operator topology. Given measurable functions F: X
- A(I) and h: X — I, define Vph(x) = F(x)h(Tx). Finally, if P is a
partition of X into a finite or countable number of measurable sets, define a
function to be P-measurable if it is constant on the atoms of P.

1.2.1. DEFINITION [140]. With notations as above, T is weak mixing relative
to P, or simply P-mixing if for any 9 and P-measurable F: X — A(J(), every
% measurable solution to Vzh = h is essentially constant.

If we take 3 = C and F = 1, we see that P-mixing implies ergodicity
(W(Tx) = h(x), a.e., implies A is essentially constant). Also, if a general F is
multiplied by ¢, |[¢{| = 1, the P-mixing condition implies Vzh = {h has no
nonconstant solutions. In particular (taking 3 = C and F = 1 again), T is
weak mixing if it is P-mixing. The spectral theorem may be used to show that
if T is weak mixing, then T is P-mixing for the trivial partition P = {X }.

1.2.2. Question. Do ergodicity or strong mixing (lim,_ .4 N T7"B)
= w(A)w(B) for all A, B € ) have relative-to-P counterparts?

If P is a partition, 77" P denotes the partition T™"P = {T™"A4|4 € P},
and P§ denotes the join P§ = \LoT kP. A typical element of P is
AyN T7'4, NN T™"4,, 4, € P,0<j<n Thus, P{ is at most
countable, as is U, qP§ .

1.2.3. DEFINITION. A point x € X is generic relative to (T, P), or simply
(T, P)-generic, if for every n and B € P{,
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(1.2.4) Jim_ % § x(T"x) = u(B).

If T is ergodic (e.g., if T is P-mixing), countably many applications of the
ergodic theorem imply almost every point x is (7, P )-generic.
The lemma to follow generalizes a principle of Furstenberg [49].

1.2.5. LEMMA [148]. Let x € X be (T, P )-generic, and let F: X — A(K) be P-
measurable. Then either the equation Vph = h has a nontrivial (i.e., not essential-
ly 0) measurable solution, or else

(1.2.6) Jim. » gl (F(x)F(Tx) - - F(T"™ %)) = 0

in the weak operator topology.

The proof of the lemma involves only the definition of Hilbert space and
the fact it is self-dual.

In what follows, P is further restricted to have infinitely many atoms, each
of positive measure, and we order P in some way as P = {B,, B,, ... }. Define
rX - Z+ by r= 2L kxp, (so that r = k on By). Finally, let (x)
= r(T"'x), n > 1, and R(x) = (r(x),(x),..

1.2.7. THEOREM [148], [140]. Assume T is P-mlxmg. Then for every (T, P)-
generic point x, R(x) is a u.d.s.g.

SKETCH OF PROOF. Assume a sequence « generates a dense subgroup of G,
let 7: G — A(IC) be continuous and irreducible, and define F = 7(ay) on By.
Now for any n > 1,

F)F(Tx) +++ F(T"' ) = n(a, )m(a,) -~ m(a,) = 7(B,).

Therefore, if x is (T, P)-generic, and if (1.1.3) fails, (1.2.5) also fails, and
Veh = h has a nonzero solution. This solution must be constant a.e., say
h=we& I, w+# 0. Since u(By) > 0, all k, m(ay)w = w, all k. As 7 is a
continuous representation and « generates a dense subgroup, m(g)w = w, g
€ G. That is, 7 is trivial, and B is uniformly distributed in G.

REMARK. As remarked earlier, (T, P)-generic points exist when T is P-
mixing. The construction of u.d.s.g.’s is thereby reduced to the construction of
T and P (as above) such that T is P-mixing.

1.3. Construction of P-mixing transformations. For every integer m > 1 let
S,, be the transformation of I = [0, 1) defined by S,,x = mx (mod1). S,
preserves Lebesgue measure on I, and if B, is the partition B, = {[j/m,
(J+ 1)/m)|0 < j < m}, the (S,,, B,)-generic points are precisely the normal
members to the base m (m-normal numbers). Almost every number is normal
to every base (Borel [15]).

Examples of normal numbers exist. For example, if m = 10,

(1.3.1) x = .12345678910111213 ...

is normal (Champernowne [21]). For more examples see [25], [26].
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If S is an endomorphism of (X,%®,u), and if ¥ C X is a set of positive
measure, the Poincaré recurrence theorem [59] implies that for almostally € Y
there exists ¢ > 0 with S7y € Y. Choosing ¢ as small as possible there is
defined (a.e) amap T: Y — Y, Ty = S9, called the induced transformation.
T preserves the measure yu normalized on (and restricted to) Y (Kakutani [67]).

Now let Y C I be an open set, and let W = 9Y. Use || for Lebesgue
measure, W, for the e-neighborhood of W, and define a number 8(W), 0
< 8(W) < 1, by

longl
loge

(The number 1 — §(W) is the “upper Minkowski dimension” of W.) Below, T,,
denotes the transformation induced on Y by S,,.. P is the partition of ¥ into
sets for which ¢ (the first return time) = 1, 2, ....

1.3.2. LEMMA [148). Assume 8(W) > 0, and let T,, P be as above. If
F: Y = (%) is P measurable, then any measurable solution to Veh = h is
essentially piecewise constant with ﬁmte range. In case either

(a) Y = (a,b) with (m,a,b) # (2,},2) or (2.1.3), or

(b) Y C (0,1 = 1/m) or (1/m, 1),

h is essentially constant.

When §(W) > 0, W has measure 0, and y is Riemann 1ntegrable In this
case every m-normal number in Y is (T,,, P?) genenc In fact, if x is any m-
normal number, and if SZx € Y, then S7, x is (7,,, P generic.

If Y satisfies (a) or (b) of the lemma, then 7,, is P™).mixing, and if
0< Y| <1, PMis essent:ally infinite. Thus, u.d.s.g.’s exist. In case m = 10
and Y = (3,7), say, P19 is the partition into sets {g = 1}, {g = 2}, ....If
x isasin (1.3.1), then S2x € Y, and R(S2 x) is the sequence ; = 14, r2 = 20

.. Thus, we have a concrete u.d.s.g.

s(W) = 11m mf

1.4. Well distributed sequences. Hlawka [65] has introduced the notion of a
well distributed sequence in a compact group. The extension of the notion to
arbitrary topological groups G is as follows: we say B = {8, } is well distributed
in G if for all f € &(G) U 9(G),

M
(14.) Jim 37 S J(Buek) = O

holds uniformly in & > 0.

If G is a compact group which contains a countable dense subset, then
according to Rindler [114], [115], G contains a well distributed sequence. The
corresponding result for noncompact G seems to be open. In particular, it is
open whether “well distributed sequence generators” (w.d.s.g.’s) exist (the
definition is obvious). I shall make a few remarks on the problem.

Call the point x in Definition 1.2.3 (T, P )-strictly generic if when T"x is
replaced by T"**x, (1.2.4) holds uniformly in k > 0. Now the analogue of
Theorem 1.2.7 is true: If 7 is P-mixing, and if x is (7, P )-strictly generic, then
R(x) is a w.d.s.g. This is essentially proved in [148]. The problem now is that
in the known examples, e.g., §1.3 and [148], [140], there are no strictly generic
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points. On the other hand, in certain settings where there are strictly generic
points, weak mixing and, hence, P-mixing fail [140].

1.4.2. DErINITION. [86], [100]. Let X be a compact metric space and
T: X = X a continuous map. The “cascade” X = (T, X)) is uniquely ergodic if
there exists a unique Borel probability measure on X which is invariant under
T.

Invariant measures will always exist [86], and therefore the important
condition in the definition is the uniqueness. If % is uniquely ergodic, and if u
is the unique measure of the definition, then T is ergodic relative to p [100]. It
follows from the work of Oxtoby [100] that if U is an open set with u(dU) = 0,
then all points x are (T,{U, U¢}) strictly generic. If u is not atomic, there will
exist an infinite partition P, all of whose atoms have positive measure, with the
property that all points are (7, P)-strictly generic.

1.4.3. Question. Is it possible to find % uniquely ergodic and P as above such
that 7 is P-mixing?

Recall that T is weak mixing if it is P-mixing, and therefore % must be
rejected if T is not weak mixing relative to u (or if p is a point mass; i.e., if T
has a stationary point). In this regard there is a remarkable theorem due to R.
Jewett:

1.4.4. THEOREM (R. JEWETT [66]) . Let Ty be a weakly mixing automorphism
of a Lebesgue probability space (Y, B, v). There exists a uniquely ergodic cascade
X = (T, X), with X the Cantor set, and an invertible measurable map p: Y — X
such that o1y = To a.e.

If we define gp(4) = »(p~'A4) for every Borel set A C X, then v = pis the
unique invariant probability measure for 7. Therefore T is weak mixing
relative to p.

Jewett’s theorem was extended to ergodic 7y by Krieger [85], to weak mixing
one parameter flows by Jacobs [65], and to ergodic flows by Denker and
Eberlein [28]. See also [84] for more references.

It is probable that w.d.s.g.’s can be constructed using certain nonweak
mixing transformations. For example, let # € R be irrational, and define
Tx = x +  (mod 1), x € [0, 1). Take P to be a finite partition P= {[t,_;,1;)|
1<j<nf, where0 =t <f <--+<t,=11Iconjecture that if the z/’s
are rational, then, for all x, R(x) is a w.d.s.g. Since R(x) assumes only values
1,2,...,n, “w.d.s.g.” is in the sense that if G contains a = {ay,...,a,} which
generate a dense subgroup, the associated sequence 8 is well distributed in G.
Thus far the conjecture has been verified for finite groups G under an
additional assumption on # ([142] that it have bounded partial quotients in its
continued fraction expansion).

For example, if G is the permutation group on k letters, G, is generated by
a_; = (12) and o) = (23 - - kl). If we take n = 2,1, = }, and § = /5, the
result mentioned above implies that the sequence B, = HJ(=| Oggn cos 2ajy/5 15
well distributed in G,. I do not know a direct proof of this fact.

1.5. A theorem in Diophantine approximation. Let £ = {; < 0, < -+ -} be
an increasing sequence of integers. A theorem of Weyl implies that, for almost
all x, Zx is uniformly distributed modulo 1, where £x = {g,x}. On the other
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hand, given any irrational number x, one easily constructs = with bounded
gaps such that Sx is not even dense modulo 1 (e.g., g,x € (0,3) mod1).
However, if 2 is a multiplicative semigroup which is not lacunary, that is, Z is
not contained in the set of powers of a single integer, the situation regarding
density is as nice as possible.

1.5.1. THEOREM (FURSTENBERG [48]). Let = be a nonlacunary semigroup of
positive integers. For every irrational number x the sequence Zx is dense modulo
1.

If = is lacunary, it is easy to see that the set of x such that Zx is not dense
has Hausdorff’ dimension 1 (but measure 0). In the case of such sparse, but
nonlacunary, semigroups as = = {(2"3™)|n,m > 0}, for which the theorem
was new, it was noted in [48] that there exist irrational x such that Zx is not
uniformly distributed.

I shall outline Furstenberg’s proof in the next two sections, partly for the
purpose of describing his notion of “disjointness™ in topological dynamics.

1.6. Disjointness in topological dynamics. In what follows X = (Z,X), ¥
= (2,Y), ... will denote flows; i.e., actions of a fixed semigroup Z (the phase
semigroup) by continuous transformations of compact metric spaces X, Y, ...
(the phase spaces). The image of x € X,y € Y, ... under ¢ € Z is denoted
X, OYs o ...

Given flows X; = (£,X)),j = 1, 2, the product X; X X, = (£,X; X X;) is
defined by o(x;,x,) = (06x,0x3). A homomorphism X —" % is a continuous,
equivariant (76 = om,6 € X), surjective map m: X — Y. ¥ is said to be a
factor of . For example, %; and %X, occur as factors of ¥X; X X, via the
projections onto the respective coordinates.

% is a minimal flow if the phase space contains no proper closed invariant
set, or equivalently, if every orbit (2 x) is dense. It is straightforward to prove
that any factor of a minimal flow is minimal. On the other hand, the product
of two minimal flows is not usually minimal. For example, in % X %X the
diagonal is a closed invariant set which is proper if % is not trivial.

1.6.2. DEFINITION (FURSTENBERG [48]). %; and %, are disjoint flows if for
every pair of homomorphisms X —% %, j = 1, 2, the map m X m,, defined by
m X m(x) = (m(x), m(x)), is also a homomorphism (i.e., surjective).

A useful “internal” criterion for disjointness is contained in the following
elementary proposition.

1.6.3. PROPOSITION [48]. %X, and X, are disjoint flows if and only if no proper
closed invariant subset of X| X X, projects onto X,, X, under the coordinate maps.

The proposition implies disjoint flows are relatively prime, i.e., have no
common factors. For if %;, %, are disjoint, and if X, =7 ¥, j = 1, 2, are
homomorphisms, define A C X X X, to be the set of (x,x,) with 7 x
= mXx;. A is closed and invariant and projects onto Xj, X, under the
coordinate maps. Therefore A = X; X X,, and ¥ is trivial.

Relatively prime flows are not necessarily disjoint, and therefore there is no
“Chinese Remainder Theorem™ for flows. (The reader will find it instructive
to verify that the Chinese Remainder Theorem asserts that the natural flows
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(Z,Z/aZ), (Z,Z/bL), a, b € Z — {0}, are disjoint if they are relatively prime,
ie., (a,b) = 1.) For one thing, if %, X, are disjoint, at least one must be
minimal. But even when both are minimal, disjointness does not follow from
being relatively prime [83]. However, it is an open question whether relatively
prime minimal flows with abelian phase semigroup are disjoint, or, equivalent-
ly, if their product is minimal.

A flow %X is topologically transitive if every proper closed invariant set has
empty interior. If = is a group, topological transitivity is equivalent to the
existence of a dense orbit (Hedlund [63]) and in any case implies the set of
x € X with dense orbits is residual.

1.6.5. DEFINITION [48]. % is an F-flow if there exists a sequence {F,} of finite
subsets of X such that (a) U,F, is dense, (b) F, is invariant, and each ¢ € =
is one to -one on F, and (c) it =) — {o € 2|ax = x,x € E}, then X®

= (=™, X)) is topologically transitive.

One can prove every factor of an F-flow is an F-flow and every minimal F-
flow is trivial. Therefore, every F-flow is relatively prime to every minimal
flow. In this case disjointness is implied when X is abelian:

1.6.6. THEOREM [48). Ler X and %X, be a minimal flow and an F-flow,
respectively. If 2 is abelian, X, and %, are digjoint.

SKETCH OF PROOF. Let A C X| X X, be a closed invariant set which projects
onto Xj, X, under the coordinate maps. By Proposition 1.6.3, it will suffice to
prove A = X; X X, and this will follow if we prove X; X F, C A for all n (by
(a)). To this end, fix n and choose a =" minimal set M C X, (nonempty,
closed, = invariant and minimal with respect to these properties; use Zorn’s
lemma). As = is abelian, oM is =) mlmmal for all 0 € =. Moreover, if
0|F = TlF,OM = M. (If ' =id on F, or' € 6= N =™ and so oM
N Tt™M # Q Minimality under =) 1mp11es they are equal.) It follows that if
0y, ..., 0, is a complete set of representatives for [, U J oM is 2
invariant, hence all of X; (as %, is mlmmal) Now to prove X] X F, C A, itis
enough to prove M X F, C A, since UX Ji=10; (MXFE)=X XE,. To this end,
choose x, € X, with dense 2(") orbit (b%r $) For some x; € X,, (x;,x) €A
by hypothesis, and if, say, x; € o; M, ZV" (x, x3) €A N (o;M X X;). Denot-
ing its closure by A’, the choice of X, implies A’ projects onto X, in the second
coordinate. Now choose o so that oojl = id. Then A" = ¢0;4" C (M X X3)
N A, and as 6X, = X, (by (a) and (b)), "A” also projects onto X2 in the second
coordinate. Therefore, if y € F,, there exists x € M such that (x,y) € A.
Since = x is dense in M and Erz”)y = {y}, M X {y} C A. Therefore, M X F,
c A

1.7. Proof of Theorem 1.5.1 [48]. If = is a multiplicative semigroup of
positive integers, there is a natural flow X = (2,X), X = [0, 1), defined by
x = ox (mod1). If = # {1}, almost every point has a dense orbit, and
therefore 9 is topologically transitive. Further, if there exists a prime p such
that (p,0) = 1,0 € Z, the sets F, = {j/p"|0 < j < p"} enjoy properties (a)
and (b) of the definition of an F-ﬂow and therefore XX is an F-flow. If no such
prime exists, replace 2 by a smaller semigroup for which one does. This can
be done without destroying nonlacunarity.
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If 2={ <o,<--+} is nonlacunary, it can be shown that
lim,_, (0,/0,41) = 1, and this readily implies that if a closed invariant set 4
has a rational cl/uster point, then 4 = X. In particular, if B is closed, invariant,
and infinite, A = B — B is closed, invariant, and has 0 as a cluster point.
Therefore B — B = X.

Now let x € X be irrational, and let Y = Zx. In Y we choose a = minimal
set M. If M is finite, £ is transitive on M, and this implies M consists of
rationals. These must occur as cluster points of Y, and therefore Y = X. If M
is infinite, then by the above, M — M = X. But this cannot happen. In fact,

1.7.1. PROPOSITION [48). With notations as above, suppose M is a = minimal
set and B a closed invariant set such that M — B = X. Then B = X.

PROOF. 9 = (2, M) and X are disjoint by Theorem 1.6.6. Let Z = M X B
and € = (Z,Z) be natural. The maps m(m,b) = m and m(m,b) = m — b
define homomorphisms € —% %. By disjointness m X m(Z) = {(m,m — b)|
m e M,b € B} = M XX, and this clearly implies B = X.

In the special case B = M above, M = X is impossible (because X is not
minimal). Thus, M is finite, and Theorem 1.5.1 is proved.

1.8. Quasiregular points and generic points. In this section I shall describe
some recent work on generic points for cascades X = (7, X) (§1.4), some of
which will also play an important role in later sections. The notion of
genericity is slightly different from, but in the same spirit as, the notion in
earlier sections.

Call a point x € X quasiregular for X if for all f € C(X) the limit

M
(1.8.1) Jim_ % gl f(T"x) = A (f)

exists (Krylov-Bogoliouboff [86]). If u € % (<X), the set of invariant Borel
probability measures on X, then u almost all points are quasiregular. This is
proved by applying the ergodic theorem to a countable dense subset of C(X ).
Since ?,(X ) # O, quasiregular points exist.

To each quasiregular point x there corresponds a unique p = p, € % such
that

(18.2) M) = [ S Omdy)  (f € C(x)).

We sometimes write A, = Ak.

A point x is generic for p € 9, if x is quasiregular, and A, = A%. Every
quasiregular point is generic for some p, and if p is ergodic (= an extreme
point of the convex set ¢ [13]), p-almost all points are generic. If u is not
ergodic, the set of p-generic points has y-measure 0 [101] and may even be
empty (as for example happens when T is the identity).

If X =1[0,1) and Tx = rx (mod1) for some r > 1, then every u € %
possesses generic points (Ville [152]). In fact, Colebrook [23] has proved that
if uw € %, the Hausdorff dimension of the set of u generic points is
hM(T)/logr, where #,(T') is the entropy of T with respect to p (defined in a
later section). See also Volkmann [153]. A theorem of Parry [102] implies this
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dimension is 1 only if u is Lebesgue measure (and the u-generic points are the
r-normal numbers).

Now let © be a compact metric space, and let X = Q@ or Q% (N
= {1,2,...}). The left shift is defined by (Tx), = x,., X = {x,}. In this case
Kakutani has proved each u € @, has generic points (Oxtoby [101]).

If x € X, q > 1, define ,uf{?) to be the average of the (Dirac) point masses
atx, Tx, ..., T97 ' x. To say x is generic for u is to say lim,_,, ,u&") = u in the
weak-* topology. To prove Kakutani’s theorem let p € %;(%X). By a theorem
of Parthasarathy [103], [101] there exists a sequence x; of periodic points,
T%x), = x;, such that the (invariant) measures uﬁk) converge to p. A p-
generic point x is constructed by letting x agree with x; in coordinates
I, ..., 4, withx,int; + 1, ..., ff + t,, etc.,, where ¢, t,, ... are appropriate-
ly chosen (large multiples of g, ¢,, ...). To discuss generalizations, a version
of Bowen’s notion of “specification” is necessary (Bowen [18]-{20]). The
definition below is taken from Sigmund [133]. %X denotes a cascade and d(-, *)
a metric for X.

1.8.3. DEFINITION. X satisfies specification if for every € > 0 there exists
M () < oo such that the following is true: if x,, x, € X, [a;,b;] C Z (or N),

J = 1,2, and p are such that (i) a, — b; > M(e), and (ii) p > b, — a; + M(e),
then there is a point x with period p such that for all / € [a;,5;],/ = 1, 2,
d(T[x, Tlxj) <e

Examples of cascades which satisfy specification are the left shift (obvious)
and a hyperbolic automorphism of the n-torus (not obvious), i.e., one whose
associated n X n integer matrix has no eigenvalues on the unit circle. For
discussion of these other examples, see [19], [133].

Let X be any cascade. ¥;(%X) is weak-* compact, and therefore if x € X,
the set, V(x), of weak-* cluster points of the sequence {u?|g > 1} is a
nonempty compact subset of %;. ¥(x) may also be seen to be connected. Of

course, x is quasiregular precisely when V(x) is a singleton.
[ now state a theorem of Sigmund, a special case of which was proved (with
a quantitative statement) by Colebrook [23]. See also Eggleston [31].

1.8.4. Tueorem (K. SIGMUND [133]). Assume X satisfies specification. If

V C ¥ is nonempty, closed, and connected, there exists x € X such that
Vix) = V.

For the proof one makes use of the fact that the set {u\?|T9x = x,q > 1}
is dense in %, [132], which generalizes the Parthasarathy theorem, to construct
a sequence xy, gy, T%x; = x; and weak-* neighborhoods (in ;) W, of y&‘l’(k)
such that (a) V is the set of cluster points of {(uggf))lk > 1}, (b) W, N Wiy
# &, all k (this uses connectivity of V), and (c) W, — w«’ “converges” to 0.
Now if [ay, b, ], k > 1, are suitably chosen, the specification property may be
used to prove that there exists x € X such that

lim max d(T'x,T'x;) =0

k—o0 ay <l< bk
(“orbit specification lemma” [133]). For this x one uses (a)-(c) to prove
V(x) C V and if certain additional conditions are satisfied (e.g., the sequences
/by, (@41 — by) /(b — ay), and (gx—y + qi)/(bx—y — ;1) converge to 0),
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then V(x) 2 V. (If each ¢, is taken to be prime, then Vj(x) = V, [ > 1, where
Vj(x) is formed from (7", X) [23], [133].)

If % satisfies specification, then X contains a dense set of periodic points,
and % may be seen to be topologically strongly mixing ([133]; if U, V # & are
open, then U N T™"V # & for all large n). The second property implies for
each / > 0 that T’ is topologically transitive, and therefore % is an F-flow
(81.6). However, Sigmund’s theorem is not true for F-flows. Weiss has
constructed an F-flow X and nonempty open sets ¥, C X, n > 0, with the
property that for any x if {7 x} visits each ¥, n > 1, with positive frequency,
it visits ¥ with 0 frequency [157]. If {x is a dense set of periodic points with
periods {g;}, then p = 352, 274~ lzqk € P, assigns positive measure to
every nonempty open set. Thus, u has no generic point. (Also, there is no
ergodic measure which is positive on nonempty open sets.)

1.8.5. Question. Do the quantitative theorems of Colebrook have generaliza-
tions; for example to hyperbolic automorphisms of the torus or to subshifts of
finite type [102]?

Kamae [68] has generalized the Ville-Kakutani theorem in a direction which
has deep applications. Let X be a cascade S C N an infinite set, and let ¥5(x)
be the set of weak-* cluster points of {u)|n € S§}.If S = N, VS = ¥, and
in any case VS C V. Denote by T, C 2V the set of S such that V'S(x) is a
singleton, i.e., lim,,_, o nES“‘Sc ") exists, and let 1S be the limit.

In what follows X, is the left shift on X; = SZN,/ = 1 2,and if » € F(X),
X = %, X X,, 7| X denotes the pI‘Q]CCthI’l ofronX,j=1,2.

1.8.6. THEOREM (KAMAE [68]). With notations as above let v € 9,(X) and
B € X; be such that ,uﬂ = |y, for some S € Ig. There exists a € X, such that
S € Iy py and u(a g = v If Z\ x, is ergodic, a may be chosen generic for it.

When X, is trivial and § = N, the theorem reduces to the Ville-Kakutani
theorem. In his proof Kamae employs a separate result, which I shall not state,
to derive the second statement from the first. Below is a sketch of the ideas in
the proof of the first part.

The basic idea is to construct a sequence {a;} C X; with the property that
if W is any neighborhood of », then ¥S((ay,8)) C W for large k. Then, as in
previous arguments, a is built up from {a;} by letting it agree with a; on
[1,4), &y on [, 1;), etc. The essential point of the construction of {a,,} lies in
finding, for one fixed W, a point a with ¥S((a. 8)) C W. It is convenient (and
no loss) to assume W has the form W = {v e || (F,v') — (F,v)|< ¢}, where
F is continuous on X; X X, with values in R/, some / > 0, and (-, -) denotes
bilinear pairing of measures and functions. It may further be assumed that
F(x,p) = F((x),..,%,)( y§ .+,Y,)) depends only upon the first g coordi-
nates. Now a will sat1sfy ((a, B) ) C W if and only if

(1.8.7) lim sup (FpPs) = (Fv) < e.

Kamae constructs a probability measure A on X; (not invariant) with the
property that (1.8.7) holds for A-almost all a. The essential difficulties are
already present when £, is finite, which I now assume.
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To construct A, auxiliary numbers L >> g and M = RL > L are chosen to

de(pend upon g and e. The coordinate functions on Xl) % are denoted

,j = 1,2, starting from the zeroth n = 0.8, = ®(X), X¥,...,X2)),

the o-algebra of subsets of X, generated by the ﬁrst L coordmate functions,

may be regarded in a natural way as a o-algebra in X; X X;. In particular, the

conditional expectation E(- |%; ) on X; X X, (using ») is defined, but may also
be regarded as a %; measurable function on X;. Now define

F(x) = F(T'(x,B)), x€X,i>0.

The measure A will be constructed with the properties (1) if i # j, the M-tuples
xS, ..., x5, 1) and X; W, .. S‘)Jr ym—1) are independent, and (2)

L_
(1.8.8) Ifxl FA— (—L—:H—l) E(F o T'|9,)(T"'B)|< = 3

wheneverL— 1 <i-[i/M[M < M-L-q1f0<1t<L- g, the facts
,3 = le andv € @1(%) lmply

(1.8.9)
lim & 3 E(F o T'10,)(TB) = [, E(Fo T'18,)u

n—oo N
nes

= E(Fo T'|® ) = |,

F TI Fi
o] V = .
X XXZ /\’] XXZ f d

XXX,
It can be assumed the set of i for which (2) holds has density at least
1 — &/3, and that ||F|| < 1, and therefore by (1.8.8) —(1.8.9)

Fv
f XXX,

By the 1ndependence assumption (1) and the strong law of large numbers,
lim,_,,n~ ! 34 (F - Sx, EA) = 0, and since F(a) = F(T*(a, B)), it follows
that (1.8.7) holds for A- almost all a € X .

To construct A, view SZ, as a product of “clumps” " = QM x QM x - .-,
and define A = 1y X m; X -+ as a product of measures deﬁned on the clumps
(This makes the mdependence condition automatic.) Now 7, 1s constructed as
an average of L measures of, 0 < ¢ < L, where for each 1, o¥ is constructed
by viewing Q¥ as a product of R + 1 clumps (RL = M),

<e.

(1.8.10) lim sup

n—o0
nes

QIM= Q]’XQ]LX"'XQILXQIL_I,
R -1

and writing of = X7 X+ X1 Now 7, and 7z are arbitrary (e.g.,
T = 7!, 7 = wL" for some probablhty measure on SZ,) If 1 </ <SR-17
is defined as the conditional distribution of (X0 D,. (')l) given

(XO(Z),”-,X(Z—)I) = (Br?:BrH""aBr-FL—l)’ m=kM + 1+ (j_ ])L'
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If L-1<i< M-L - g, then because F depends only on the first ¢
coordmates (1n both factors X], X;), the 1ntegra1 (F; )\) is etfectlvely an integral
(F,mg), where k = [z/M] Secondly, n;, = L™! E: -~} 6k, and for all but at
most g values of ¢ (F;,d*) equals one of the summands in (1.8.8). This gives
some idea as to why (1.8.8) is true.

1.8.10. Question. To what extent does Kamae’s theorem generalize? Is it true
when ¥, satisfies specification and %, is arbitrary?

1.9. Normal sequences and collectives. Von Mises [94] defined a collective to
be a sequence x = {x,} of zeros and ones in which 1 occurs with relative
frequency (say) 4, and such that if 7 = {r(1) < 7(2) < ---} is any “selection
rule”, 1 also occurs in x o 7 = {x,(,)} with frequency 1. Such sequences cannot
exist, but if the notion is suitably modified, they do. The definitions by Weiss
and Kamae below are similar in spirit to one by Wald (Ville [152]).

Let £ be a compact metric space, and let % = (T, X ) be the left shift on
X = QV. If A is a Borel probability measure on €, a sequence x € X is A-
normal if it is generic for p = AN (= AXAX--:). If 7= {z(1) < 7(2)
< ++-}is a selection rule, a A-normal sequence is a 7-collective if x o 7 is again
A-normal [68]. Of course, if 7 is fixed, p-almost all x are 7 collectives.

There is a natural one-to -one correspondence between selection rules 7 and
points £ = £, € {0, l} which have infinitely many ones. We say 7 is
deterministic if for every » € V() (relative to the left shift) the partition

= {49,4,}, 4; = {£|£(0) = j}, is measurable (v) with respect to P/°
= V2T JP For example, if a > 1 the selection rule 7(n) = [na] may be
seen to be deterministic.

Next, 7 is said to be admissible if limsup,,_, ., (7(n) /n) < 0.

1.9.1. THEOREM (WEIss [156], KAMAE [68)). Let 7 be a selection rule which is
both admissible and deterministic. Then for any Q, N\ every A-normal sequence is
a 7 collective.

It was conjectured by Weiss that the converse to the theorem above would
be true. The remarkable fact that it is true was proved by Kamae.

1.9.2. THEOREM (KAMAE [68]). Let 7 be a selection rule, and let X be a
nontrivial probability measure on Q. If every A-normal sequence is a T-collective,
then 7 is deterministic.

If one thinks of a selection rule as a “strategy”, then the rules above are very
special, being the same for any sequence encountered. Weiss and Kamae [69]
define a set S C {0,1}* = UX_,{0,1)" to be a selection rule, the “rule” being
that x; is selected if and only if (x;,x,,...,x;,_;) € S. See [69] for a number
of interesting examples and questions.

1.10. Disjointness in ergodic theory. In this section 9, %, ..., unless
otherwise specified, denote processes, i.e., endomorphisms T of probability
spaces (X, By, pny), (Y, By, py) - - . The notions of product, homomorphism,
factor, etc., carry over naturally to processes. For example, X -7 % is a
homomorphism if m: X — Y is measurable, muy = py, and 77 = T a.e.

Processes X, and X, are digjoint if whenever X =7 X;,j = 1,2, are
homomorphisms, m X m, is also; that is, m X mpy = py X py, (Furstenberg
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[48]). Disjointness may be viewed as absolute independence” because it is
equivalent to require that = 'GBX and my °BX be independent sub-o-algebras
of By . Disjoint processes are relatlvely prime (a fact which is not trivial in the
case of processes), and if two processes are disjoint, at least one is ergodic
(compare with the corresponding fact for flows).

It is necessary now to recall the notion of entropy in ergodic theory. Define
(t) = —tlogt, 0 < ¢ < 1, with 0log0 = 0. If P is a finite partition of X (all
partitions are measurable), define the entropy of P by H(P)
= Ygep n(u(B)) Then, letting P§ be the join \V/.,T /P, the entropy of T
relative to P is defined to be W(T,P) = hm,,_,w(jH (P§)/(n + 1)), the limit
existing. Always, 0 < A(T,P) < H(P), and A(T,P) = 0 if and only if P is
measurable P° = VZ| T ~J P (that is, P is deterministic relative to T). Finally,
W(T), the entropy of T (Kolmogorov-Sinai invariant) is supph(T,P). If
Py = By, or if T is an automorphism and P% = By, then /(T) = (T, P)
(Kolmogorov-Sinai theorem). For a discussion of the elementary properties of
entropy, see Walters [155].

When more than one invariant measure is considered on the same space,
dependence of entropy upon the measure will be expressed by #,(T, P), 4,(T),
etc.

A process X is deterministic if (T) = 0. It is a Pinsker process (process with
completely positive entropy) if h(T, P) > 0 whenever P is a nontrivial partition.
As noted in [48], “Pinsker’s Lemma” is equivalent to the following:

1.10.1. THEOREM (“PINSKER’S LEMMA”). If X, and X, are, respectively, a
Pinsker process and a deterministic process, then Xy and X, are disjoint.

Pinsker processes include Bernoulli shifts (the left shift relative to p = AN
or AE), ergodic automorphisms of tori, and x — rx (mod 1), while deterministic
processes include affine transformations of the torus (x — x5 + ox,0 an
automorphism, x, fixed) such that the integer matrix associated to ¢ is
unipotent. See [135] for a proof of Pinsker’s Lemma.

1.10.2. DerFINITION. Let X = (T,X) be a cascade. A point x € X is
deterministic (relative to T) if h,(T) = O for all p € V(x).

In the special case that T is the left shift on 2", Q, = {0,1,...,r — 1},
Rauzy [111] has given an interesting and useful characterization of determin-
istic sequences. For each s > 0 denote by E; the set of maps &; — Q,. Given
x = (xg,X1,...) € X and M, s > 0, define

(1.10.3)  By(x, M) —ggg i 2 min(L, [X, = @Xp4 10+« oo Xpas)l-

If x is periodic with period < s, B,(x, M) = 0. The lim sup and lim inf, as
M — oo, of (1.10.3) are denoted B;(x) and B’;(x). These quantities are
nonincreasing in s, and their limits, as s — oo, are denoted B8'(x) and B8”(x)
(“lower noise” and “upper noise” of x). Always,

<BE) <P < (r—1D/r.

1.10.4. ProposiTION (RAUZY [111]) . x € X = QY is deterministic if and only

if B"(x) = 0.
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For example, suppose x is deterministic, and fix ¢ > 0. For each p € V(x)
there exist, because 4,(T) = 0,s and ¢ € E; such that if f(y) =
@(YosV1s -+ >Y-1), then ﬁXO = Tflh < e, where X is the Oth coordinate, and
||| is with respect to u. By the weak-* compactness of V(x), there is a finite
set {(s;,¢ € Ey)} such that sup, e, min;|Xo - Tprjlh <& Now let s
= max;s;, and choose § C N so that éas B"(x) = lim,_,.,esB’5(x,n), and
(b) S € T, (3 exists). If (s;, ;) is associated to u5 above, then as s; < s, there
is ¢ € Egwith f, = f,. Now

. 1 n ”
e> ||Xy - qu;”l = nanc}o ;jgl Ixj - (P(xj+|’ oo ’xj+s)| > Bs(x).
n

ES

Thus, B”(x) < B%(x) < &, and letting ¢ = 0, 8”(x) = 0. The converse has a
similar proof.

ExaMPLE (Rauzy [112]). Let r = 2 and define xy = 0, x, = |u(n)|, n > 1,
where () is the Mdbius function. If p is prime, define »,(n) = 1if p>tn, = 0
if p*|n. Then x, = ], 5,(n). If 1 > 0, define x{) = T],<,»,(n). Then x*) is
periodic of period s(/) = II,<; p?, and x{) # x, only if g2|n for some g > L.
Define ¢ € E ), first as o(y,) = x¥), where y, = (xf,’l,, .. ,xf,Qs(,)), 0<n
< s(1). It is elementary that the points y, are distinct, and therefore for any m,
if 2,y = (Xpyg1s - -+ » Xy () there is a unique 7 such that z,,y, = y, (multiply
coordinate-wise). Define ¢(z,,) = ¢(,), and then extend %) arbitrarily to E,.
Now ¢(z,,) = X, if and only if x!) = x,,. As the set {m|x{") # x,} has upper
density at most 3, 1/42 < 1/1, we have Bs)(x) < 1/1. Letting / > oo, B"(x)
= 0, and x is deterministic.

It follows from the Weiss-Kamae theorem and the above that if .q;a,4a; - - -
is a normal number to some base, then so is the number

@) aya3asarapa a3 ..

1.11. The theorems of Weiss, Kamae, and Rauzy. I shall first sketch a proof
of Weiss” Theorem 1.9.1, following Kamae. It is sufficient to prove that if 7 is
an admissible and deterministic selection rule, and if x is a A-normal sequence,
then for alls > 0 and f € C(Q°),

N ;
(1.1L1) Jm 57 3 FOy s X)) = Jo I

(All sequences will be numbered beginning with 1.) The case s = 2 is typical.

5 denotes the left shift on @V x {0, 1}". Let A C {0, 1}" be the sequences
with infinitely many 1’s, and set A’ = A U {0}. One verifies easily that
v @V X A') = 1forall » € $,(%). Therefore, if we associate to £ € A the rule
7(n) = index of nth occurrence of 1 in £, the function on QN x A,

I Oiye) D) =1,
g(y,é)—{o’ ¢ K1) = 0,

being continuous is continuous a.e. ». In particular, if 5, — » weak-*, then
(g,%) > (87)

Let A, = {¢ € Al¢(1) = 1}, and let A,,, m > 2, be {£ € A, |%(2) = m}.
Then A, = US_,A,.If » € V((x,£,)), then because x is A-normal and 7 is

(1.11.2)
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deterministic, »|oy = AV and v| ony = i satisfies h,(T) = 0. By Pinsker’s
Lemma, » = A" X u, and by (1. 11 ),

(111.3) (87 = 3 wA)(ER) = ud) (),

Now let S C N be any sequence such that as M — oo, M € §, the left side
of (1.11.1) converges to some number « and the measures ,u(,(c g; converge to
some »=AVxp It will suffice to prove a = (f, )@) Note that
limy,, o0 ppes(M/7(M)) = w(A,) > 0 because 7 is admissible. Now write

1 M 1 "(M)-1 )
2 S ) = 37 2 8(T08)
(1.11.4) ( | ey
(M
=G 2 AT

By (1.11. 3) and the preceding remark, the terms on the right approach
B " pAy,) - (X)) = (fN) as M = 0, M € S. Thus, a = (£,X),
and (1.11.1) holds (for s = 2).

Kamae’s theorem, Theorem 1.9.2, is considerably deeper, relying both on
the machinery developed in §8 as well as on the following generalization of a
theorem of Furstenberg, in Wthh as Kamae notes, there was a gap. Let

= (T,2"), %, = (T,{0,1}") be the shifts.

1.11.5. THEOREM (FURSTENBERG [48], KAMAE [68]). Let p € P;(X,) be such
that h,(T) > 0. If \ is nontrivial, there exists v € %,(%) such that v|gy = AV
and vr{o gy = but the first coordinate functzons X, (x,y) = x; and Y (x,y)
= y, are not independent. (In particular, v % AV X p.)

Suppose now that 7 is a selection rule and that every A-normal sequence is
a 7 collective. We shall derive a contradiction from the assumption that some
p € V() has h,(T) > 0. Fixing such a p, choose » € (X)) as in the

theorem. If § € T; is such that u = u, then by Theorem 1.8.6 there exists a
A-normal sequence x such that u(x ) = ». Because X;, Y are not independent
(and Y is 0, 1 valued), there exists f & C(Q) such that (¥ fe X;,»)
#* ,u.(Aoo)( £,A). Now if L, = Card{m|r(m) < n}, then L,/n tends to u(A,) as
n—>co,n €S Coupling this with the assumed normality of x o 7, we have

. 1 n . .
Gif o Xi,0) = lim 2 3 ¥ () /(T)
nes /7

1
o L Z__lf(xf(m)) = w8 ) (LN
nes
which contradicts the choice of f.
Rauzy has used the work of Kamae to give a remarkable solution to a
problem about normal numbers posed by Mendes-France [93]. Define B(r) to
be the set of » normal numbers and B~ (r) to be the set of x € R such that

x + B(r) C B(r). It can be shown that B*(r) is a linear subspace of R over Q,
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and since it clearly contains 1, it contains Q. If x is irrational, associate to it
the r-ary expansion of its fractional part, x = .b;by ... (mod1), and let
b = (b,by,...) € Q. Call x deterministic to the base r if b is deterministic
for the shift, and let D(r) be the set of r-deterministic numbers (U Q). The
theorem of Rauzy is

1.11.6. THEOREM (G. Rauzy [111]). B (r) = D(r).

In a later paper [110], Rauzy characterizes those sequences {x,} of real
numbers with the property that whenever y = {,} is uniformly distributed
modulo 1, {x, + y,} is also uniformly distributed. The condition is rather
natural, but complicated to state, and the reader is referred to [110] for further
details.

1.12. Regularity and irregularity of uniform distribution. Let K = R/Z, and
let # € K be irrational. If I € K is an interval, define S,(0,7)
= 2;’;6 x;(/j8). By the Kronecker-Weyl theorem,

(1.12.1) lim .Sl'_(_‘s”_rll:__") =11

n—>0

holds uniformly in x, where || is the length of 1. Below we shall consider more
delicate questions about the sequence {S,}.

Consider, for example, the sequence S,a — ng for any fixed a, B € R. If f
is defined on K by

f= eZwi(a—-B)Xl + e~2m’,BXl“
and if f®(x) = f(x)f(x + 8)++f(x + (n — 1)8), then

FO(x) = exp 27i(S, @ — nP), S, = S,0,1- x).

Therefore by Lemma 1.2.5, applied to P = {[,I°} and Tx = x + 6, if for
some x,

1M ) B
(1.12.2) A}l_r)nw W ngl exp(2mi(S,a — nB)) =0
fails to hold, the equation A(x) = f(x)h(x + #) has a measurable solution
which is not essentially 0. Since |A(x + 8)| = |h(x)|, | 4| is constant, and we
may take the constant to be 1. Therefore

hx)h(x + 0) = f(x), and h(x)R(x + n8) = fP(x), n>0.
Setting a, = fxf ™, a, = 1as nf — 0in K. In particular,
(1.12.3) nlgr_lgola,,l =1,

Since (1.12.3) does not depend upon B, we define I, (9) to be the set of ¢ such
that if |I| = ¢, then (1.12.3) holds. (We regard ¢ as an element of K.)

Let ||-|| be the usual metric on K (distance to nearest integer), and let { p,/q,}
be the sequence of convergents to # [80]. Define T?(#) to be the set of t € K
such that 1 = 32, b, g, 0, where convergence is understood in terms of |||,
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and such that lim,_, b,q,llg,0/ = 0. 1’0(0) Z9, and if @ has bounded
partial quotlents I‘&(ﬂ) = Z0; otherwise, T'°(f) is uncountable but of measure
0. Also, T%(9) contains no rational, other than 0. If + € T%(9), the b,’s are
determined for large n [149], and therefore it makes sense to define 1‘0(0)
= {t € T°(0)|lim,_,,, b,a = 0 (mod 1)}.

1.12.4. THEOREM [149], [151]. T, (8) C T2(9).

The theorem was proved for @ = 1 in [149] and a proof was sketched for
general a in [151]. A complete proof will appear in a forthcoming Rice Ph.D.

thesis.
The implications of Theorem 1.12.4 for (1.12.3) are as follows:

1.12.5. THEOREM. With notations as above we have () if 6 has bounded partial
quotients, then (1.12.2) holds for all |1| € Z and (a,B) & Z X Z; (b) if 0 is
irrational, then for almost all |I|, (1.12.2) holds for all (a,B) & Z X Z; (c) for
any irrational 0 and |1| it is true for almost all o that (1.12.2) holds for all B3; and
(d) if 0 is irrational and 1| rational, (1.12.2) holds for all (a, ) & Z X Z.

The point of (c) is that if |I| & Z8 but |I| € %), the set of a with
|I| € T2(#) has measure 0 by the Riemann-Lebesgue lemma. A special case
of (d) is proved by Rauzy [113].

Now define

R = {1 € 126)1 £ bl a0 < o }.

We have
1.12.6. THEOREM [149]. I}, (20) C T; /().

In [149] it is proved that if ¢t € L,(0) (r & Z8) and if a = 1, B = 0, there
exists a choice of I = [0,7) or [, 1) and uncountably many values of x such
that the limit (1.12.2) does not even exist. Since I}},(28) is uncountable when
6 has unbounded partial quotients, Theorems 1.12.5 -1.12.6 may be combined
to imply

1.12.7. THEOREM. The limit (1.12.2) exists for all a, B, and |1| if and only if 8
has bounded partial quotients (when |1| & 70, (a.B) & Z X Z, it is 0).

Returning to Theorem 1.12.5(c), note that for almost all « the statement is
true for all na, n = =1, £2, .... This plus Weyl’s criterion implies that if
|1] & Z0, then for almost all a the sequence {S,a — nB} is uniformly
distributed modulo 1 for every B. In particular, if we set 8 = |I|a, it follows
that

1.12.8. THEOREM. If @ is irrational and |I| & Z8, then for almost all « the
sequence (S, — n|1|)a is uniformly distributed modulo 1.

The theorem implies that if # is irrational and |I| & Z#, the sequence
(S, — nl1|) is not bounded for n > 1. For if it were there could not exist a’s
arbitrarily close to 0 for which (S, — n|I|)a is uniformly distributed modulo
1. Thus we retrieve a theorem due to Kesten:
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1.12.9. THEOREM (KESTEN [76)]) . Let 8 be irrational and I C K an interval. If
there exists x € K such that the sequence {S,(0,1 — x) — n|I|} is bounded for
n > 1, then |1| € 70 (and conversely [62], [99]).

There are some interesting and perhaps difficult problems to consider in
connection with both our work and Kesten’s Theorem. Let I C K, and let E
be the closed subgroup of R (not K) generated by |7| and 1 — |1|. Of course,
E = R if || is irrational. Now set up the space X = K X E, and define T on
X by T(x,y) = (x + 8,y + x,;(x) — |1]). Notice that the second coordinate of
T"(x,y),n >0, is y + S, — n|I|. Thus, by Kesten’s Theorem, if |I| & Z4,
there are no bounded orbits under 7.

1.12.10. Problem. 1t |I| & Z4, is (T, X ) topologically transitive?

1.12.11. Problem. If |I| & T°(8), is T ergodic relative to Haar measure on
X?

1.12.12. Problem. When T is ergodic relative to Haar measure, can there
exist a locally finite invariant measure which is not a multiple of Haar
measure?

In connection with Problem 1.12.10, Nelson Markley has shown there
necessarily exist points with semibounded orbits, and therefore (7, X ) cannot
be minimal (oral communication.) In connection with the second problem a
special case is contained in K. Schmidt ([121], § = (/5 — 1)/4, |I| = 1) and
Conze and Keane ([24], § irrational, |I| = 1). As for the third, the locally finite
assumption is necessary, not only to prevent trivial counterexamples, but also
because there exist infinite nonatomic measures on K which are invariant and
ergodic under rotation by 6 [122], [123).

For later reference I shall state here another theorem in the same spirit as
Kesten’s.

1.12.13. THEOREM (FURSTENBERG, KEYNES, SHAPIRO [51]). Assume 2|1|
& Z0. If x — x' & Z9, the sequence S,(0,1 — x) — S,(6,1 — x’) is unbounded.

1.13. The construction of prime flows. I shall begin with some “soft”
counterparts to certain results from the previous section. The axiomatics are

taken essentially from [149].

Let (X,6) be a compact abelian group and an element which generates a
dense subgroup. Let A be a compact abelian group, and f: F¢ > A a
continuous map defined on the complement of a closed, nowhere dense set
F C X. I shall call (f,0) admissible if (a) at each point of F, f has at most two
cluster values, while at some point it has two whose difference generates a
dense subgroup of A, (b) f has no nonzero period, and (c) (F— F) N Z4
= {0}.

Let A = U,cz(F + nf), and definem, € AZ, x € A, by m,(n) =
f(x + nf#). Since m,,y = om,, where o is the shift, the closure M of
{m,|x € A} is o-invariant.

1.13.1. PROPOSITION [149], [108], [S1]. If (£, 0) is admissible, then . = (6, M)
is a minimal flow. The map mm, = x, x € A°, extends to be continuous on M.
Moreover, 7~ x = {m,}, x € A, and, in general, if 7m; = wm,, then m,(n)
# my(n) for at most one value of n.
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Next let N = M X A, and define T(m,A) = (om,m(0)A) on N.

1.13.2. ProPOSITION [149]. If (f,0) is admissible, then 9 = (T,N) is a
minimal flow.

In [149] the proposition is proved for A the group of order 2, but the same
proof works in the general case. The idea is that if N' = O((mg, 1)), my € M
fixed, where O(-) denotes orbit closure, then, for each m, {A|(m,A\) € N’} is a
coset of a closed subgroup Ay (= Amyg). If A(m) denotes the coset, then A is
continuous and A(om) = m(0)h(m). The set E of x such that 4 has two values
on 7~ !x is closed, and (c) may be seen to imply it is dense, if nonempty. Thus,
E = O, meaning in particular, that for each x, {m(0)|m € =~ !x}is contained
in one coset of Ay. By (a) then, Ay = A, and 9 is minimal.

EXAMPLE. X = K, § € K irrational, I C K an interval with |I| & Z0. Let
a, B € K with a # 0, and assume 8 € A, where A is the closed subgroup
generated by a. Define fon 1% as f = a — 8 and on (IC) as f = —B. Then
(f.0) is admissible. (Note that F = 91.) Now if x € 4 and n >0, a
straightforward calculation reveals that 7"(m,,0) = (myy,,,Sya — np),
where S = S,(0,1 — x). The following theorem is a consequence of the
mlmmallty of @L above:

1.13.3. THEOREM. With notations and assumptions as above, if x,y € K and
e > 0 are given, the set

(1.13.4) {Sya—nflllx + nf — y|| <-¢
is dense in A. In particular, if a is irrational, then (1.13.4) is dense in K.

Taking B = a|I| in the theorem leads to another proof of Kesten’s theorem.
A different f can be used to prove Theorem 1.12.10. Taking a = 1/¢, 8
= 1 — 1/q leads to

1.13.5. COROLLARY. With notations as above the set {nf|q|(n + S))} is dense
in K. (Here q|s means “q divides s.)

I call Theorem 1.13.3 a “soft” counterpart to the corresponding results of
§1.12 because first of all it depends only upon #’s being irrational and a # 0,
and second it is a minimality theorem, whereas the results of §1.12 correspond
to unique ergodicity (of 9 theorems (see [49], [149]). When A is nonabelian,
very few “soft” results are known (see [142]).

Furstenberg, Keynes, and Shapiro [51] base their proof of Theorem 1.12.13
(and Kesten’s theorem) on a principle of Gottschalk and Hedlund [58]: If
%A = (T,X) is minimal, and if » € C(X), xg € X are such that 37_o h(T’x,)
is bounded for n > 0, then there exists g € C(X) such that g(7Tx) — g(x)
= h(x). (The converse is trivial.) From this they infer

1.13.6. PrRoPOSITION ([51]; SEE ALSO [107]). Let IC X, x, € X, § €ER be such
that 2o (x[(T"xg) — 8) is bounded for n > 0. Let M be the orbit closure of
m, m(n) = x;(T"xy), in (0,{0, 1}%), and assume (o, M) is minimal. Then there
exists a nonzero g € C(M) such that g(om) = exp(27id)g(m).

Kesten’s theorem is proved, for example, by taking § = |/| and noting that
any eigenvalue for (o, M) is also a (measurable) eigenvalue for rotation by 6;
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that is, exp(27i8) = exp(2miky) for some k. Thus, if (S0 — n§) is bounded,
then |I| € Z#. A further application of this approach is made by Shapiro in
extending a theorem of W. Schmidt. Let a be a sequence in K, and define B(a)
to be the set of real numbers § such that for some interval I the sequence
=1 (x;(a;) — &) is bounded. With the additional restriction that § = |I|,
Erdos [44] conjectured B(a) is countable. This was proved by W. Schmidt, and
the restriction 8 = |I| removed by Shapiro:

1.13.7. THEOREM (W. ScHMIDT [ 124] —[126]; L. SHAPIRO [130]). For any
sequence a C K, B(a) is at most countable.

I shall now digress with a definition of “prime flow.”

1.13.8. DEFINITION. A minimal flow X = (Z,X) is prime if whenever
9% —7 % is a homomorphism, either ¥ is trivial or 7 is an isomorphism (one-
to-one, onto).

If = is abelian, then for each 6 € Z, 06X is a closed invariant set, whence
oX = X if % is minimal. But then o also defines a homomorphism from X to
%, and so if % is prime, o is one-to-one. Thus, we may as well assume Z is a
group in the abelian case.

It is easy to construct prime flows. For example the homogeneous flows
(Z,Z/pZ), p prime, and (PSL(2,R),P'(R)) are prime. However the construc-
tion of a prime cascade % = (7, X ) (£ = Z abelian) with X infinite was done
only recently by Furstenberg, Keynes, and Shapiro [51]. Some notations and
definitions will be necessary.

Points x, y € X are proximal for X if the orbit closure of (x,y) for % X X
contains a point of the diagonal. Write xPy or yPx. It is not difficult to see that
if X = (T, X ) is minimal with T invertible, if X is infinite, and if xPy whenever
x, y lie in distinct orbits, then % is prime. However, the question of whether
such an % exists has not been answered (I believe). In [51] a less restrictive
criterion for primeness is introduced:

1.13.9. DEFINITION [51]. % is a POD-flow if (i) X is “totally minimal” (77 is
minimal for any g # 0), and (ii) for all x # y there exists n # 0 such that
xPT"y.

1.13.10. PROPOSITION [51]. Every POD-flow is prime.

The proposition is proved by noting that if X —7 & is not an isomorphism,
then there exist x # y with #x = my. The POD property then implies
{(z,w)|mz = aw} contains the graph of T” for some n # 0, and therefore T"
acts as the identity on Y. But 7" must act minimally on Y, because it does on
X, and therefore % is trivial.

I shall give the main idea of the construction in [51], although the T
constructed below will not be continuous. A continuous one is constructed by
“pulling points apart”, i.e., passing to a symbol space.

Let # € K be irrational, and let / C K be an interval with |I| & Z0. Let I’
be a second (distinct) copy of 7, and let @: I — I’ be the natural identification.
Now let X = K U I’, and define T as
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Px, x € I,
Tx = {¢7'x + 6, x el
x+ 0 otherwise.

One computes that if / = /(n, x) is the largest integer with S + / < n, then

- ={x+10, S¥+1=n,
o(x + 16), Sf+l=n-1
The minimality of 79, g > 0, follows, for example, from Corollary 1.13.5.

Now let x, y € K not belong to the same orbit under 7, and consider the
sequence

(x + 1(n,x)0) — (y + I(n,y)0) = (x —y + (I(n,x) — I(n,y))8),
n > 1. If this sequence has 0 for a cluster point, then (1.13.11) implies
xPTy, xPy, or xPT~'y, and property (ii) of POD follows easily. Now as n
increases by 1, /(n,x) — /(n,y) changes by 0 or 1. Therefore, if

sup|l/(n, x) — I(n,y)| = oo,
n

(1.13.11)

the sequence (/(n,x) — /(n,y))d will be dense in K, and by the above we will
be done. If the sup is finite, then suplS,’En,x) - S,)Ex,y)l < o0, and these two
facts imply sup,|S/ — S7| < oo. Since x — y & Z4, this contradicts Theorem
1.12.13, and therefore X is POD. To understand the “continuous version” of
%X, see [51]. See also [78].

Since this section was written 1 have received a preprint by L. Shapiro [131]
in which he extends his work and work of Schmidt on the torus to the torus,
in the spirit of Theorem 1.13.7.

1.14. Interval exchange transformations. Let a = (o, ...,a,) be a probabil-
ity vector, and let 7 be a permutation of {1,2,...,n}. Define By = 0, §;
= 21 &, i > 1. Denote by a" the vector (&,-1}, 15, ...,a,-1,), and form
BT correspondingly. The (a,7) interval exchange T is defined on [0,1) as
Tx = x = By)-1 + Bip)-1> * € [Bi-1,B;), 1 < i < n. Note that T is simply
a right continuous, piecewise order preserving isometry of [0, 1). (See [3], [70],
[134], [72].)

In case n = a and 7 = (12), then Tx = x — o (mod 1) is just a rotation.
As n increases, the interval exchanges grow rapidly more complicated. We say
T is minimal if every orbit is dense (even though T is not continuous). The
strongest minimality result is due to Keane:

1.14.1. TueoreM (M. KEANE [72]) . With notations as above, suppose
T™B; = T"B; implies i = j and m = n. Then T is minimal.

Keane calls his condition the “infinite distinct orbit” (i.d.0.) condition. It is
satisfied, for example, if (a,7) is “irrational and irreducible”, that is, if
7(1,2,...,j) = (1,2,...,j) implies j = n, and if oy, ..., a, are independent
over Q.

It was conjectured by Keane that every minimal interval exchange is ergodic
with respect to Lebesgue measure, even uniquely ergodic, but this has proven
to be false. (It is true for n = 2 or 3[72].) For n = 5 Keynes and Newton [77]
give an example in which minimality holds but ergodicity does not. In spirit,
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their example amounts to taking # € K irrational, / an interval with || & Z#,
and noting that 7@ K X {£1} = K X {£1}, defined by T(x,e) = (x + 8,f(x)e),
where f = —1 on I, = 1 on [¢, is isomorphic to a minimal interval exchange
with n = 5. If § has unbounded partial quotients, and if 1 € 1‘1}2(20) (81.12),
then for some I with |I| = ror | — ¢, ergodicity will fail [149]. In turn, Keynes
and Newton conjectured that if Lebesgue measure is ergodic, then T is
uniquely ergodic. But this is also false, as Keane [73] supplies a counterexam-
ple with » = 4 (as small as possible). Keane’s example is, in addition
irrational.

REMARK. The fact that a minimal interval exchange can be ergodic without
being uniquely ergodic actually follows from the Keynes-Newton example.
For if T is a minimal («,7) interval exchange, and if p is an invariant
probability measure, then p is nonatomic and assigns positive measure to
every nonempty open set. Thus, ¢(x) = w([0, x)) defines a homeomorphism of
[0, 1), and defining T} by T ¢(x) = ¢(Tx), T, is an (a',7) interval exchange,
where o) = u(B;_;,B;)). Since gpu is Lebesgue measure, Lebesgue measure is
ergodic for 7} if u is ergodic for T. If p is not unique for T, then ¢qu is not for
T, but T is still minimal.

Keane [73] conjectures that if 7 is an irreducible permutation, almost every
(a,7) interval exchange is uniquely ergodic. The construction he employs in
[73] suggests strongly that an auxiliary transformation on the “body” of
interval exchanges will be of use in settling his conjecture. More precisely, let
A,_; be the simplex of probability n-vectors, and let B* be the set of
irreducible permutations 7 which in addition satisfy (a) 7(j + 1) # 7(j) + 1,
all j, and (b) (77" (n) + 1) # 7(n) + 1.3 If (&, 7) €A, _, x P satisfies the i.d.o.
condition, and if 1 < i < #, it is possible to prove the transformation induced
on [B;_1,B;) is an («,7') interval exchange, (o/,7') € A,_; X B*. Thus, we
have a map Q;: A, |B* > A, | X B* defined ae. If »(r) = rank{E;
- ET(,.)TU)}, where E; = 1forj > i and 0 for j <, it turns out that D(T$
= »(1") above.

1.14.2. Problem. Is Q,, restricted to the set {(a,7) € A,_; X B¥*|u(7)
= const.} ergodic?

1.14.3. Problem. Does Q; have an invariant measure equivalent to Lebesgue
measure?

When n = 2 or 3 (the cases in which the conjecture is already known), the
answers to both questions are yes. For n = 2 the measure is infinite, while for
n = 3 we do not yet know whether it is finite or infinite. Keane’s conjecture
would be true, for example, if the measure exists and is finite for n > 4.

Keane [71], [75] has established a connection between billiards on polygonal
billiard tables whose corner angles are commensurable with 7 and interval
exchange transformations. I will not describe the connection here, but Keane
does obtain, as a consequence of his minimality theorem, that for almost every
(beginning) reflection angle from a fixed side, every trajectory is dense in the
table. (See also [159].) Statements concerning the distribution of the trajecto-
ries could be made if one could prove the associated interval exchanges are
ergodic, or better, uniquely ergodic.

3 Also (c) 1'(‘rf'l —1) # 71 — 1, (d) either T;-:—l #* TT‘ ortn + 1 # 7n.
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It is interesting to note that when the table is square, certain skew products
arise naturally. Identify one side, L, of the table with (0, 1), and denote a
reflection from L by position (x) and angle of rebound (a), where 0 < a < 7.
Beginning at (x,a) the next reflection from L will have the form (x’,a) or
(x',m — a) (there is one (x, a) which ends up in a corner, and this we ignore).
Now let X = (0,1) X {a,7 — a}, and define T: X — X by T(x,B) = (x’,B) or
(x’,m — B) as above. For example, if « satisfies 1 < cota < 3, and if we set
# = 2(cota — 1), it can be shown that (7,X) is isomorphic to the skew
product on K X {+1} defined using § and f = X, ) — X, ;), # = 1 — 6. That
is, S(x,e) = (x + 0,f(x)e), (x,e) € KX {x1}. (The correspondence is (x,a)

~ (x,1) and (x,7 — a) ~ (1 — x,—1).) Now even though |I| = 8, it is proved
in [149] that the skew product is uniquely ergodic (more precisely 9 in the last
section is uniquely ergodic) if @ is irrational (i.e., if cota is irraticnal). From
this one easily infers that the trajectory of a ball bouncing off L at an angle
is uniformly distributed on the table.

REMARK. Even in the case of a triangular table, little, if anything, seems to
be known about density of trajectories if one of the corner angles is not
commensurable with 7.

Finally, I should mention that powerful techniques for dealing with
“expansive” maps exist and may prove useful in connection with Problems
1.14.2 -1.14.4. See, for example, Sacksteder [120], Adler [1], Keane [74], and
Walters [154].

2. THE STRUCTURE OF MINIMAL FLOWS.

While the notion of a minimal flow occurs in Birkhoff [12], it is only recently
that efforts have been directed at uncovering the structure of arbitrary
minimal flows. The first important structure theorem is the Furstenberg
structure theorem for minimal “distal” flows [50], and this was followed by the
structure of “point-distal” flows (Veech [146], Ellis [38]), and a structure
theorem for arbitrary minimal flows (Ellis, Glasner and Shapiro [40], McMa-
hon and Wu [90], McMahon [88]). In this section 1 shall prove a theorem,
containing those above, which says roughly that the class of minimal flows
(with fixed phase group) is the smallest class of flows containing the trivial flow
and closed under (a) homomorphisms, (b) projective limits, and (c) three
“building blocks” which will be specified later. It would be impossible to
exaggerate the importance of the ideas and papers of Furstenberg and Ellis to
the study of minimal flows.

2.1. Statements of results. In what follows G will be a locally compact, T,
topological group. Flows %, = (G, X') will be assumed to satisfy the additional
requirement that the map L(g,x) = gx be continuous from G X X to X.
Unless otherwise specified, X is required to be compact, 7, but not necessarily
metrizable.

The Ellis separate continuity theorem [35] implies the following two state-
ments, which will be important in later sections: (i) If G is a locally compact
T, space which is also a group, and if multiplication is left and right
continuous, then G is a topological group; (ii) in the first paragraph above, if
L(g,x) = gx is only assumed to be continuous in each variable separately, it
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is still jointly continuous. Namioka [96] has a nice generalization of the Ellis
theorem with applications to other disciplines (e.g., Banach spaces).

A bitransformation group [34] is a triple (G, X, H) such that (a) (G,X) and
(H,X) are commuting flows (ghx = hgx,g € G,h € H,x € X), (b) H is
compact, and (c) (H, X ) is strongly effective (“effective” means hx = x for all
x implies & = id; “strongly effective” means Ax = x for some x implies
h = id). By (a) and (b) there is a natural flow ¥ on Y = X/H. If X >" % is
the canonical homomorphism, then (c¢) implies for all x € X that h — hx
defines a homeomorphism between H and 7~ 'mx. X =" % (or %, or ) is
called a group extension of ¥. X =7 % is an almost periodic (a.p.) extension if
there exist a group extension € —»7 % and a commutative diagram

'

7—" . x
2.1.1) S .
y

The trivial flow will be denoted Q. The equicontinuous flows are the a.p.
extensions of €.

% —7 % defines an almost automorphic (a.a.) extension [146] or almost one-
10-one extension if the set 4, = { y|n~!y is a singleton set} is nonempty 4, is
an invariant set, and therefore if % is minimal (resp. also metrizable), then
A, # & implies 4, 7~' 4,, are dense (resp. residual). To explain the terminol-
ogy, call a point x € X an a.a. point for % if whenever g, is a net in G such
that lim, g, x = x’, then also lim, g, x' = x. X is an a.a. flow if there exists an
a.a. point with dense orbit. Every a.a. flow is minimal, and the principal
structure theorem is

2.1.2. THEOREM [138]. If X is an a.a. flow, there exist an equicontinuous flow
% and a homomorphism % —" % such that w~' A, is the set of a.a. points. X is a
minimal equicontinuous flow if and only if X is minimal and every point is an a.a.
point.

Theorem 2.1.2 is the basis for the main theorems about “almost automor-
phic” functions [138] which were introduced by Bochner [140].

X —" Y defines a proximal extension if xPx’ (§1.13) whenever mx = ax’. If
this proximality is uniform on 7!y for each y, in the sense that for every
nonempty open set U there exists g € G with gz~ 'y C U, then X =7 % is
highly proximal (h.p.) (McMahon and Wu [92], J. Auslander and S. Glasner
[7]). Any minimal a.a. extension is h.p. (and proximal), while h.p. implies a.a.

if X is metrizable [92], [7].

Let X —»7 % be a homomorphism of flows, and let « be an ordinal number.
By a tower of flows of height a between X and % we shall mean a set of flows
and homomorphisms {5 =" A g|B < B < a} with the properties (a) %,
=3, Xy = X, myo = 7, (b) if B” < B < B, then mgg, = mp g mgp, and (c) if
B < « is a limit ordinal, then lim,}«'< pgXpg = NAp. Different kinds of towers
lead to different names for the extension % —7 &,
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Extension Property of X, =18 Xg
I-extension [50] a.p. foreach B < a
Al-extension [146]  a.p. or a.a. for each 8 < a
Pl-extension [40] a.p. or proximal for each 8 < a

H PI-extension [7] a.p. or h.p. for each 8 < a

It is necessary to define one last kind of extension. Let X —" % be a
homomorphism, and define R, = {(x,x')|7x = 7x'}, R, = (G,R,). X > Y
defines a weak mixing extension if !, is topologically transitive (§1.6). (When
X is metrizable, it is equivalent to say that R, has a point with dense orbit
[63].)

What follows is a general structure theorem for homomorphisms of minimal
flows. The construction of the diagram (2.1.4) is due to Ellis, Glasner and
Shapiro [40] (see also McMahon and Wu) although in special cases it occurred
previously in Veech [146] and Ellis [38]; the proof of the weak mixing
statement is due to McMahon [88] for X metrizable, while the general case is
new.

2.1.3. THEOREM. Let X —" %Y be a homomorphism of minimal flows. There
exist canonically determined minimal flows X, and %, and a commutative
diagram

X —=—X,

(2.1.4) 7 T

Y ——VY,

such that (a) X, is a proximal extension of X and a weak mixing extension of %Y,
and (b) ¥, is a PI extension of . If X is metrizable, X, is metrizable.

Ellis, Glasner and Shapiro call X a “®¢ flow” if when % = Q, 7, is an
isomorphism in (2.1.4). In §2.7 I will discuss some of their criteria for X being
P4,

Let X -7 % be a homomorphism of minimal flows. A point x € X is ¥-
distal (7 is understood) if whenever (x,x’) € R, and xPx’, then x = x’. When
@ = Q, the prefix is removed, and we speak of distal points. X =™ % defines a
distal extension (distal flow if ¥ = Q) if all points in X are ¥-distal (distal).
Distal flows were first studied by Ellis [33] who credits Hilbert with the notion.
Certain results in [33], e.g., that a zero dimensional distal flow with finitely
generated phase group is equicontinuous, led to the conjecture that distality
implied equicontinuity. However, L. Auslander, Hahn and Markus [9] and
Furstenberg [50] gave examples of minimal distal nonequicontinuous flows on
certain compact nilmanifolds, thus proving the conjecture to be false. Perhaps
the most important single breakthrough for the theorems under discussion was
Furstenberg’s structure theorem for minimal distal flows [50]. This theorem
was extended by Ellis to (minimal) distal extensions [37], where began the
*“algebraic theory” of minimal sets.
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The notion of a distal flow was generalized by J. Auslander and Hahn (8]
(see also Knapp [83]). We say X —7 % defines X as a Y-point distal flow (point
distal if % = Q) [146] if there exists a %-distal point with dense orbit.
Assuming % is minimal, % is also minimal (J. Auslander and Hahn [8], Knapp
[83], Veech [146], but the argument goes back to Ellis [33]).

The structure theorem 2.1.5 below is due to Furstenberg for mimimal distal
flows [50], to Ellis for ¥-distal flows [37], to Veech [146] for ¥-point distal flows
(% = Q, but the general result was mentioned) having X metrizable and a
residual set of ¥-distal points, and to Ellis [38] in its present form (using an
idea from Bronstein [20]). In the first two cases above X =" % is an I-
extension, and so the %,, ¥, in (2.1.4) do not enter. The idea of using a
diagram such as (2.1.4) for a structure theorem occurs in [146)].

2.1.5. THEOREM. Let X —" %Y be U-point distal, and assume either G is o-
compact or X is metrizable. In the diagram (2.1.4) X is an h.p. extension of X, 7,
is an isomorphism, and %, is an HPI extension of . If X is metrizable, replace
“h.p.” by “a.a.” and “HPI” by “Al”.

It was pointed out in [146] that the structure theorem implies that a %U-point
distal flow with metrizable phase space has a residual set of %¥-distal points. A
direct proof of this fact has not been found.

The constructions of canonical towers in [146] and [38] on the one hand and
in [40] on the other, though similar in spirit, are formally different. However,

it was observed by J. Auslander and Glasner [7], using Ellis’ structure theorem
in [38], that the towers are in fact the same. In §2.3 I shall give a direct proof
of this fact.

Question. Is Theorem 2.1.5 true with no separability hypothesis? This is open
for distal flows. It is not even known whether every nontrivial minimal distal
flow has a nontrivial equicontinuous factor (a fact which is true for point distal
flows with the separability assumption [50], [146]).

The techniques which will be developed in later sections are in part new and
will be used to give a partial solution to a problem posed by Furstenberg. Let
9 be a minimal cascade (homeomorphism) on a compact metric space, and
assume X has no nontrivial equicontinuous factor. Then X X X is topological-
ly transitive (Keynes and Robertson [79]). In fact, Furstenberg proves that if
% is any minimal cascade, X X % is topologically transitive. He raises the
question [48] as to whether X X ¥ is topologically transitive whenever % is
topologically transitive. This is false in general; however we do have the
following (as a special case of a more general result):

2.1.6. THEOREM. Let X be an incontractible minimal flow, and assume ‘X has
no nontrivial equicontinuous factor. Let %% be a topologically transitive flow having
a dense set of almost periodic points (e.g., a minimal flow). Then X X % is
topologically transitive.

“Incontractible” will be defined in §2.3. (Every minimal flow with nilpotent
phase group is incontractible.) A point x is an almost periodic point (for *X) if
@(x) is a minimal set.
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2.2. Generalities on flows. Denote by ¢ = &(G) the Banach algebra of
bounded left uniformly continuous (l.u.c.) functions on G and by § = S(G)
the maxxmal ideal space of C. The map g — s, defined by s,(f) = f(g), f
€ ¢, embeds G homeomorphically as an open dense subset of S Often g and
Sg will be identified. S enjoys a universal property: if A is a collection of maps
from G to some compact 7, space, and if A is jointly L.u.c., then A has a jointly
l.u.c. extension to S. If K is a compact subset of G, and if L(g, -): G — S is
left multiplication by g, then Agx = {L(g, -)|g € K} is jointly lu.c. The
extensions of L(g, :) to S therefore define a flow §(G) = § = (G, S). (We
write L(g,s) = gs interchangeably.)

For each fixed s € S, the map L(-,s) extends to S yielding a binary
operation L(s’,s) = s’s which is left continuous but not, in general, right
continuous. The operation may be proved to be associative, and therefore S is
a compact (%) semigroup with left continuous multiplication.

The reasoning above applies to any flow % so that L(s,x) = sx is defined
on SX X and continuous in the S coordinate. Notice for any x that
O(x) = Gx = Sx, because G is dense in S. (Applying this to (x,x’) € X X X,
we see that xPx’ if and only if sx = sx’ for some s € S.) In particular, if X is
point-transitive, meaning O(x) = X for some x, the map L(-,x) defines a
homomorphism from § to X. Thus § is the “universal” point transitive flow [34].
(Any point transitive flow of which § is a factor is isomorphic to §, and
therefore § is unique up to isomorphism.) The following theorem is a classical
result of Ellis [39] when G is discrete. The general case will be proved in the
Appendix.

2.2.1. THEOREM. If G is a locally compact topological group, the flow NG ) is
strongly effective.

If X is any flow the set E(®C) = {L(s, -)|s € S} may be regarded as a
semigroup of transformations of X. With the point open (Tychonoff) topology,
E(X)is compact 7; with multiplication left continuous. E(°X) contains a dense
subgroup G of continuous maps (corresponding to G), and left multiplication
by G is continuous on E(X). (6 = (G, E(X)) is a flow defined by L(g.,s) = gs.
One has E(&) =~ E(%) by a natural correspondence.) E(X) is called the
enveloping semigroup or Ellis semigroup of X. It is clear by the definition in
terms of § that if X =7 % is a homomorphism of flows, there is an induced
homomorphism E(X) =7 E(¥) (and &(X) =7 &()).

For the moment, let E be a compact, 7, semigroup with left continuous
multiplication. Following Ellis [32] we note that if J( is the set of nonempty
closed subsemigroups of E, then I contains a minimal element, H. If x € H,
then Hx € 3, meaning Hx = H. In particular, Hy = {h € H|hx = h} # &,
and Hy € %. Thus, Hy = H, x> = x, and E contains an idempotent.

A nonempty set / C E is an ideal if EI C I (more properly left ideal, but
there will be little occasion to consider right ideals). I is a minimal ideal if
I # & and if I contains no proper ideal. As Ex is a closed ideal for any
x € E,and as Ex C Iforany x € I, Ex = [is closed if / is a minimal ideal.
Existence of minimal ideals is established by Zorn’s lemma on the set of
nonempty closed ideals.



804 W. A. VEECH

Let I be a fixed minimal ideal. If x € I, Ix is also an ideal, meaning Ix = I,
and H={p € I|px = x} is a closed subsemigroup. By the above, H
contains an idempotent u, and therefore if J(I) = J is the set of all
idempotents, I = U, ul. If p € ul, and if ¢ € I is such that gp = u, then
(uq)p = u also. As ug € ul, it follows that ul is a group with identity u. Now
suppose u, v € J and p € ul N vl. Choose g € ul with pg = u. Since
w=pu=uwvu=v(pu=p,allp € I because the set of such p’ is an ideal
containing u). Thus, I is a disjoint union of groups (Ellis [32]).

REMARK. If E contains a dense subgroup G which acts continuously, the
minimal ideals in E are the G minimal sets. In this setting it can be proved that
if 1 is minimal, and if § - ¢ is a homomorphism of flows, then #( p) = pa for
some fixed a € I (J. Auslander [4]). Thus, 7 is an isomorphism(Ellis [39]).

Let X be a minimal (in particular, point transitive) flow, and let § -7 %X be
a homomorphism. If 7 C § is a closed nonempty ideal, #I is an invariant
closed set, hence all of X. In particular, if I is a minimal ideal, there is a
homomorphism § =7 %. The result mentioned in the last paragraph may be
used to prove ¢ is unique up to isomorphism as a universal minimal set (Ellis
[39]). Theorem 2.2.1 implies $ is strongly effective.

Associate to G two cardinals. The first, a, is defined to be 1 if [G: G,] is
finite, where G, is the connected component of the identity, and otherwise
a = Card[G: G,]. The second, b, is 1 if G, is compact, and otherwise b = 2¢.
It can be shown that S contains ab minimal ideals. If G is discrete and a > 1,
then each minimal ideal has at least 2¢ idempofents.

There are two useful characterizations of almost periodic (a.p.) points
(points with minimal orbit closures): a “concrete” one due to Gottschalk and
Hedlund [58], and an abstract one due to Ellis [32]. A set L C G is left
relatively dense (1.r.d.) if there exist g;, ..., g € G with U};lgjL = G.

2.2.2. PROPOSITION. A point x € X is an a.p. point for x if and only if whenever
U is a neighborhood of x, {g € G|gx € U}is lLrd.

2.2.3. PROPOSITION. The following are equivalent for x € X:
(1) x is an a.p. point for .

(2) x € Ix for any minimal ideal I C E(X) (or C S).

(3) If I is a minimal ideal, then x = ux for some u € J.

REMARK. If x, x* € X, then by the last proposition (ux,ux’) is an a.p. point
for X X %X. Therefore, if uxPux’, ux = ux’ (it is impossible to leave the
diagonal). Now suppose xPx’ is a closed relation. If xPx’, then as (ux,ux’)
€ O(x,x"), uxPux’. By the above ux = ux’. This implies P is an equivalence
relation (Clay [22]). In general, P is not an equivalence relation, and when it
is, it may not be closed (Shapiro [129]).

REMARK. If x € X, u € J, then u(x,ux) = (ux,ux), and so xP(ux). If xPy
implies x = y, then ux = x, u € J (and conversely if % is minimal; for if
vw =y, v €J, the fact vx = x implies v(x,y) = (x,y); thus xPy implies
y = x)

REMARK. The set {g € Glgx € U} in Proposition 2.2.2 is a generalization
of the translation numbers from Bohr’s theory of almost periodic functions
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[14b]. (The idea of a translation number occurs at least as early as the thesis
of E. Esclangon [45].)

2.3. The functor 2%. If X is compact, T, 2% will denote the space of
nonempty closed subsets of X. X has a unique compatible uniformity @ which
determines the Hausdorff uniformity *. A base for @* is the set of all
o*, a € U, where a* = {(4,B)|B C a[d]and A C ofB]}. 2% is compact, T,
and metrizable if X is metrizable. Any flow X gives rise naturally to a flow
(G,2%) which we denote by 2%,

If X -7 69 is 2 homomorphism of minimal flows, 7,4: ¥ — 2% is defined by

Mgy =T ly. « .d 1S equivariant, upper semicontinuous and continuous if and
only if 7 is an open map. The construction to follow was introduced in [146]
to circumvent certain difficulties which arise when = fails to be open.

Assume X is metrizable so that 2% is also metrizable. The set Y, of points of
contmulty for Tad is then invariant and residual. Let Y* = 7, C 2X

= (G, Y*) is a flow, and there is a natural homomorphism Q&*
—->°"y (omyqy = y,y € }6) The minimality of GZJ and continuity of 74 at
points of }6 imply (a) ¥* is minimal, and (b) 67 'y = {7,345}, y € Y, i.e., ¥*
is an a.a. extension of %,

Now define X* C X X 2X by X* = {(x,4)|x € 4 € Y*}. Set X* = (G,
X*) and let X* -7 % and %* -7 &* be the coordinate maps. It is routine to
check that X* is a minimal a.a. extension of % and #* is an open map. Of
course X * is metrizable, and the diagram

X —T— x*
2.3.1) p a*
o

is commutative.

A fruitful generalization of the “shadow diagram” (2.3.1) was made by Ellis,
Glasner and Shapiro [40] (see also McMahon and Wu [90]). In what follows
X is not assumed to be metrizable. If 4 € 2%, s € S(G), then s4 has two
possible interpretations, either s4 = {sala € A4}, which may not be closed, or
sA is the image of the “point” 4 € 2% under s which is a closed set (i.e.
another point of 2%). Following [40] we denote the latter by s o 4. Always
sA C s o A, but usually they are distinct. If A C X is an arbitrary set, s o 4
is understood to be s o 4.

Let I € S be a minimal ideal, and let J = J(I'). (The construction below is
in fact independent of the choice of 1) If y € Y, define [, = {p € I|py = y}
and J, = J(). We have [, = U, sul, (dlSjOlnt union of groups). For each
u e J define C, (y,u) C(y,u) ="u o (uz™'y). As a set, C,(y,u) C 7'y,
and as a point (m 2%) C,(»,u) has a minimal orbit closure. One may prove
(cf. [40]) that if p € 1, v € J satisfy vp = p, then p o C,(y,u) = C,(py,v). It
follows that

Y = G(Cw(y’u)) =10 C'n(y’u) = {Cﬂ(y’,v)b/ EYyveE '{y'}
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%’ is a minimal flow, and if ¢'(C,(y",v)) = ', % —° ¥ is a homomorphism
of minimal flows. If y € Y, u, v € J,, the discussion above implies u
o C,(y,v) = Cp(y,u) = uo Cp(y,u), and therefore, C,(y,v) PC,(y,u). That
is, GZJ' is a proximal extension of 52)

As before, set X’ = {(x,4)|x € 4 € Y}, and let X’ =" X, X’ >™ ¥’ be
the natural maps. %’ is a minimal proximal extension of  and the map 7’ is
open. Of course the shadow diagram

(2.3.19

is commutative. The advantage of (2.3.1') over (2.3.1) (in some cases they
coincide, see below) is that 7’ enjoys a somewhat stronger property than
simply being open. For if y’ € Y’, say ) = C,(y,u), then 7,3y’ = C,(y,u)
X {C,(y,u)}. Therefore, C,.(y',u) = w,q)". This brings us to

2.3.2. DEFINITION (ELLIS, GLASNER AND SHAPIRO [40]). Let X =7 % be a
homomorphism of minimal flows. We say « defines an RIC extension
(relatively incontractible) if C(y,u) = myy for all y € Y,u € gy A is
incontractible if it is an RIC extension of .

In (2.3.1") 7' defines an RIC extension; « is RIC there if and only if o', 7/
are isomorphisms.

2.3.3. DerINITION. We say X —7 @ satisfies the Bronstein condition if R,
contains a dense set of a.p. points.

The significance of Bronstein’s condition [20] will be made clear in §2.6. If
7 is an RIC extension, then G(uz~'y X uz~1y), u € J, is a dense set of a.p.
points in R, and therefore = satisfies the Bronstein condition. It also follows
that in (2.3.1) 7 X 7(R,) is the closure of the set of almost periodic points it
contains, because if z/ € R, is a.p., 7 X 7(z’) is a.p. On the other hand, if
z = (x,x3) € R, is an a.p. point, say uz = z, then x, x, € C(y,u), 7x
= y. Thus,

(xl > x2) =7X T((xl s C(y’ u))’(XZ’ C(yv u)))9
and so 7 X 7(R,,) is the closure of the a.p. points in R,,. In particular,

2.3.4. LEMMA. Let X =" % satisfy the Bronstein condition. In (2.3.1") we have
X 7(R,) = R,.

A more direct generalization of (2.3.1) has been given by J. Auslander and
Glasner [7). With notations as above, set Y* =Iom,y X*= {(x, A)|
x € A € Y*}. If X ismetrizable, then Y*, X* coincide with the objects i in
(2.3.1). In any case (2.3.1) is again defined (and independent of y, I), and 7*
is an open map. This time, however, o and 7 define h.p. extensions but p0551bly
not a.a. extensions. (Given y € Y, Zorn’s lemma and the fact 0,4y € 22" is
used to prove there exists 4 € °ad y such that if B € g,4y, B C A, then
B = A. Choose p € I with p o 7'y = A. It is straightforward to check that
p o0,y = {A}, and o is h.p. Similarly for 7.)
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In the structure theorem for point-distal extensions it is h.p. rather than
proximal extensions which play a role. Since it is more convenient to work
with (2.3.1), it is natural to ask for a condition guaranteeing that (2.3.1) and
(2.3.1') are identical (i.e., ¥* = Y, X* = %, etc.). I shall prove

2.3.5. THEOREM. Let X =" %Y be a homomorphism of minimal flows, and
assume either X is metrizable or G is o-compact. A necessary and sufficient
condition for (2.3.1') and (2.3.1) to coincide is that for somey € Y, M,g;,C (y,u)
# .

The theorem provides an intrinsic proof of a result of J. Auslander and
Glasner [7] which was proved using the structure theorems themselves.

2.3.6. COROLLARY. Let %X =" %Y be such that there is a % distal point, and

assume either X is metrizable or G is o-compact. Then (2.3.1) and (2.3.1")
coincide.

PROOF. Let x be %-distal, the set wx = y. If u € J, then because xPux, and
qux = y, we have x = ux. Therefore, x € C(y, u) Since u is arbitrary,
x € Myey,C(y,u), and Theorem 2.3.5 applies.

I shall prove Theorem 2.3.5 only in the metrizable case. The extension to o-
compact G is made by “approximating” %X —7" % by homomorphisms of
minimal flows with metrizable phase spaces. The theorem turns on the
following

2.3.7. PROPOSITION. Let X =" %Y be a homomorphism of minimal flows, and let
X be metrzzable Let @: Y — 22" be an equivariant Borel map such that (a)

o(y) € 2 ,yEY, and (b) Y, ={y € YlﬂAeq)(yA #* B} is a second
category set. Then for some y € Y o(y) = {71y},

I shall first derive the theorem from the proposition. Define ¢( y)={C(y,u)!
u e J} Then g is w.s.c., hence Borel. If we assume ¥, # O, then Y, being
mvarlant is dense. It follows easily that if y is a point of continuity of @, then
y € Y,. As the points of contmulty comprise a resndual set, X, is residual. By
the proposmon o(y) = {71y} for some y, or 7'y = C(y,u), u € J,, for
some y. Thus, Y’ N Y* s &, and being (invariant) minimal sets, they must
coincide.

To prove the proposition, define D: 22 — 2% U {Dd} by DA) = Nyerd.
D(") is u.s.c., hence Borel, and therefore Y(y) = D(¢p(y)) is a Borel map from
Y to 2X U {@} Since Y and 2X U { &) are compact metrizable and  is
Borel, there exists a residual set ¥, C Y such that xply is continuous. The
equlvarlance of ¢ implies that ¥, may be assumed to be mvanant (See below.)
Now Y\P Y, # O, because ){p is second category, and therefore ¥, N X, is
dense in Y. Since & is an isolated point of 2X U (D), Y, N Y, =7Y,. Now
lety € ¥, be any point of continuity for m,4. G y( y) isa dense subset of X by
mmlmallty, and therefore limsup _,yxp(gy) =7"ly. By continuity, y{y)
= 771y, and therefore ¢(») = {4} as claimed.

REMARK. An observation by Ellis [38] is useful for an iteration which will be
carried out later using (2.3.1’). It is that if x € X is a ¥-distal point, then for
any A € Y’ such that x € 4, (x,4) € X’ is a %' distal point. For suppose
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(x,A’) € (7')"'A. Then A’ = 4, and if x'Px, ' = x. Thus, (x',4")P(x,4)
implies (x,4’) = (x,A4).

The invariance of Y, used in the proof of the proposition may be obtained
from the following lemma.

2.3.8. LEMMA. Let O, Z be flows with metric phase spaces (W, Dy), (Z, Dy),
and let f: W — Z be an equivariant map. If A C W is a residual set such that
fl 4 is continuous, then also f|g4 is continuous.

Proor. Suppose lim, g, a, = ga, a;, a € A. Replacing g, by g~ 'g, and
using equivariance of f and continuity of g we may suppose g = e. Because 4
is residual, 4, = A4 N g;'A4 is residual for each k, and we may choose
by € Ay such that () Dy(grby grar) < Vk, (i) Dz(gif(be) gif(ar))
< 1/k. By (i) lim, g, b, = a, and since a, g3 b, € A, lim, f(g, b;) = f(a). By
(ii), limy f(gga) = lim; g, (f(ar)) = f(a) also.

The following result is another consequence of Proposition 2.3.7.

2.3.9. PROPOSITION. Let X =7 % be a homomorphism of minimal flows with X
metrizable, and let A C X be an invariant Borel set such that \(y) = A N 7~ y
is closed and nonempty for each y. Then

(i) if N(y) is a singleton for each y, m is an a.a. extension,

(ii) if A(-) is a Borel function from Y to 2X, then N(y) = =~y for some y.

In (i), let A(»)) = {f(»)}. If BC X is Borel, fT/!B=a(B N A) is a
continuous one-one image of a Borel set, hence Borel. Thus (i) follows from
(ii). Of course (ii) follows from Proposition 2.3.7 using ¢(y) = {A(»)}.

2.4. Almost periodic extensions. Let %X —" % be a homomorphism of
minimal flows, and let  be the compatible uniformity for X. Define 2, C R,
by B = Nyeq(Ga N R,). B is called the relative proximal relation (proximal
relation if Y = Q). The argument for Clay’s result (§2.2, see [22]) shows that
if P, is closed, it is an equivalence relation. As mentioned earlier, P, is generally
not an equivalence relation, and when it is, it is generally not closed. Of
course, GE. = P,

Now assume ‘f)C is a distal extension of % (B, = A). If y € Y, u € J,, then
ux = x, x € n 'y (see Corollary 2.3.6). ley and set up W = HxEﬂ-ly Xs
X, = %. Definez € Wbyz(x) = x,x € 7 'y.Clearly,uz = z,u € 5 and
$0 Z = 0(z) is a minimal set (Proposition 2.2.3). There is a natural commuta-
tive diagram

(2.4.1) » m

Let p, p’, g € I be such that pz = p’z and gy = y. For each x € n7ly, gx is
a coordinate of z (the gxth) and therefore pgx = p’qx. That s, pgz = p'qz, and
we have a natural pamng Z X I, > Z defined by L(pz,q) = pqz. If q € I,
ug = q,u € J,, choose ¢’ € uI with q¢’ = u. Then L(L(pz,q),q9’) = pqq’z
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= pz, and so L(+,q) is invertible. It is also continuous, and so if we let H be
the set of maps {L(-,q)lg € L,},(H,Z) is a “flow” (except that H may not be
a topological group). Note that the actions of G and H on Z commute, and
%Y = Z/H. Moreover, H acts strongly effectively. For if pgz = pz, the %-
distality of 9% implies gx = x, x € #~'y. That is, ¢ = id in H. Ellis calls
(2.4.1) a “group-like extension” [37].

Now define @, = MyeqGa N R,. O, 2 P, is the relative regionally proxi-
mal relation (regionally proximal relation if % = Q). If Q, = A, then B, = A,
and (2.4.1) is defined. But this time one finds that (a) H has separately
continuous multiplication and is therefore a topological group, and (b) the
pairing (H, Z)) is separately continuous and therefore a flow. In other words, if
0, = A, Zis a group extension of ¥ and X an a.p. extension. Conversely, if %
is an a.p. extension of %, one sees that 0, = A.

The first a.p. extensions were the isometric extensions introduced by
Furstenberg [50]. What follows is a straightforward generalization of Fursten-
berg’s notion:

2.4.2. DEFINITION. Let X —7 % be a homomorphism of minimal flows. X
shall be called an F-extension of % if for each z € R, — A there exists
8 € C(R,) such that

(3)8 > O, 8'A = 0,

(b) G6 = §,

(c) 8(z) > 0.

If X is an F-extension of ¥, then Q, = A. For if z & A, choose 8 € C(R,)
asin (a) —(c), and let @ € QU be such that a N R, C {z'|8(z’) < 38(z)}. Then
z & Ga N R,, meaning z & @, . Conversely, if %X is an a.p. extension of %,
% is an F-extension. This is not a difficult result and will not be proved here.
It follows from more difficult results in the next section. We have

2.4.3. PROPOSITION. Let X =" %Y be a homomorphism of minimal flows. The
following are equivalent:

(1) X is an a.p. extension of %,

(i) 0, = 4,

(iii) % is an F-extension of %.

Let E, be the least closed invariant equivalence relation which contains Q.
X/E, is the largest almost periodic extension of % “below” X. When
X = 4, §/E, is the largest minimal a.p. extension of %, in the sense that any
other minimal a.p. extension of % is a factor of §/E,.

REMARK. Let 9 be the largest minimal a.p. extension of %, and let
X —>7 %Y, ¥ = X/E, be as above. There is a commutative diagram
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Define R, ,, = {(x,w)|m x = mw}. Then it is possible to show R, i itself a
minimal ﬂow (For % = Q, G abelian this is proved (and used) in [150])

2.5. Topologies associated to minimal flows. The classical characterization of
distality, due to Ellis [33], states that % is a distal flow if and only if E(%() is
a group. This played a major role in Furstenberg’s structure theorem for
minimal distal flows (and also contributed to the early false conjecture that
distal flows are equicontinuous).

Let X be a minimal distal flow with (for now) metrizable phase space.
Furstenberg’s idea is to endow X with a weak(er) topology with respect to
which the elements of E(%) are homeomorphisms. With the weak(er) point-
open topology E(%) has multiplication separately continuous (and inversion
continuous). Should either of the weak topologies be T, they both are and (a)
E(X) is a topological group in its “regular” topology, and (b) % is an
equicontinuous flow. In general, the weak topologies are 7] but not 7;, and so
Furstenberg employs an ingenious fiberwise “Hausdorffization” to prove that
if X >7 ¥ is a nontrivial extension of %, it is possible to “insert” a nontrivial
a.p. extension of ¥ below X. A transfinite induction, beginning with ¥ = ,
proves % is an I-flow.

REMARK. The condition that a group K be compact, with multiplication
separately continuous and inversion continuous, occurs so frequently that I
shall refer to K simply as an “F-group.”

A different procedure for defining weak topologies was given by Ellis [37]
and used by him to prove his structure theorems [37], [38]. The idea of
attaching “Furstenberg topologies™ to point-distal flows occurs in [146], where
Hausdorffization and shadow diagrams were used to prove the structure
theorem. Below I shall sketch the (natural generalization of the) Furstenberg
topologies of [146] and prove they are equivalent to Ellis’ topologies. The latter
fact has been proved independently by Ellis, Glasner and Shapiro [40].

Fix a minimal flow %, and let £ be the set of continuous pseudometrics on
X. If ¢ € = define F; on X X X by F(z) = inf,eg0(gz). F, is invariant and
u.s.c., which implies for all z € X X X (resp. all ap.z € X XX)andp € §
or E(%(),

(2:5.1) F(z) < E(pz) (resp. = E(p2)).

If x € X,0 € 2,e> 0, define U, 4(x) = {x'|F(x,x") < ¢}. U,, is open be-
cause £, is u.s.c. The following lemma is basic and is due to Furstenberg [50];
see also [146).

2.52. LEMMA. If u € J, z = (x;,X,) are such that uz = z, and if 0 € =, ¢
> 0 are such that E(z) < e, then there exist p € = and § > 0 such that
USp(x2) - U (X]).

REMARK If x; €X and uxj = x,, then F(x;,x3) = 0. Therefore X5

U, ,(x;). (This also follows from (2.5.1) dxrectly) Define U/y(x) = U, ,(x)
ﬂ X (u)

The lemma implies the set Fo(u) = {Uk(x)|x € X(u),e > 0,0 € Z}is a
basis for a topology F(u) on X (u). If x, x are distinct points of X () the fact
that x and x’ cannot be proximal implies F(x,x’) > 0 for some o, and
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therefore §(u) is 7. The remark following Lemma 2.5.2 implies any open cover
0 = {U¥} from Py(u) corresponds to an open cover & = {U} of X, and
therefore has a finite subcover. That is, (X (), &F(u)) is compact.

Each y € ul (I a minimal ideal in S or E(X)) maps X (u) to itself and by
(2.5.1) is an “F(u) isometry”. Therefore y is an (x) homeomorphism. Let
K(u) = ul, and place on K(u) the point-open (F(u)) topology, F* (). F* (u) is
compact and 7] if I C E(X), but usually not 7 if I C S (because the action
of K on X(u) may not be effective if / C S). Multiplication is separately
continuous, and, because E,(x,yx) = E,(x,y"'x), x € X(u), y € K(u), inver-
sion is continuous. That is, (K(«), &* (1)) is an F-group.

REMARK. It is not true in general that X(«) is G invariant or that G has a
natural homomorphism into K(u). These facts are of surprisingly little
consequence.

REMARK. If x € X(u), define A,: K(u) = X(u) by A, (y) = yx. By defini-
tion of &* (), A,(*) is continuous for each x. Now let 4 be a nonempty index
set, and choose z € X4 such that uz = z. Setting Z = 0(z), Z is a minimal
set, and Z(u) carries its §(u) topology. Because the uniformity of X* is
generated by the uniformities of its factors (X), it follows that a net z, in Z(u)
is {(u) convergent if and only if it is F&(u) convergent in each coordinate.
Therefore, if we define A,(y) = vz, ¥ € K(u), A,(*) is continuous from (K(u),
X* W) to (Z(u),J(u)). If we set 4 = X(u) and take z with z(x) = x, x
€ X(u), and if I C E(X), so that K(u) is effective, then A,(:) is one-to-one.
However, because $(u) is not 7, we cannot infer immediately that A, is a
homeomorphism. In fact, it is, as will be seen later.

REMARK. Let I € § or E(%X) and let X -7 % be a homomorphism of
minimal flows. By equivariance and continuity, X («) >" Y(u) is onto and
equivariant with respect to K(u). (Use #u and #K(u) if 1 C E(%X).) As
pseudometrics on Y pull back to pseudometrics on X, 7 is §(u) continuous and
$‘§*(u) continuous. I shall later prove 7 is {(u) closed, which is not obvious.

I shall now describe the Ellis topology [34]. Fix a minimal ideal I C S(G)
or E(X),u € J(I), and 1dent1fyg € G with s, € S(G) or E(¥X). If VcaG
is a set such thatu € (V) define (V) =V ﬂ I, sothatu € h(V) (relative
topology). As I is a mlmmal set, Proposition 2.2.2 implies the set Vu
= {g € Glgu € h(V)*} is open and L.r.d. If p € A(Vu), then p = lim,g, for
some net in Vu, and becauseopu = p for any p € I, lim,g,u = p also. By
definition of Vu, g,u € h(V)" C h(V'), and therefore p € h(V). That is,
h(Vu) C h(V). On the other hand, if p € h(V)°, choose a net g, in V with
lim,g, = p. Again g,u — p, and therefore g,u € h(V)° for 1arge v. Therefore,
g, € Vu for large », and so p € h(Vu). The inclusions h(l/) C h(Vu) C h(V)
imply h(V) = n( Vu)°, and therefore

2.5.3. ProPOSITION (ELLIs [34]). If u € V°, then (Vu)u = Vu.

REMARK. The inclusion A(Vu) C A(V'), plus the proposition, imply the sets
(h(V)|u € (7)°,Vu = V} form a base for the neighborhoods of u in 1.

Let X be a minimal flow, and fix u € J, x € X(u). If U is a neighborhood
of x in X and ¥V C G an open set such that Vu = V, define

= -1
(2.5.4) (U, vl, gLEJVg Un X®u).
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I shall demonstrate that these sets comprise a basis for J(u). As they also
comprise a basis for the topology defined by Ellis [34], the two must coincide.

Let x € X(u), 0 € =, ¢ > 0 be given. Choose a neighborhood U of x such
that a(x,z) < & z € U, and use the fact ux = x, plus the remark following
Proposition 2.5.3 to find an open set V' such that Vu = V and Vx C U. If
g€V and z € g7'U N X(u), then o(gx,gz) < o(gx,x) + o(x,82) < 2e.
Thus, z € Uj, ,(x), and as z is arbitrary, [U, V], € Uj, ,(x). Conversely, let
[U, V], be given containing x € U N X(u). There exists 6 € = and ¢ > 0
such that {z|o(x,2z) < €} C U, and there exists }j C V such that lyu = ¥ and
o(x,z) < ¢/2,z € Wyx. Wy is L.r.d., and therefore there exist g, ..., 8 € G
with G = UL, g;' 1. Choose o’ € = and & > 0 so that if o'(x',x") < ¢,
then o(g; x",g;x") < ¢/2, 1 <j < k. I will now prove U/ (x) C [U,V],. To
this end fix z € U/, (x), and choose g € G with 0'(gx,gz) < ¢. There exists
J with g;g € ¥, and by choice of o', ¢, a(g;8x,8;82) < ¢/2. Therefore,

o(x,g;82) < o(x,g;8x) + o(g;8x,8;82) < &/2 +¢/2 =e.

But this implies g;gz € U or z € (gjg)—'U C [U,Kl, € [U,V],. Thus,
Uly(x) C [U,V],, as claimed. We have

2.5.5. PROPOSITION (SEE ALSO [40]) . The sets [U, V], of (2.5.4) form a basis for
&(u).

The proposition leads to the elegant characterization of &(u) closures due to
Ellis, Glasner and Shapiro [40]. Below, topological entities are understood to
be with respect to the “regular” topologies unless (u), ¥* (1) are specified. It
is convenient here to assume I C S, so that u o A is defined.

2.5.6. PROPOSITION (ELLIS, GLASNER AND SHAPIRO [40]). If A C X (u), then
clsyyA =wuoA4 N X(u) =uucA). (Recall that u o A = u o 4.)

PROOF. (o A) N X(u) C u(uoA) Cuo(uoAd)=uoA. Therefore, u
oA N X(u) = u(u o A). A point x € X(u) belongs to clsg, A4 if and only if
[U,V], N A # & whenever U is a neighborhood of x and Vu = w. This, in
turn, is if and only if there exist nets x, in 4, g, in G such that g, = u and
g,x, = x. That is, if and only if x € u o 4 and ux = x.

2.5.7. PROPOSITION. Let X, =" % be a homomorphism of minimal flows. Then
X (u) =™ Y(u) is an onto F(u)-continuous and T(u)-closed map.

PrROOF. We have only to prove 74 is &(u) closed in Y (u) if A is F(u) closed
in X (u). It is easily checked that m(u © A) = u o 7A, and therefore if u(u o 7A)
s wA, there exists x € u o 4 with #x € u(u o 7A4) but not in #4. However,
ux € u(u o A) C uo A also, and as 4 = u(u o A) because 4 is F(u) closed,
7x = mux € wA. Thus, 74 is F(u) closed.

2.5.8. COROLLARY [40]. Let X —" % be a homomorphism of minimal flows, and
suppose w is one-to-one on X (u). Then 7 is an &(u) homeomorphism.

REMARK. If 7 is one-to-one on X(u) for one u it is for all u (since
X (u) =Y X (v) is one-to-one for v € J). This implies = is a proximal homomor-
phism. Conversely, if 7 is proximal, 7 is one-to-one on X () for all u.
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If 1 C EX),uecJ(), then I(u) = ul (= K(u)) carries its own F(u)
topology, defined using the flow § = (G, ). We shall prove (I(«), ¥(u)) and
(K(u), &* (1)) are homeomorphic. First suppose lim,p, = p(F(u)). For each
x € X(u), $ =>™* % is a homomorphism of flows, and therefore

dWlimp,x = Fw)limA,(p,) = A(p) = px.

Since x is arbitrary, the definition of ¥*(u) implies $* (4)lim,p, = p, and the
injection (I(u), F(u)) = (K(u), F* (1)) is continuous. For the reverse map, set
up X*¥® and z with z(x) = x, x € X(u), as before. If Z = 0(z), Z(u) = uZ,
there is a commutative diagram (A\2(y) = yz)

), FW) ————> (), 3*@))

A N

(Z@), Fw)

in which all maps are one-to-one and known to be continuous. As A, is also
closed, i~! is also continuous. We have

2.5.9. PROPOSITION. Let %X be a minimal flow, and let I C E(X) be a minimal
ideal. For each u € J(I), (I(u),&(u)) and (I(u),T*(u)) are the same. In
particular, (I1(u), &(u)) is an F-group.

2.6. The relativized equicontinuous structure relation. Recall that if X -7 %
is a homomorphism of minimal flows, then E, is the “relativized equicontin-
uous structure relation,” the least closed invariant equivalence relation con-
taining Q. The theorem to follow is new and will be the principal result of
this section. I is a minimal ideal in S (for now) and u € J a fixed idempotent.

2.6.1. THEOREM. Let X —" % be a homomorphism of minimal flows which is an
RIC extension. If x € X(u), then for every relative T(u) neighborhood a of x in
urVax (= X(u) N 7 'ax), we have E,[x] C u ° a.

One of the consequences of Theorem 2.6.1 is the following result which has
been obtained independently and earlier by Ellis (oral communication):

2.6.2. THEOREM. Let X -7 % be a homomorphism of minimal flows which
satisfies the Bronstein condition (Definition 2.3.3). Then Q, = E,; i.e., Q, is
already an equivalence relation.

If X >" %Y 2 —>*%Y are homomorphisms, define Arr = (G, R, ), where
R, = {(x,2)|mx = Az}. R,, = R,.) (Similarly, given X, =79, j =1,
.+, n, define R, ..., .) I shall say (7,A) (resp. (m,...,m,)) satisfies the
generalized Bronstein condition (g.B.c.) if the a.p. points are dense in R,, , (resp.
R, ... n)- Another consequence of Theorem 2.6.1 will be

.....

2.6.3. THEOREM. Let X —" %Y be a homomorphism of minimal flows which
satisfies the Bronstein condition, and suppose that E, = R,. If € —AY s q
homomorphism of flows such that Z is topologically transitive and if (w,\) satisfies
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the generalized Bronstein condition, then 9, , is topologically transitive.

REMARK. If % —7 @ is an RIC extension, and if € - % is such that €
contains a dense set of a.p. points, then I claim (7, ) satisfies the g.B.c. To see
this, let w = (x,z) € R, ), and let W be a neighborhood of w. The projection
of W onto the first coordinate is a neighborhood of x which under # is sent to
a neighborhood U of #x = y = Az. X! U is a neighborhood of z and we may
choose 22 € X! U such that 2’ is an a.p. point and (x’,z’) € W for some
x' € X.Suppose uz’ = z/, and note that u o (ur~'7x’) = #~'#x’ because = is
RIC. There exist nets g, in G and x, in uz~'7x’ such that g, — u and
g,x, = x'. Then lim, g,(x;,z") = (x',z’). As g,(x),2’) is an a.p. point for each
v, our claim is established. Therefore, in the special case ¥ = © (X incontrac-
tible), Theorem 2.6.3 implies Theorem 2.1.6. A simple induction based on
Theorem 2.6.3 implies the following, which in the metrizable case is due to
McMahon [88].

2.6.4. THEOREM. Let X =" %Y be a homomorphism of minimal flows, and
suppose for each n > 2 that (m,7,...,m) (n times) satisfies the g.B.c. Then
@l(,m ’’’’ m) IS topologically transitive.

In connection with Theorem 2.6.2, Ellis proved [38] that the Bronstein
condition implies E, = Q, P,.. “Unrelativized” versions (¥ = Q) of the theo-
rem were proved in special cases by Peterson ([105]; G abelian) and Ellis and
Keynes ([42]; X(u) contains an orbit). A different characterization of the
(unrelativized) equicontinuous structure theorem is given in [150] (G abelian)
and [143] (G amenable) and can be used to identify it with the regionally
proximal relation (cf. [105]).

In what follows I shall combine the approaches of [50], [146] and [38], [40].

Let X —” % be a homomorphism of minimal flows, fix y € Y(u), and set
W = X@u) N 7 'y. Wis §(u) closed (because { y} is) and therefore compact.
Set I' ={y € Kw)|yr="!y C #~'y}. Then T is an J(u) (= F*(u)) closed
subgroup of K(u), hence an F-group. Also, T is transitive on W (but possibly
not effective).

If x € W we use N, to denote the set of (relative) &(u) neighborhoods of x
in W. Define E(x) = Myen, clsy(,) Uand I'(x) = {y € Tlyx € E(x)}. Both
E(x) and I'(x) are &(u) closed, and for all x € W, y € T we have

(2.6.5) T(yx) = yT(x)y~".

I'(x) is trivially expressed as

(2.6.6) I(x) = UQNX{Y € Tlyx € clsy, U}
and clearly contains

(2.6.6/) r’(x) = UQNX cng(u) {'Y (S rh/x (S U}.

However, because T is transitive and the map I(u) =™ X(u) given by
A (p) = px is F(u) closed, we have for each U € N, that clsz) {y €T
yx € U} ={y € Tlyx € clsg, U}. That is, I'(x) = T(x). It is not difficult
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to see that I"(x) is a group, and therefore I'(x) is a group (Ellis [38]). Now
(2.6.5) implies E(x) = E(x') if x' € E(x), or even if E(x) N E(x') # &.
Therefore, the relation xEx’ if X’ € E(x) is an equivalence relation. By (2.6.5),
E(yx) = YE(x), y € T.Infact, if y € Iis arbitrary, and if v € J is such that
vy = v, then E(yx) = yE(x) in the sense that if E(yx) is formed with respect
to (X(v),3(v)) and vM, then E(yx) = yE(x). This is because the map
(X (), F(w)) =¥ (X (v), &()) is, by (2.5.1), a homeomorphism.

Now let L = W/E with the §(u) quotient topology, and denote the
canonical map by W —* L. For any x € W the map 7, = pA, induces a
continuous map from I/T'(x) with the quotient (¥(u)) topology to W.
Moreover, this map is one-to-one. Now let x, x’ € W be such that ux # ux'.
There exist U € N,, U' € N, such that clsy,y U N clsy,y U = . Deﬁne
[,(x")={y € Flyx” € A}. I shall prove &)(x)l“(x) N Ly (x)I(x) =
wh1ch implies T/T'(x) is T,. Therefore, L is T, and T/T'(x), L are homeomor-
phic. Now by (2.6.6)-(2.6.6") we have for any y € Ij(x) that T(yx)
C clsg,y Ly(yx) = clsg, I(x)y~', or, what is the same, yI(x)
C clsyq,) Iy(x). Let Uy = clsg,) U, Uy = clsg,) U', and note that, as ob-
served earller clsqy Iy(x) = I{ 5 (%), clsz Tvr (x") = Ty, (x'). It follows that
()T(x) C Ty, (;3 and I}, (x)F(x) C Iy, éx) are disjoint.

Next, define FO = Neewl(x) = yeryI‘(xO)y I'(any fixed x, € W). Ty is
a normal subgroup of T', and by arguments similar to the above H = T/ PO is
T. As H is also an F group, the separate continuity theorem implies H is a
topological group. Note also that because I' is §(«) compact, the canonical
map I' = H is closed. Now from the triangle of natural maps

A

r———H
g Tx
I'/T(x)

we infer that 7, is continuous because o, is continuous and A is closed. It
follows that L is a homogeneous space of H.

Let 8, be a continuous H-invariant pseudometric on L. Lift §, to an &(u)
continuous, I' invariant pseudometric on W, retaining the notation §,. Note
that if (x;,x,) = z & E, then §; can be chosen with §y(z) > 0. For any
z €E WX W,g € G, such that gz € WX W we have ugu € T, uguz = gz,
and therefore 8,(gz) = 8y(uguz) = §;(z). It follows that §y(gz) = 8;(z2), g
€ G,z € WX W defines 8§, on R, (u) = G(W X W) C R,. The following
lemma is elementary [50], [146].

2.6.7. LEMMA. For every ¢ > 0 there exist 6 € Z and ¢ > 0 such that if
z € R, (u) and F(z) < ¢, then §(z) < e.

I now make the assumption that % is an RIC extension of %, which implies
R, = R (u). Let I C S be a minimal ideal (« € I now and uy = y), and
recall thatif p € vl,v € J, thenp o C(y,u) = C(py,v).If z € R,, z = (x,
x;), and if mx; = ', let I, = {p € I|py = )}, and define
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8(z) = suplim  sup  §y(z,),
I b —>D;8v 2y .
(2.6.8) PEL Bopgn
noting that 8 is u.s.c., invariant, and 8(z) > 8(z), z € R, (). In particular, if
z € WX W does not belong to E, there exists &, such that §(z) > 0.

2.6.9. LemMaA (CoMPARE WITH [50], [146]). With notations as above, &(-)
defines a pseudometric on a7 ly,y €Y.

PROOF. Let xj, x5, x3 € 771y, and set z = (x,x3), 2 = (x),x,), 2"
= (x,,x3). Given ¢ > 0 there exist p € I, py =/, and nets g,, (x{,x})
€ W X W, such that g, — p, g,(x],x3) = (x;,x3), and liminf, 8§y(g,(x{,x3))
> 8(z) — e In the topology of 2%, g, W — C(y',v) (yp = p). Therefore, after
passing to a subnet, if necessary, we may suppose x; € Wand g, x5 — x,. Set
2, = (. x8), 2 = (., x3), 2 = (x§.x3). Then

8(z) < e + liminf §y(g,z,) < & + limsup 8y(g,z,)

< e + limsup{dy(g,2,) + 8(g,27)}
L e+ 8()+8(z").

Letting ¢ — 0, our claim is established.
An immediate consequence of Lemma 2.6.7 and the fact that £, is u.s.c. is

2.6.7". LEMMA. For every ¢ > 0 there exist 0 € Z and ¢ > 0 (the same as in
Lemma 2.6.7) such that if z € R, and F,(z) < €, then §(z) < e.

Now define A, ¢ > 0, by

(2.6.10) A= {z € R,,llirr'l_)i?f 8(z") < 8(2) - c}.

z'zER"
Because & is u.s.c. and invariant, A, is closed and invariant. Moreover, if
A, = &, ¢ > 0, then § is continuous. I shall prove A, = & by contradiction,
in a fashion similar to that in [50], [146)].

If A, # O, there is a minimal set Z C A,. Let £ =" X be the map onto the
first coordmate and form the sets C, (x, v), x € X,v € J, vx = x. Of course,
Cu(x,v) C {x}x7'ax C R,.

If we restrict z, z’ in (2.6. 10) to lie in Z, we obtain a closed invariant set
A, C Z. As Z is minimal, either A, = & or A, = Z. If A, = Z, §|; has no
point of continuity. However, being u.s.c., 8|, has a point of continuity.
Therefore A, = & and § is continuous on Z. (Since ¥ is minimal, 8| is
constant.)

Now fix z € Z and use the definition of A, to find a net z, — z in R, such
that 8(z,) < 8(z) — 3¢/4. Write z = (xl,xz), z, = (x{,x%), and choose u, u, in
J with uz = z (z is an a.p. point!) and u,x] = x| . Matters may be arranged
so that lim, C,(x{,u,) = C,(x;,v) exists. Possibly v # u, but at least vx)
= xj. Recall that uoC (x,u) Cy(uxy, uv) = C#(xl,u) Choose a net g, in
G such that g, — u. Of course, g2 L,z and 2, C,(x1,v) = C,(x;,u) (in 2%).

If « € A (the uniformity for X), choose g, so that
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() (x;,8,x;) € a,j = 1,2, and

(i) (2, Gy, 0), Gy, 0)) € o* (82.3).
Denote the dependence on a by h, = g,. Use the continuity of A, to find »
such that

(i) (<], ke x]) € @, and

(11)(h , (F,u,), Cy(xp,u)) € o*
Set (Wi, w§) = (xf ,xz) and pick w2 € C,(x{,u,) such that (x;,h,#5) € a.
Now lim, A, (W', w§) = z, and (w]!',Ww5) € 'Z. Since lim, h,(W§,W§) = (x2,x2)
€ A, we have from Lemmas 2.6.9 and 2,6.7:

lim sup |8(h, (Wi, w§)) = 8k, (wi', W$))| < limsup 8(h, (w§,%5)) = 0.
a a

But this contradicts the fact that 8(h, (wf,w$)) = 8(z) and S(wf,w§) = 8(z,)
< 8(z) — 3¢/4. Thus, A, = &, and § is continuous.

Now return to the general (non-RIC) case, and define R_(u) = R, (u). As
essentially noted in §2.3, R,(u) is the closure of the a.p. points in R,. If
X’ —™ & is as attached in (2 3.1"), then by the argument for Lemma 23, 4,
T X 1R, = R,(u) (= R, if = satisfies the Bronstein condition). Under 7, X (1)
and X '(u) are g(u) homeomorphic (Corollary 2.5.8) and, therefore, W, T, L,
etc. may be formed using #" instead of # with the same result. Let & be as
constructed above, except on R,.. If ¢ > 0 the set A, of z € R, (u) such that
there exist 2y, 2, 7 X 7(z;) = z and |8(z;) — 8(z3)| > cis closed and invariant,
and, therefore, if nonempty, contains an a.p. point. However, if z = (x,,xz)
€ R,(u) is an a.p. point, say uz = z, there exists z/ = (x},x3) € Ry, uz’
=7 with X7z =z If 27 = (x],x3) € R, satisfies 7 X 7z” = z, then
because T is proximal, ux] = xl and ux% = xj. Thus, 8(z’) = 8(uz")
= §(z”), meaning z & A,. Thus, A, = &, and § may be regarded as an
element of C(R,(u)). As C( y',u’) is homeomorphic under 7 to some fiber of
X’ =™ &, it follows that & defines a pseudometric on C(y,u’) for all
y e Y, u € J,uy = y.In particular, if # satisfies the Bronstein condition,
and if x;, x,, x3 € 7'y (up = y), then

8(xp, x3) = Suxy,uxy) < 8uxy,uxy) + 8ux,, uxs)
= 8(x;,x2) + 8(x2,x3).

That is, 6 defines a pseudometric on 7~ Ly. It follows that §(z) = 0 defines an
invariant closed equivalence relation.

Denote by =, the set of functions § which arise by the above procedure. By
the last paragraph, if 7 satisfies the Bronstein condition, the set

={z € R0 =0,alls € 5,}

is a closed, invariant equivalence relation. We note first that 9, C E.. For if
z € Q,, there are nets z, in R, and g, in G such that z, > z and g,z, > w
€ A If § € Z,, then 6(2) = lim,8(z,) = lim,8(g,z,) = 8(w) = 0. Since d is
arbitrary, z E E;, and since z € 0, is arbitrary, Q, € E;. By definition,
therefore, E, C E 7. Now let X’ =7 ¥ be as in (2.3.1'). The construction of
6 € 2, above makes it evident that * X ®(E,,) = E,, and as 7 X 7(Q,)
C @, it will follow that E;, C Q, C E_ if we prove Q,, = E,,. In other
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words, Theorem 2.6.2 is true under the Bronstein condition if it is true for RIC
extensions. In order to prove this, it is necessary first to prove Theorem 2.6.1.

Let W, T, u be as in our earlier discussion, and fix x € W. As before N, is
the set of F(u) neighborhoods of x in W. Our goal is to prove u o & 2 E/[x]
for which purpose we may suppose a has the forma = W N U, 4(x) for some
€>0,0 € = Define I, = I(x) = {y € Tlyx € a}, 50 that T, = I},;'!. One
proves readily that woa = uo ([,x) = (u o I,)x. Because (u o I‘) NnT
= clsqy Lyueo T, 2 I'(x). In fact, if y € T, I‘(yx)y C u o T, or what is the
same T)y (2.6.5), yI'(x) € u o L. That is, I, T'(x) € u o I, and applying u
once more (u o T )(x) C uoT,.

Suppose y € (u o T)) N T is not an §(u) interior point. There exists a net
Y, in P Y, @uol,, such that §(u)lim,y, = y. For large » it must be that
y(yy,!) € ¥L,, or y € T,v,. Therefore, if A denotes the $(u) interior of
uol (2 I‘) the set {A,l‘ay (y € ueoT,)}is an open cover of T. Choose a
finite subcover A, Ty oo, Iy, Recall that I, ={p € I|py = y}J,
=J(I) N L u € J) AsusualI Useyvl, = UL,EJUI‘

Ifv € belongsto(uo I‘)yj, then u=w € u(@o L)y, orue
(u° T,y It follows that v~ V'€ (uoT,) N I.Now because (a) T, = I, !, (b)
(I‘, ‘{;(u)) is an F-group, and (c) clsgp) L =(@°L)NT, it follows that

j € (uo T,) N T, contradicting our ch01ce of y;. We conclude that u © T, y;,

] = 1,..., n, contains no element of J,.

Now define I’ y=ueo T. Clearly, I T C I, and therefore if J/, J, NI,
I, = Uy, vI‘ Also, because 7 is an RIC extensmn, I,x = (‘1,4 o F)x = u
O(I‘x)—w ». Now certainly I, =uol = U ](uOI’)yJUuOA and

s0, by the result of the preceding paragraph, J C uo A. Since F cA
Cuol,ucAd = uol,,and therefore because (u o T)T(x) € uo I, vI'(x)
C u o I, for every v EJ'

Now suppose (x, x’) E E7, and choose v € J}, with vx’ = x'. Since E; is
invariant, u(x,x’) = (x,ux’) € E,, and it follows that ux’ € E(x) = I‘(x)x
Then x’ = v(ux’) € vE(x) = vI'(x)x. Since vT(x) Cu oI, x € uoa, and
we have proved Theorem 2.6.1.

2.6.11. PROPOSITION. Let %X —7 % be an arbitrary homomorphism of minimal
flows, and let W, T, x € X(u) N W, N, be as above. If z € N,ep,u ° a, then
(x,2) € Q.

PROOF. Now it is convenient to suppose a € N, is of the form a = W
n u eyg LU, where also Vx C U. To sayz Euoais to say there are nets
h,, g, m G and x, in U such that (a)g x, € W,(b) h,g, ' x, = z,(c) h, > u,
and (d) g,, € V By (a) (h,8, ' x,.h, x) E h(WXW)C R Therefore if
k = gv

k,(h,g7 " x,,h,x) = (x,,8,x) € UXU N R,,

by (d) and our choice of x,, V. It follows that (kg 'x,,h,x)
€ G(UX U N R,).Because U is an arbitrary neighborhood of x, (z,x)
€ Q,.

Proposition 2.6.11 and Theorem 2.6.1, together with the discussion preced-
ing the proof of the latter, combine to imply Theorem 2.6.2. It is left for us to
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prove Theorem 2.6.3. Recall that X —" % is a homomorphism of minimal
flows satisfying Bronstein’s condition and also E, = R,. Z —A % is a homo-
morphism and (7,)) satisfies the generalized Bronstem condltlon Z is topol-
ogically transitive but possibly not minimal.

Initially we suppose = satisfies the stronger hypothesis of being RIC. Let
A C R, be a closed invariant set with nonempty interior, and let (x,z) € 4
be an a.p. point, where u(x,z) = (x,z). Set y = mx = Az. There exist neigh-
borhoods U of x and U’ of z such that UX U’ N R, ) € A4, and we may
choose V C G with Vu =V and Vx CUVzCU. If X € a=X(u)
N 77y N Upepg ' U, say X' = g7x”, then

(x,2) =g ' (x",g2) € g (UXU' N R,,) C GA
It follows from Theorem 2.6.1 that
uo (ax{z}) = (uo a)x{uz} = (uo a)x{z) = 7~ 'yx{z} C GA.

Now the set Z' = {z € Z|(x,z) € A° for some x € X} contains GU". Since
% is assumed to be topologically transitive Z’ is dense, and by the above
Z" = {z € Z|n"'Azx{z} C A} is also dense. Now if 4 # R, 4° N R, is
open and invariant, and the set Z"” = {z € Z|(x,z) € A° N R, for some x}
is open and dense. Since Z” N Z"" = ¢, we have reached a contradiction,
and therefore 4 = R, ). Theorem 2.6.3 is proved for RIC extensions .

To sketch the general case, assume 7 and (7, A) satisfy the B.c. and g.B.c.
We generalize (2.3.1') by setting Y’ = {(C,(»,u), C\(»,u))|y € Y,u € J,uy
= y}. While € is not necessarily minimal, it is still true that %’ is minimal.
Furthermore, because (7,A) satisfies the g.B.c., and because homomorphisms
map a.p. points to a.p. points, £ contains a dense set of a.p. points. This
implies each z € Z belongs to at least one C)(y,u), and therefore if we set
X' ={(x,(4,B))|x € A,(4,B) € Y'},Z ={(z(A4,B))z € B,(4,B)
€ Y’}, there is a commutative diagram

g
e

in which o, 7 are proximal, %’ =7 %’ is RIC, and ¢’ is topologically transitive
and has a dense set of a.p. points. By the remark following the statement of
Theorem 2.6.3, (7', \) satisfies g.B.c. Because 7 satisfies B.c. and E, = R,,, we
have E, = R, . By the first part of our proof above, R, ) is topologically
transitive. The natural generalization of Lemma 2.3.4 implies ¢ X 7(R, )
= R, ). and because topological transitivity is closed under homomorphisms,

R, , is topologically transitive. Theorem 2.6.3 is thereby proved.

2.7 Another proximity relation. Let X =" % be a homomorphism of minimal
flows. Define U, [x], x € X, to be the set of z for which there exist nets g, in
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G and z, in 7 '7x such that z, - z,g8,z, - z,g,x = x. It is clear that
Bx] € Urlx] € Qnlx].

2.7.1. Question. Let %X —™ % satisfy the Bronstein condition. Does U,[x]
= Q,[x] for all x?

It is perhaps too much to hope that the answer is “yes”. On the other hand,
it will develop that if for all y € Y, u € J,, the set ur™'y is dense in 77!y
(e.g., if X is ¥-distal), then the answer is “yes”.

If z € X, denote by 9¢, the set of all (regular) neighborhoods of z in 7~ 7z.
Define for each y € Y a set £,(y) C 77!y, 3,(y) = {zlu o U N ur'y has
nonempty §(u) interior, u € J,, U € 9, }. (fuo U N un~'y has nonempty
() interior for one u € J, it does so for all u € J,) Zy(y) is closed. The
argument in the lemma to follow is due to Furstenberg [50]; see also Veech
[146] and Ellis [38]. Set I' = ul, for some u € J,.

2.7.2. LeMMA. Let H C I, be a closed set such that HT' = H, and suppose
every v € J(H) has the property that vW N W # &, v’ € J(H), W € €,,.
Then Hr™'y C 2().

ProoF. Fix x € Ha 'y, and let v € J(H) be such that vx = x. If U
€ N,, let Hy = {h € H|hx € U}, and note that our hypothesis implies
HyT' = H. As H is compact and Hy v is open, y € T, there exist y;, ..., 7y,
€ T such that UL Hyy; = H. Now if v € J(H),I' N vo Hyy; is J(v)
closed, and since vI' € Uw o Hyv;, v © Hyy; has §(v) interior for some j. But
(I, B(v)) is an F-group, and therefore vI' N v o Hy has &(v) interior. Now
choose 4, ..., 8,, € oI’ with UL;8;(v o Hy N oT') = uT, and apply similar
reasoning to conclude that v o U N w7~y has §(v) interior. Thus, x € Z()
as claimed.

To construct H with the properties in the lemma, regard (I,,T') as a (right)
flow, and let H C I, be a I'-minimal set. Then H has the desired property

(Ellis [38]). Thus, =,(y) # .

2.7.3. LeMMA. Let z € =(y), and suppose x € 7'y, v € J, are such that (a)
vx = x,and (b) x € Nyea,v ° U. Then z € U[x].

PrROOF. By (b) there exist nets z, in 7~ 'y and g, in G such that z, > z, g, 2,
— x, and g, — v. By (a) g,x = vx = x, and therefore z € U,[x].

2.7.4. PROPOSITION. Assume X —" %Y satisfies the Bronstein condition, and let
¥ € Y be such that =(y) = 7'y, Then for all x € 7~'y we have U,|[x]
= E,[x] = Q,[x].

PrOOF. Fix x € vy, v € J, such that vx = x, and let z € E_[x]. If
U€E RN, thenvo UN vr !y has F(v) interior, and as it is also F(v) closed,
it contains vyI'(z)z(I'(z) as in §2.6) for some y = y(U) € I. Regard
{vy(U)|U € 9¢,} as a net, and choose a convergent subnet (regular topology)
vY,, say lim,vy, = p € I,. For any U € 9N, vy,[(z)z C v e U for large »,
and therefore pI'(z)z Cveo U, U € N,. Since v(ve U) Cveo U, vpl'(z)z
CvolU, UEN,. If x =uyz,y €T(2), then z e Ul[x]C Q,[x]
= E,[x'] by Lemma 2.7.3. Since E,[z] = U, vI'(2)z (§2.6), x = vpyz for
somey € I'(z) andsoz € U,[x]. Sincez € E,,[xj is arbitrary, the proposition
is proved.
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A consequence of Lemma 2.7.2 (and the remark following it) together with
Proposition 2.7.4 is

2.7.5. THEOREM. With notations as above suppose uw™'y is dense in w~'y for
ally € Y,u € J,. Then E, = U, (= {(x,2)|z € U,[x]}). In particular, if X is
%Y-distal, E, = U,.

In case % is trivial, the proposition implies

2.7.6. THEOREM. Let X be a minimal flow, and suppose that X X X has a dense
set of a.p. points. The equicontinuous structure relation for X is then U,, where
X —7 Q is the constant map.

Proofr. In this case Z(y), & = {y}, is closed, invariant, nonempty, hence
all of X. Apply the proposition.

2.7.7. Question. With notations as above let =, = UyE yZ1(»). Is Z; a Borel
set" If X is metrizable, is the map y — 21( y) € 2X Borel? If the answer is
“yes” Proposition 2.3.9 implies =,(y) = 7=~ 'y for a residual set of y, so that
U,[x] = E_[x] for a residual set of x.

Now let B be the first ordinal whose cardinal exceeds the density character
of X. If y € Y, u € J,, define closed sets Z,(y,u), « < B, inductively as
follows. g = 7~ 'y. If 2 is defined, o’ < a, and if a is a limit ordinal, set
2= Ne<ae If a=ao +1,2, is the set of z € £, such that u
o(UN 2,) N ur"'y has a point of 3, in its &(u) interior. The remark
following Lemma 2.7.2 implies Hr ™'y C =, for all a. An argument in [146]
shows 2, = Z ., for some a < B. Denote this set by =(y,u). So far as I
know, this construction depends upon u.

2.7.8. LEMMA. Let % —" % satisfy the Bronstein condition. If Z(y,u) is not a
perfect set, then X is a finite-to-one a.p. extension of Y.

PRrOOF. . If z € 2(y,u) is isolated, then {uz} has §(u) interior in u7~'y. This
implies (um ™'y, §(u)) is T, and therefore % is an a.p. extension of %. But then
7 ly = ug™! y, and as ur~ s compact and discrete, it is finite.

The following lemma is essentially taken from Ellis [38]. See also McMahon
and Wu [90].

2.7.9. LEMMA. Assume there exist a,, € AU(X ) such that ;< a, N R, = A.
If E, = R,, then for all x € X, u E J, such that ux = x, we have xPz for a
residual set of z € Z(mx,u).

Proor. For each n, G(a, N R;) N ({x} X =(7x,u)) is open dense in {x}
X (mx,u). Apply the Baire category theorem.

2.7.10. THEOREM. Let X, =™ % satisfy the Bronstein condition and otherwise be
as in Lemma 2.7.9. Then R, = B3.

ProOF. If (x,x’) € R,, ux = x, there exists by the lemma z € Z(7x,u)
with xP,z and ux'B, z. Thus xP2ux’ and as x "Pux’, xP3x'.

2.7.11. CorOLLARY (ELLIS [38] ). Let X =" % be as in the theorem. If X has
a %Y-distal point, 7 is an isomorphism.
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2.7.12. COROLLARY (ELLIS, GLASNER AND SHAPIRO [ 40] ). Let X -7 % be as
in the theorem. If P, is an equivalence relation (e.g., if proximal is an equivalence
relation), then X is a proximal extension of %.

2.7.13. CorROLLARY (ELLIS, GLASNER AND SHAPIRO [ 40] ). Let X =" % be as
in the theorem and suppose B[x] is countable (e.g., the proximal cell of x is
countable) for some x. Then w is an isomorphism.

Proor. If ux = x, and if S(mx,u) is a perfect set, then any residual subset
of Z(mx,u) is uncountable. As B[x] N Z(wx,u) is residual, =(7x,u) is not
perfect, and by Lemma 2.7.8, % is an a.p. extension of %. Since R, = E, = A,
o must be an isomorphism.

2.8 The canonical tower. Ellis, Glasner and Shapiro [40] attach to an
arbitrary minimal flow a canonical tower of minimal flows, the relativized
version of which I shall sketch here. In the case that % is a point distal flow
with metrizable phase space and a residual set of distal points, the Ellis-
Glasner-Shapiro tower reduces to the tower constructed in [146]; when further
9 is distal, both towers reduce to Furstenberg’s [50].

Let % -7 % be a fixed homomorphism of minimal flows, and lety € Y, u
€J,x € 7~ 1y be fixed with ux = x. The construction below, which is taken
from [40], [54], can be shown not to depend on the choices of y, u, x, and
ICS Let W=un'y, T = ul,, and let B again be greater than the density
character of X. Define sets 4, x € 4, € W,a < Bby A4y = W, and if 4,
is defined for o < a,

A, = N Ay  (a = limit ordinal)
a<a

UQNX CIS%(M) (U N Aa/) (a =ao + l)
where N, are the &(u) neighborhoods of x. Since x € 4,, 4, # & for each a.
As in the last section there is an ordinal o << B8 with 4, = A,,,. The least
such a is denoted a(7).

Let Z = %)™ and define wy, € Z, a < a7) by

w, (o) = uody, o < a
« uo A, o > a

A

a =

Since uw, = w,, ¥, = (G,%w,)) is a minimal flow. The assignment g, (gw,)
= gwy, 8 € G, a’ < a, extends to a homomorphism %, =% % . Also,
define x, € X X Z by x, = (x,w0,), and let %X, = (G,0(x,)). %, is also
minimal, and there are natural (coordinate) homomorphisms %, =™ %, %,
—™ %, For each a, 7, is proximal and 7, is RIC (see [40]). Setting £,
= Xo/E,, (= %,/Q,, by Theorem 2.6.2) there is a natural diagram

T
X(——--—ﬂ—-—)(a Xa+l e—_xa(n)

n m )\a Ta+1 )\a+l ﬂa(n)

ga UM Ea +1

A A T Zor1 <~ Yo
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in which Z, is an a.p. extension of ¥, and %, a proximal extension of Z, for
each a. Thus, ¥, is a PI extension of ¥. As E; = = R, ., Theorem 2.6.3

implies X, is a weak mixing extension of @ . Also, X, is a proximal
extension of %. Thus, Theorem 2.1.3 is proved. (a(7) is countable if X is
metrizable, in which case Xo(m) is also metrizable.) Now it can also be shown
that the diagram

Xa DR on+1

)\a Ta+1

n
Za . yoz-i—l

is the same as (2.3.1). Therefore, if X is metrizable or G o-compact, and if X
has a %-distal point, Corollary 2.3.6 and the remark preceding Lemma 2.3.8
imply that for each a, %, is an h.p. extension of X, and %¥,,, an h.p.
extension of Z,. The projective limit of h.p. extensions is also an h.p.
extension, and Theorem 2.1.5 follows. (That 7, is an isomorphism is Ellis’
Corollary 2.7.11.)

2.8.1 Question. Let % be a point distal flow. Does X have an invariant Borel
probability measure?

The question is open even for a.a. flows (which are point-distal). If X is
distal, the answer is “yes” and was obtained by Furstenberg using his structure
theorem [50]. This result may be used to generalize the fixed point theorem of
Ryll-Nardzewski [118] as follows (see [137]):

2.8.2. THEOREM. Let X be a weakly compact subset of a Banach space B, and
let 2 be a semigroup of bounded linear operators on B which leaves X invariant.
If 2 is norm distal on X, the closed convex hull of X contains a fixed point for Z.

Appendix. In this Appendix I shall prove Theorem 2.2.1, the discrete case of
which is due to Ellis.

Suppose g € G, p € S(G) are such that gp = p. We are to prove g = e, to
which end we let g, be a net in G convergent to p. The assumption gp = p
implies lim, (f(gg,) — f(g,)) = 0,f € C.

Let U be a compact symmetric neighborhood of e, and use Zorn’s lemma to
find a set A C G which is maximal for the property Ua N A = {a}, a € A.
Notice that if x € G, then x € Ua for some (possibly not unique) a € 4.
Thus, we may write g, = a,qa,, a, € U, a, € A. Passing to a subnet if
necessary, assume lim,a, = a € U exists.

Let B = a4 = {aala € A}, where a is as above. If V is a neighborhood of
esuchthat ¥ = V~'and a™'V2a C U, thenforallb € B, Vb N VB = {b}.
Fix such a V, and let b, = aa,, where g, is as in the preceding paragraph.
Since lim, b,(a,a,)”! = e and g, = a,a,, we have lim,g,b;! = e. In partic-
ular, if f € C,

lim f(b,) = lim f(g,) = lim f(gg,) = lim f(gb,).

There are two cases to consider.
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Case 1. There exist a neighborhood W of e and an index »; such that
g8, & WBifv > vy. We may suppose W C Vo thatif b, b’ € B are distinct
points, Wb N Wb = . Let ¢ > 0 be a continuous function on G such that
¢(e) = 1 and ¢ = 0 on W*. Define f € Cby

_ e(xb1), x € Wb, b € B,
f&) {0 otherwise.

A moment’s reflection shows f(x) = max,cp(xb~") for all x, and as the
family {gp(xb~')|b € B} is jointly Lu.c., f is also Lu.c. Since f(b,) = 1 and
f(gb,) = 0, we have reached a contradiction.

Case 2. Passing to a subnet if necessary, assume b, € B are such that
]im,,gg,,(b;)‘l = ¢, so that also lim,,gb,,(b;,)_l = e. Notice that lim,(f(b,)
— f(b,)) = lim,(f(gb,) — f(b,)) = 0. This will be seen to be impossible
unless g = e. Call a finite or infinite sequence from B a string if either (a)
S = {b} is a singleton, or (b) if whenever &’ follows b in =, then gb € Vb'.
From our choice of V it follows that for each b € B there is at most one b’
such that (b,5) is a string. Decreasing V if necessary so that g~'V2g C U,
there exists at most one b” € B such that (b”,b) is a strong. These remarks
imply the set of maximal strings partitions B (although strictly speaking a
string 2 is not a subset of B because = may be periodic).

If g # e, we may choose V small enough that (b,b) is not a string, and
therefore in a maximal string =, successive elements are distinct. Because of
this, there exists on = a {0, 1,2}-valued function ¥ with the properties that (i)
¥ =1 if = is a singleton, (ii) [¥(s’) — ¥(b)| > 1 if b, b’ are successive
elements of =, and (iii) if = is periodic, ¥ has the same period. Now “coalesce”
the different ¥’s into a function on B. If b, ¥ € B are such that gb € Vb,
then (b, b’) are successive elements in some maximal string, and |¥(b) — ¥(b')
> 1. Now let ¢ be as in Case 1 (taking W = V). Define f on G this time as
f(x) = max,cp¥(b)p(xb~!). Again f € C. By our choice of b,, b, we have
gb, € Vb, for large », and therefore (b,,b,) are successive elements in a
maximal string for large ». By the choice of b,, b,, ¥, and f we have

0 = lim|f(gg,) — f(g,) = lim|f(gh,) — f(b,)l
= lim|f(8}) = f(b,)] > 1.
This is a contradiction and therefore g = e.
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