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For more than half a century it has been observed that there exist shifts in 
frequency of light emitted by distant sources. The redshift parameter z is 
defined as the fractional increase in wave length 

2 « « V X i - ( A o - * i ) A i 
where \ is the wave length of the emitted light and X0 is that of the received 
light. If vx and v0 are the corresponding frequencies we may write 

1 + 2 = VX/V0. 

Segal devotes approximately the first half of this book to a discussion of the 
implications that the requirements of causality and symmetry have on any 
cosmological theory. In addition this part of the book contains a derivation of 
the variation of the redshift z as a function of the distance p from the point of 
emission in accordance with the law z = tan2[(p/2i?)] where R is the "radius 
of the Universe". He deduces from this law the functional dependence of a 
variety of observed quantities such as the apparent luminosities, number 
counts and apparent angular diameters on z. The remainder of the book is 
devoted to comparing these predicted relations with observations. For small z, 
Segal's redshift distance law differs markedly from the linear law proposed by 
Hubble, which in turn is in accordance with the expanding universe models 
predicted by general relativity, i.e. the Einstein theory of gravitation. 

In order to be able to point out the relation between the latter theory and 
chronometric theory, the one propounded by Segal, it is appropriate to 
summarize some features of the general relativistic treatment of the expanding 
universe. The Einstein theory states that the arena in terms of which physical 
theories are to be described is a four-dimensional manifold called space-time 
with a Lorentzian metric 

ds1 = g^dx^dx'. 

The metric tensor g^v describes the gravitational field and is determined by the 
field equations 

Rr - {R/2)gïiv + Ag,P « -KTp 

where R^v and R are the Ricci tensor and scalar curvature computed from g^v. 
T^v is the stress-energy tensor describing the sources of the gravitational field, 
K is the Einstein gravitational constant and A is the cosmological constant. A 
was introduced into the theory by Einstein in his first discussions of the 
cosmological problem. He subsequently felt very strongly that A = 0 and that 
his introduction of this constant was one of his most serious errors (cf. [1]). 
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When information regarding g^v is available, the field equations provide us 
with information concerning 2̂ „, i.e., the sources. The most specialized of 
general relativistic cosmologies do provide information regarding the g^v for 
such theories assumed that space-time admits a family of three-dimensional 
space-like hypersurfaces labelled by a parameter U the cosmic time. These 
hypersurfaces are further assumed to admit a six parameter group of motions. 
Thus the space part of space-time, the hypersurfaces t = constant, are 
assumed to be homogeneous and isotropic. It then follows that we may 
introduce coordinates in terms of which the line element may be written as 

ds2 = dt2- R2{t)dl2 

with 

dl1 = l——~(dx2 + dy2 + dz2\ k = 1, 0, - 1 , r2 = x2 + y2 + z2. 
(1 + kr2/4y 

We may also write 

dl2 = do? + o2(œ)(d92 + sin20dcp2) 

where 

a(co) = 

A space-time with a fixed k and particular function R(t) is said to be a 
cosmological model or an expanding universe. Each cosmological model is 
conformally flat, that is we may find coordinates T, X, Y, Z such that 

ds2 = F2(dT2 - dX2 - dY2 - dZ2) 

and F is a function of these coordinates. Hence, each of these space-times 
admits the 15 parameter group of conformai transformations of Minkowski 
space. Further, each expanding universe may be regarded as a four-dimension­
al surface in five-dimensional Minkowski space. 

There are four cosmological models that are stationary. That is, each one of 
these admits an additional one parameter group of motions such that the 
vector tangent to the orbits of the group, the Killing vector generating the 
group is time-like. These are given by R{t) = constant and k = - 1 , 0, +1, 
and k = 0, R = e^b, b a constant. The latter universe is known as the De 
Sitter universe. The one with k = 1, R = constant is called the Einstein 
Universe. 

When the Einstein field equations are used to compute 7^, the source of the 
gravitational field, we find that this is the stress energy tensor for a perfect 
fluid. Each fluid particle is at rest in the coordinate system in which the metric 
is given as above and the pressure p and energy density p are given by 

Kp = A~\(2R + R2 + k), Kp = \(R2 + k)-A 
R R 

sinco 
(0 

sinhco 

when k — +1, 
when k = 0, 
when fc = — 1. 
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in units in which the velocity of light has been set equal to one. The line 
element given above for such models is called the Robertson-Walker one, and 
the models for which R(t) is determined via the field equations with A = 0 are 
often referred to as Friedmann models. When the pressure is set equal to zero, 
the field equations determine the function R(t) in terms of the two constants 

* " G 0 , . %
 and *°--è(£L; 

The first is known as the Hubble constant and the second as the deceleration 
parameter. 

The behaviour of physical systems such as fields and particles whose own 
gravitational fields are negligible are described by tensor and/or spinor fields 
defined in the space-times with a Robertson-Walker metric. In particular, the 
Maxwell electromagnetic fields describing light are defined by an antisymmet­
ric second order tensor which obeys a set of partial differential equations 
involving the covariant derivatives of this tensor field. 

The history of an observer is represented by a time-like curve in space-time, 
his world line. His observing apparatus involves a tetrad of vectors defined 
along this curve and the observations he makes on various tensorial fields are 
expressed in terms of the components of the tensor relative to this tetrad. 

However, the behaviour of light rays may be discussed without solving the 
Maxwell equations for it may be shown that light travels along null geodesies 
in space-time. Thus one may derive a redshift distance relation from a 
Robertson-Walker metric by observing that the distance travelled by a light 
ray emitted at time tx and received at time t0 is given by 

_ rh dt 

The light will undergo a redshift given by 

l+z = R(t0)/R(tx). 

By using power series expansions we may express co as a function of z and 
obtain for small z, 

- - i p ç [ , - ï ( * + 1 ) ' + ( , + * + ^ - S ) ' , + - ] 
where 

This redshift distance relation for small z is a linear one. Such a linear 
relation was proposed by Hubble. The redshift distance relation and knowl­
edge of the spatial geometry enable one to derive a variety of relations 
between observable quantities. Hubble assumed that the spatial geometry was 
Euclidean and interpreted various observations on this basis. Segal refers to 
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derivations involving the assumptions made by Hubble as the "Hubble model 
(or theory)". The results of derivations based on a Robertson-Walker space-
time differ from those of the Hubble model and from those of Segal primarily 
because the redshift distance relations used differ. 

Segal's discussion of the nature of space-time is similar in many ways to that 
occurring in general relativity. He differs markedly from that theory in his 
definitions of observer, clock and rod. Both theories are chronogeometric, that 
is, in them "considerations of temporal order are merged with geometry in a 
mathematical way". In addition, both theories use as a starting point for 
causality considerations a structure involving the assigning of a closed convex 
cone in the tangent space at each point of the manifold called space-time. 

In Segal's theory group invariance properties are assumed and exploited. 
Thus the causal manifold is assumed to admit a nontrivial class of "temporal 
displacements" which are automorphisms of the manifold (qua causal mani­
fold). A clock is defined in terms of the parameter of a one parameter group 
of such temporal displacements. The clocks considered in relativity theory, 
defined by means of the arc-length of a time-like world-line in the manifold 
differ from the clocks defined above when the space-time in Minkowski space 
and the world-line is not a straight time-like line or when the space-time has 
a nonflat metric with no time-like Killing vector field. 

The book contains a meticulous and concise description of the interplay 
between the ideas involved in causal manifolds admitting groups that preserve 
their structure. Causality in groups and causal morphisms of groups are also 
treated. The mathematical discussion of these topics lays a foundation for 
Segal's derivation of the redshift distance relation. This is quite different from 
that outlined above for the general relativisitc theory. He makes a series of 
assumptions regarding the nature of space-time which restrict the space-times 
to be one of three Lorentzian manifolds. Segal selects one of these as the 
physical space-time (denoted by him as the Cosmos). It is the universal 
covering manifold M of the conformai compactification of Minkowski space. 
The other two possibilities are simply derivable from it. Minkowski space 
osculates the physical (universal) space-time in that suitably scaled Minkowski 
and universal space-time agree to terms of second order in the reciprocal of 
the "radius of the universe". M is the space-time previously described as the 
Einstein Universe. The assumptions made by Segal are similar to those made 
in deriving the Robertson-Walker metrics, as is to be expected from his notion 
of observers and clocks. He makes the additional assumption that space-time 
is stationary. 

Segal states that "observed fields and particles are appropriately described 
by functions defined on the Cosmos with values in a suitable spin-space,... ' \ 
Presumably these functions are determined by partial differential equations 
which are hyperbolic in a suitably defined sense. Such functions describe the 
dynamical behavior of physical systems. No equations of this sort are 
presented or discussed in this book. Instead of proceeding as is done in special 
and general relativity and relating physical measurements to scalars derived 
from tensor or spinor fields defined over space-time (the Cosmos), Segal 
postulates "that anthropomorphically possible local measurements are repre­
sented theoretically by the flat rather than curved dynamical variables; while 
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on the other hand the 'true' nonanthropomorphic dynamics and analysis is 
curved (in the fasion appropriate to the unispace cosmos) rather than flat. 
That is, we measure the flat dynamical variables; but the Universe in the large 
runs on the curved basis . . . ' \ 

The flat dynamical variables referred to in the above quotation are functions 
of coordinates in a Minkowski space constructed at each point of unispace 
(the Cosmos) as follows: If U r, 0, <p are inertial polar coordinates in 
Minkowski space, the metric there is given by 

ds2 = dt2-dr2~r2dSl2 

where 

dû2 = dB2 + sin20 dtp2. 

Let 

-2ÎT = tanV^/T> T R - ^ t a n V T ^ | 

It then follows that 

ds1 = * 7^rJd^2 ~ (* ' ) 2 " sin2p'rffl2] 
cos ((T' 4- p')/2)cosz((p' - T ' ) / 2 ) 

with T' = r/R and p' = p/R. Variables /, x, y, z obtained from t, r, 0, <p by the 
usual polar coordinate transformations are said to be "local Minkowski 
coordinates" associated with the origin in unispace. Any other event in 
unispace, say the one with coordinates r", p", 0, % will have local Minkowski 
coordinates obtained by formulas given above with p and r replaced by p - p" 
and T — T", respectively. 

The flat dynamical variables that Segal assumes to represent measurements 
are functions of the Minkowski coordinates, whereas the true dynamical ones 
are functions of the variables in unispace. 

Segal assumes that the source of the light, received and measured by an 
observer using local Minkowski coordinates is at rest in unispace. The 
observer ascribes a redshift to the light emitted by the source because of his 
measurement procedures based on local Minkowski coordinates. As men­
tioned above this redshift is computed to be 

z = tan2(p/2i?) 

where p is the unispace distance between the source and observer and R is "the 
radius of the Universe". The redshift is thus said to be due to a pseudo-
kinematical effect arising from measurement techniques based on local 
Minkowski spaces. 

The chronometric theory as described in this book is not a theory 
concerning the nature of the universe nor the behaviour of objects in it. Rather 
it ignores the effect of gravitational forces on these objects, postulates that 
astronomical bodies in it are at rest without explaining how this happens and 
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ascribes the redshift to a particular description of methods of measurement 
which is at variance with that used in theories such as general relativity. 

The role that the conformai group displays in unispace is also displayed in 
each Robertson-Walker space-time since they are all conformally flat; but not 
all of these metrics are stationary. However, Segal is prepared to allow the 
scale quantity R occurring in the equations given above to be a function of 
position and in particular of time in unispace. In the latter case unispace could 
be represented by a space-time with a Robertson-Walker metric. Chronomet-
ric theory would then differ from general relativistic cosmology in that it does 
not have any field equations from which to determine the matter content of 
the universe and the dynamical behaviour of this matter; nor does it use the 
same methods for relating functions defined on the space-time to physical 
measurements. 

Segal devotes the last half of his book to a discussion of the relation between 
observations and predictions based on the square-law redshift-distance de­
pendence for sufficiently small distances given by chronometric theory. An 
extensive amount of astronomical data is surveyed and analyzed. Segal claims 
that he finds "confirmation for the square-law in a number of observational 
studies at moderate redshifts and overwhelming evidence for a phenomenol-
ogical square-law in the case of low-redshift galaxies". 

This view of the observational data is not universally agreed to. Many 
astronomers and relativists feel that Sandage's painstaking work [2]-[8] on 
determining the apparent magnitude-redshift relation for the brightest galaxy 
in each of 98 clusters of galaxies is more in accord with a linear redshift-
distance dependence than a square one for sufficiently small distances. Segal 
comments at length on some of this work but discounts it in the main saying 
that "while undoubtedly of outstanding accuracy (it) appears to be of 
uncertain statistical uniformity". 

Recently Kollerstrom and McVittie [9] have analyzed Sandage and Hardy's 
data given in [8]. There the corrected apparent magnitude V of the brightest 
galaxy in 98 clusters of galaxies is given as well as the redshift corresponding 
to V. 

In [9] the quantity Y = V — 5 log z was studied as to its dependence on a 
power series in z, z - 1 and as one in logz. It was concluded that "there is no 
significant dependence of Y on any moderately smooth function of z" (other 
than a constant). The chronometric theory would predict that 3K/9 logz is 2.5 
instead of 5. 

Throughout the second part of the book where observational data are 
discussed and compared to theoretical predictions, the phrases "Hubble 
theory", "expansion hypotheses", "general relativistic models", and "Fried-
mann model" are used. The first of these is described briefly in a footnote. The 
others are never explicitly defined. As a result this reader was in some doubt 
as to how to interpet various comments made in this portion of the book. Segal 
makes claims that "the chronometric theory provides a much better overall fit 
to extragalactic data than do straightforward general relativistic models with 
free parameters q0 and A". However, very little of the observational data is 
compared to the predictions based on ranges of values of q0 and A. 
Incidentally, these quantities are never defined in this book. Neither is the 
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Hubble constant (parameter), nor is there any indication as to how the 
chronometric theory enables one to study the variation of this quantity with 
distance. Thus it is difficult to evaluate the claim (cf. p. 118) "a further 
advantage of the chronometric theory over the expansion-theoretic model is 
that it reconciles the different values (of the Hubble constant) on the basis of 
different distances to the objects under observation". 

I found this a difficult book to read in part because various definitions and 
derivations were omitted. Nevertheless, I consider that the comparison made 
above between chronometric theory and general relativistic cosmology an 
accurate one. I do not agree with comments made by Segal about general 
relativity and its degree of experimental verification. 

This book has not convinced me that chronometric theory is a replacement 
for general relativistic cosmology, a branch of a theory which contains 
Newton's theory of gravitation as a limiting case and which provides observed 
corrections to that theory. 
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Cohomology theory of topological transformation groups, by Wu Yi Hsiang, 
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 85, Springer-
Verlag, New York, Heidelberg, Berlin, 1975, x + 164 pp., $25.00. 

The theory of finite (and generally compact) groups of transformations of 
manifolds had its origins slightly over half a century ago in the work of 
Kerékjârto [34] and Brouwer [12] showing that periodic transformations of the 
2-disk and 2-sphere are topologically equivalent to rotations. (An error in the 
original proof was later corrected by Eilenberg [20].) Similar results for actions 
of compact connected groups on 3-space were proved by Montgomery and 


