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This book is interesting and important. Although it advertises itself in the 
introduction as a compact exposition of a number of fundamental questions 
that have been brought to completion, it is no such thing. In particular, no 
treatise of 400 plus pages (480 pp. in the original) can be called compact. It is, 
however, a fascinating description of a mathematical adventure that failed in 
its main goal but has produced, and continues to produce, much excellent 
mathematics. 

Unfortunately, the editors of this series have given us a seriously flawed 
English version of the Russian edition that was published in 1969. It has been 
so badly done that I will take up the question of the translation and its editing 
in some detail, after I first discuss the text proper. 

The book's topic is classes of functions which satisfy various smoothness or 
differentiability conditions and the determination of which spaces are con­
tained, continuously, in which other spaces or can be mapped, continuously, 
into such other spaces by appropriate restriction or extension maps. The 
method used is the method of best approximation by trigonometric polynomi­
als and in the nonperiodic case, by their analogues, the restriction to real 
space of entire functions of exponential type. We are told in this book how 
far Nikol'skiï and his colleagues got with this topic by the mid 1960's. 

The classes of spaces considered are denoted W, H> B, and L spaces. These 
are decorated in various ways to indicate the amount of smoothness, the 
Z^-norm in which the smoothness is measured, the space on which the 
functions are defined, and the "directions" in which the smoothness is 
measured. Refinements of the notation permit consideration of "anisotropic" 
spaces where one has different Z^-norms and degrees of smoothness for each 
direction. Our discussion will mostly be restricted to the isotropic case. 

Most of the material in the text is concerned with the case where the 
functions are defined on all of a Euclidean space R". There is some discussion 
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of the situation where the functions are defined on open subsets of Rn and the 
problem of extensions to all of Rrt. However, this is covered in fuller detail in 
Nikol'skiFs book with Besov and Il'in which has recently appeared in Rus­
sian: Integral representations of functions and imbedding theorems, Nauka, 
Moscow, 1975. 

I will substantially avoid a detailed discussion of the question of why the 
spaces are named and denoted as they are, and not some other way (or what 
is the "correct" way). A few signposts will be included to aid the reader 
familiar with other traditions than the Sobolev-Nikol'skiï way recorded in this 
book. 

Let Lp = Lp(Rn) be the usual Lebesgue space (1 < p < oo). For periodic 
functions the norm is taken over a fundamental period. The Sobolev space 
Wp (I a nonnegative integer, 1 < p < oo) is a space of differentiable func­
tions. Wp° = Lp and if / > 1, ƒ E Wl

p iff ƒ E Lp and all derivatives (in the 
distribution sense) of ƒ of order / are also in Lp. Wp is a Banach space when 
normed by the sum of all the Z^-norms of the derivatives of ƒ plus the 
L^-norm of/. 

The H and B spaces consist of functions satisfying a Lipschitz or Holder 
smoothness condition. Let 

«*(« ;ƒ ) - sup ||/(- + 0 - 2 / ( . ) + / ( - - 0 | v 

For 0<a<lyl<p< oo, ƒ belongs to the Nikol'skiï space Hp iff 

8 

For 1 < 9 < oo the Besov spaces are defined as follows: Bpoo = H* and if 
1 < 6< oo,/ E BI iff 

Mk-ll4>+ J(8~«o>p(8;f))*dÔ/8 
V* 

< oo. 

An extension is then made to all positive a by a simple trick. Namely, write 
a = a 4- p, à a nonnegative integer and 0 < p < 1. One then requires that 
ƒ E Lp and that all derivatives of ƒ of order a be in Bp% and norm the space 
with the sum of all relevant norms. 

Most readers will find these definitions somewhat opaque. They are chosen 
for efficiency, not clarity. The old fashioned Lipschitz and Holder functions 
are really there if one looks hard enough. Let us restrict attention for the 
moment to periodic functions of one variable. We say that 

ƒ E Lip(a,/0 - A£ 

iff ƒ E Lp and | | /(- + A) - / (Ol lz , < M|A|*, 0 < < x < l , l < p < o o . These 
are the Lipschitz spaces as they are usually defined. We also have the 
"star"-spaces, A{, of Zygmund, which are the spaces Hp = Bpo0 defined 
above. It is common to designate A™ s Aa and A™ = A*. Then f or 0 < a < 
1, / /£ is Lip a = Aa, the collection of f unctions ƒ such that \f(x) - ƒ(») < 
M\x - y\a for some M > 0. On the other hand H^ is not Lip 1 = Av it is 
Zygmund's class A*. The class Aj turns out to be W^. Similarly Lip(l,/?) is 
Wp if 1 < p < oo in the sense that ƒ E Lip(l, p) iff it is the integral of a 
function in Lp; however, Lip(l, 1) properly contains W\ since ƒ E Lip(l, 1) iff 
ƒ is a function of bounded variation, or as it may be suggestively described, 
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the integral of a Borel measure. The last results are due to Hardy and 
Littlewood. Note here that in some parts of the literature the Besov space B^ 
is referred to as a Lipschitz space and it is denoted A£*. 

Throughout the text Nikol'skiï treats the H spaces as a special case instead 
of proceeding directly with a unified treatment of the B spaces. Perhaps the 
historical importance of the H spaces as immediate generalizations of 
Lipschitz spaces was the reason. More likely it is a sentimental attachment to 
old friends he has studied in much detail. 

We are now in a position to describe the main problem with which 
Nikol'skiï and his colleagues were concerned. One of the most fascinating 
connections between the W spaces and B spaces is the fact that for all a, 
B22 = W%. The space Wf has been studied by Aronszajn and Calderón 
(among others) and has been generalized in several ways. One such study was 
by Slobodeckiï who considered the collection Bpp, 1 < p < 00, which form 
(in a "natural way") a continuum of spaces. It was a grand hope that a 
careful analysis of the inclusion relations between the B and W spaces would 
establish that Bpp •« Wp was true for integers /, or lacking that, that at least 
BpS » Wp for some values of p and 0. The punch line of Nikol'skiFs book is 
that this hope fails. [The faith that this result would be established was so 
entrenched that for fractional a, Wp was once defined to be what is now 
designated Bpp. As that faith diminished it was redesignated Bp. The concept 
of Besov (Lipschitz) spaces BpB developed from these ideas.] 

The method of best approximation is quite straightforward in the periodic 
case. For a function ƒ in Lp one defines En[f], = inf^|| ƒ — gn\\t , where gn 

ranges over all trigonometric polynomials of degree n. The crucial fact in this 
development is the Bernstein inequality which we state for the one-dimen­
sional case; namely, ||g„||r < n| |g, | |r. Bernstein established the p = 00 
version of this result. The typical applications of best approximation to the 
theory of smooth and differentiable functions (which go back to Jackson and 
BernSteïn in the second decade of this century) are that if 0 < a < 1 then 
ƒ e Lip(a, p) iff En[f] = 0(n~a)9 and that ƒ e W* implies that En[f), = 
0(n~l). 

These results are extended to the nonperiodic case by using "entire func­
tions of exponentional type" in place of the trigonometric polynomials. One 
defines classes 9K^ c Lp of the restrictions to R" of entire analytic functions 
of n complex variables such that if gp E Wlpp9 then the analytic extension of gv 

is of bounded exponential growth, the coefficient v describing the rate of 
growth. The crucial consequence of this definition is that if gp E Wlpp then we 
get a BernSteïn inequality, \\9/dxjgw\\w < \v\ || g„||^, where \p\ is a measure of 
the "size of v". In other words, the importance of the class of trigonometric 
polynomials and the related nonperiodic classes Wlpp is that the rate at which 
they can change is strictly controlled (BernSteïn's inequality). 

For nonperiodic functions we define, as above, Ep[f], = inf^||ƒ — gv\\r 
where gp ranges over Ttpp. Restricting attention to the isotropic case [see 
above; we refer to the case where the smoothness or differentiability is the 
same in all directions] and letting Ttpp represent the so-called "spherical" 
classes (so that v is just a positive number), we get that ƒ E Lip(a, p) iff 
E¥[f\ = 0{P—\ 0 < a < 1, and that ƒ E Wx

p implies E,[f]^ = O ^ 1 ) . 
The theorems that describe the relations between the various spaces are 
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called imbedding theorems. When Nikol'skiï refers to a nonadjectized imbed­
ding theorem, he refers to a continuous inclusion of one space in another, 
where the/? for the Z^-norm is the same for both spaces, but the type of space 
(ƒƒ, B, or W) and the smoothness indices (a and 0) or the degree of 
differentiability (/) can vary. If the p for the Lp-norm can vary, that is called 
an imbedding theorem for different metrics. 

There is one more kind of imbedding theorem; namely, imbedding theorems 
for different dimensions. Consider a function ƒ on Rn that is "smooth enough", 
and a linear subspace S of dimension m, 0 < m < n9 which (by a translation) 
may always be identified with Rm. Is there a "natural" restriction map <3l 
such that %f = f\s in the case that ƒ is continuous in a neighborhood of 5? 
(%f is called a trace of ƒ on S.) Given such a map, if ƒ is in some B or W 
space on R", what about tflf on Rml Conversely, does there exist a "natural" 
extension map S, defined for functions on Rm to functions on Rw, so that 
<3t ê is the identity? Finally, if g defined on Rm is in a given W or B space, 
what about &g on Rw? 

The first two parts. The contents of the book fall into three main parts, the 
first two of which are easily described in terms of our discussion above. The 
first part is made up of Chapters 1-3. Chapter 1 covers the usual material 
(topics from normed linear spaces and measure theory) in 1.1-1.4. In 1.5 a 
brief review of generalized functions (Schwartz distributions) is given. In 
1.5.3-1.5.7 he gives a survey of some aspects of multiplier theory [multipliers 
are referred to as multiplicators except for the special case of Marcinkiewicz 
multipliers]. In 1.5.9-1.5.10 basic properties of the fractional integration 
operators are given. They are denoted Ip and are referred to as operators of 
Liouville type. In other parts of the literature they are more commonly known 
as Besselpotential operators. They are defined as a multiplier transform; viz., if 
ƒ-» ƒ denotes the Fourier transform, then (/g/)** (1 4- \x\2)'^/2f. These 
operators are essential to the third part of the book* 

Chapter 2 is a brief survey of standard results about trigonometric poly­
nomials. First, it supplies the basic material needed for the study of the 
periodic classes. Second, it supplies a model for the nonperiodic analogues of 
trigonometric polynomials, the restrictions to Rn of entire functions of n 
complex variables that are of exponential type and are bounded on R", which 
is the subject of Chapter 3. 

Chapter 3 is an interesting and valuable exposition and could (with a 
reduced treatment of the material in Chapters 1-2) have stood by itself as a 
short monograph. [The reader is warned that there are a number of dangerous 
typos in this edition. For example in 3.1 on p. 100 we note "93?, c SDÏ̂ " 
should read "9JÎP/, C Wlp", an error that could give the tyro fits.] 

The second part of the book is comprised of Chapters 4-7. The main 
purpose of Chapter 4 is to define W, H and B spaces and give a few of their 
important properties. In 4.3 the spaces are defined. 

In 4.4 some a priori estimates are given; i.e., estimates of Lp norms of 
"intermediate" derivatives of functions are given in terms of the norm of the 
function and norms of higher order derivatives. In 4.7 the spaces are shown to 
be complete. 4.6 and 4.8 are given to showing how one obtains estimates of 
difference increments from the behaviour of the derivative and, conversely, 
estimates of the derivative from the behaviour of difference increments. 
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Chapter 5 is the longest chapter in the book. It is also the central chapter. It 
deals with the application of the method of best approximation to the //, 2?, 
and W spaces and to showing that a big bunch of different norms for these 
spaces are equivalent. The major conclusion is that the Besov (B) spaces (and 
so, in particular, the Nikol'skii (//) spaces) can be characterized by the extent 
to which they can be approximated by entire functions of exponential type, 
but while the Sobolev (W) spaces imply a degree of approximation, they 
cannot be so characterized. 

To satisfy any reader who is now wondering why my remarks are limited to 
the case of isotropic spaces defined on all of R", I will exhibit a Besov space 
fully decorated: Bp

a
0{9). Q is an open subset of £. £ = FT X £, £' c R"~"m, 

1 < m < n, p = (/?„ . . . 9pm), 9 = (0„ . . . , 9m\ a = (a„ . . . , a j , 1 < pk9 

9k < oo, ak > 0, so that ƒ is defined on S c R" and has smoothness in the 
direction of xk (k = 1, . . . , n) measured in L norm and in an amount 
determined by ak and 9k. Furthermore, the spaces can be extended to 
permit <xk < 0 in which case the objects in the spaces must be viewed as 
generalized functions (i.e., Schwartz distributions). 

Chapter 6 is concerned with connections among the various B and W 
spaces. In Chapter 7 the connections (i.e., imbedding theorems) are shown to 
be sharp; in the language of Nikol'skii, unimprovable. To illustrate the results 
obtained, we ask when does one have the imbedding Bp$(W) -» B^x(R

m) 
where the imbedding is an inclusion map if m = «, a restriction map if 
n > m, an extension map if n < m. Then the following conditions are 
necessary and sufficient: (1) q > p; (2) a — n/p > fi — m/q, 0 arbitrary; or 
(2') a - n/p = fi — m/q and 9 < X. For the periodic case condition (1) is 
replaced with (1*) a > /?. For the W classes if m = n (ignoring, of course, 
reference to 9 and X and noticing that a and ji are integers) the conditions are 
also necessary and sufficient. Anisotropic versions of these results are given. 

The connections between the B and W spaces in these two chapters are 
restricted to rather elementary relations, such as H^+e-±Wl

p-> Hl
p for e > 0. 

He also gives several theorems on compactness. An example follows: 
Let {fk} be a sequence of functions that is bounded in a Bp

a
e space. Then there 

exists ƒ E Bp€, with norm bounded by the bound of the sequence, and a 
subsequence {fkf} such that {fk{} -*ƒ in //ƒ for all fi < a. 

More introduction. Before continuing with a description of the last part of 
the book, I will stop to describe two notions that are developed in Chapter 8 
and are of fundamental importance. The first is related to the fractional 
integration operators Ia that were introduced in 1.5.9 (see above). The idea 
behind these operators is quite reasonable. One starts with a notion of a 
fractional integral for periodic functions of one variable and then generalizes 
appropriately. Consider the operators ƒ -» / a defined as follows: If f(x)~-< 
Hcve

ivx and fa(x) ~ *2/cv\v\~aeivx
9 where "2" ' indicates summation without 

the v = 0 terms. For 0 < a < 1 this mapping is realized by convolution with 
an integrable kernel which behaves like {x^'1 at the origin. This fractional 
integration operator is extended in the nonperiodic case as a multiplier 
operator, using the multiplies \x\~a. This operator is usually referred to as a 
Riesz potential operator. 

For 0 < a < n these Riesz operators can be realized by convolution, in the 
principal value sense, with a multiple of I*)""". Since this kernel does "not 
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behave well at infinity" it is usually fixed up by replacing it with a "nicer" 
kernel. An acceptable alternative is the operator that corresponds to the 
multiplier (1 4- \x\2)~a/2. These operators are referred to as Bessel potential 
operators, and are referred to by Nikol'skiï as operators of Liouville type in 
honor of the fact that Liouville was one of the first to define fractional 
integrals (along with Riemann), although the definition above (for ƒ-»ƒ«) is 
closer to the notion developed by Weyl. The operator (IJY— (1 + |*|2)~a/y 
is defined for all complex a and all distributions ƒ. Furthermore, for a > 0, 
I J = Ga * ƒ, where Ga is a positive integrable function that decreases at an 
exponential rate at infinity. 

The next idea is the representation of a "nice" function by means of its de 
la Vallée Poussin sum. If we start with the idea that an Z^-function is "very 
nice", then a distribution, ƒ, is "nice enough" or regular in the sense of Lp if 
IJ E Lp for some a. 

One of the truly fascinating facts about best approximation by trigonomet­
ric polynomials is that there is a simple way to construct a polynomial of 
degree 2n that does as well as the best approximation of degree n. One just 
uses the so-called delayed arithmetic means. Thus, if sn « sn(x; ƒ) is the nth 
partial sum of the Fourier series of/, one defines on = (sn+x + • • • + s2n)/n, 
and with a little work one finds that £2„[/]^ < 11/ - on\\, < ME^f]^ if 
ƒ e Lp. By an obvious extension one can define an = on(x;f) for any regular 
ƒ by: on(x; ƒ) = I_p<jrt(x; I^f) for sufficiently large /?. Then one obtains the 
de la Vallée Poussin sum of/: ƒ « a{ + 2£L,(a2* ~~ a2k~l)i which converges to 
ƒ in the distribution sense. 

To see the power of this construction note that we now have some very 
simple characterizations of B^^ (= Lip a, if 0 < a < 1); namely, || ƒ — crjl^ 
» 0(n-") or Ho* - o^-.IL - 0(2-*"). 

The third part. The plan of Chapter 8 is as follows: In 8.1 the functions Gp 
(Gp = (1 + l*!2)""^2), P > 0 are described. These are the so-called Bessel-
MacDonald functions. In 8.2 it is shown that It maps Lp (1 < p < oo) 
isomorphically onto Wp

l so that the Sobolev spaces (for fixed p) are all 
isomorphic to Lp and, a fortiori, to each other. In 8.3 more properties of the 
map lp are described, and in 8.4 comes the crucial fact that if ƒ E Lp and 
)3 > 0, then E^I^f]^ < C ^ | r | ~ ^ [ / ] ^ . In 8.5 and 8.6 the notion of the de la 
Vallée Poussin sum is generalized to apply to regular functions defined on R", 
periodic and nonperiodic. 

In 8.7 a technical lemma on the behaviour of I„p {(i > 0) is established so 
that in 8.8 and 8.9 one can establish some facts about Besov spaces. First, 
whether or not ƒ E Bp9 is completely determined by its de la Vallée Poussin 
sum in the sense that 

' oo ll/$ 

2 2"IM/)-^-(/)|lt 
k=i j 

is a norm for BpB. Second, 1^ maps BpB isomorphically onto Bp
a
e*0, which is 

not very hard to see once one has the de la Vallée Poussin characterization of 
the Besov spaces. Using this approach, the study of the inclusion relations 
among the Besov spaces and their relation to the Sobolev spaces is much 
simplified, at least for the isotropic case. 

In Chapter 9 the discrete collection of Sobolev spaces {Wp} is dropped in 

ik+ 
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favor of a more rational and "continuous" collection Lp
a •* {ƒ: ƒ = Iag, 

g E Lp). One sets H/H -̂ « llgllz^ From our comments above we see that 
Lp » Wp and also that we have a continuum of spaces Lp

a to compare with 
Bp9. Similarly one can construct an "anisotropic" kernel of the Bessel-
MacDonald variety and construct Lp

a(Rn) spaces where a is an «-vector, and 
one can then obtain the so-called integral representations of anisotropic Liou-
ville classes. Nikol'skiï refers to the Lp

a space as a Liouville space. It is also 
known as a Lebesgue space and as a Bessel potential space. 

In the isotropic case the following results are obtained: If p = 1 or oo then 
B«x C Lp

a c Bpa^. If 1 < p < oo, r - min[/?, 2], s « max[/>, 2], then Bp
a

r c 1 / 
C i ^ . In particular, B£2 — L2, and if /? 7*= 2, each of the inclusions is proper 
and unimprovable. As a consequence, if p ^ 2, 23$ 7*= L^ for any 0. 

The reviewer is delighted to have the chance to point out that "nonimprov-
ability" of these inclusions is the subject of the ultimate section of Nikol'skiFs 
book and is done there in rather incomplete form; whereas it was done in this 
reviewer's dissertation (1962) by means of some quite elementary examples. 

The theorems on imbedding involving a change of dimension are given for 
Lp

a spaces. They take the following form: If 1 < p < 00, &: Lp
a(Rn)~» 

Bp
ap-x/p{Rn~x) and if 1 < p < oo, S : Bp

a
p(R

n)-> L°+l/'(RH+*), so that if 
1 < p < 00 the Lp spaces and the Bp

a
p spaces have exactly the same traces, a 

beautiful and unexpected result which is as close as we get to confirming the 
hypothesis that they are the same space. 

Some summary comments on the contents. The contents of the book may be 
summarized as follows: The story starts with the Sobolev spaces, Wl (spaces 
of differentiable functions) and the Nikol'skiï spaces, Hp

a (spaces of smooth 
functions). These spaces are to be studied by means of the method of best 
approximation. The H spaces are extended to the Besov spaces, Bp

a (a wider 
class of smooth functions) with a pause to consider the particular spaces Bp

a
p 

which were studied by Slobodeckiï. The Bp
a

p spaces are also denoted Bp
a and 

for fractional values of a were originally denoted W*. This notation em­
bodied the expectation that Wp

l would be equal to Bpp for integer values of /, 
a result which does hold for p = 2 (which is, incidentally, a trivial result 
which follows from examining the Fourier transforms of functions in the two 
classes). After much effort and detailing of results on best approximation and 
on functions of exponential type (results of independent interest) one obtains 
the embedding theorems in Chapters 6-7. 

It is clear on first principles that special consideration of the H spaces is 
not necessary or useful. In view of the results in Chapter 8 it is clear that if a 
compact exposition of results about Besov and Sobolev spaces is desired 
within the framework of results in this book then the Besov spaces should be 
defined by means of de la Vallée Poussin sums and the Sobolev spaces by 
means of the Bessel potentials I p. As the author indicates in his introduction 
and in various remarks throughout the book, he agrees with this view on the 
one hand, but not with the hand that wrote the book. Do not be deceived that 
Nikol'skiï has taken this approach without knowing what he is doing. He has 
done so explicitly and on what seem to be sentimental grounds. For example, 
in 4.3 he discusses why he does not drop the Wp notation for the Sobolev 
spaces (restricting / to the nonnegative integers) for the more appropriate 
Liouville classes (which he finally does anyway in Chapter 9 after 300 pages 
have passed). 
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He explains: " . . . I have not done this in this book, because I feared to be 
like a person who thinks it appropriate to rename a street and renames it 
without asking the opinion of those inhabiting the street." 

A most puzzling aspect of this book is why the author has chosen to almost 
totally ignore the approach of studying the relations between the B and L 
spaces by a method related to the method of best approximation, but one that 
avoids most of its complications. In this approach one takes a particular 
smooth regularization of the distribution and uses the behaviour of that 
regularization or its derivative. It is by this method that one finally obtains 
the inclusion relations between B*B and L£ in their sharpest form. This 
development was carried out simultaneously and independently in 1962 by 
Lizorkin (using metaharmonic functions) and by the reviewer (using 
harmonic functions) in his dissertation, results which Nikol'skiï knew of, and 
refers to incidentally. Similarly he has ignored the contributions of the theory 
of interpolation of linear operators. The spaces in this book can be realized as 
intermediate spaces in the sense of interpolation theory. 

The translated edition. The translated edition as it has been presented to us 
by the editors of this series is grotesque. This is a shame since Nikol'skiï's 
book deserved a much better treatment, and the translator deserved better 
treatment from his editors. I am of the opinion that what we have here is a 
passable first draft which was then left essentially unedited, particularly with 
respect to its technical contents. The result is that we have a translation which 
appears to be the product of persons who know something of Russian, clearly 
have significant difficulties with mathematical English, know very little about 
the general mathematical field (harmonic analysis) in which the subject of the 
book resides and are functional illiterates in the specific subject at hand. 
Nikol'skiï must take some of the responsibility since in a "Translator's Note" 
and an "Author's Preface to the English Edition" he is given, and he accepts, 
credit for helping to achieve a correct translation. The ultimate responsibility 
rests with the editors of the series. 

I will not take the space to fully document these complaints but I will give 
a few examples. One example is that throughout the text, the word "nota­
tions" is used for "notation", so that the text reads as if it was written with an 
accent. Another is the use of the arcane and obscure "multiplicator" for 
"multiplier". The best that can be said for "multiplicator" is that it is a 
transliteration of the word in Russian and it sounds very much like its 
equivalent in French. 

These are, of course, mere annoyances. But (p. 96) to translate pusto as 
"empty" when "trivial" is meant shows that the translation was mechanical 
and that meaning was not a major consideration. On p. 51 we are to consider 
functions " . . . with Fourier coefficients ck, not equal to zero unless k > 
0 . . . ". Anyone with a passing knowledge of Fourier series would recognize 
this as a very strange class of functions and context alone would demand a 
reinterpretation as functions " . . . with Fourier coefficients ck, equal to zero 
unless k > 0 . . . ". The phrase in question can be translated as it was given, 
but it makes no sense. The difficulty lies with correctly interpreting the 
colloquial expression "«e • • • cto dlya" 

Most of the typographic expressions in the original have been carried over 
intact. Since a substantial number of new typographical errors have been 
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introduced, the text contains a large number of such errors. Two examples of 
errors being carried over: The use of "&" for "Z?" in the left hand side of 
4.3.4(5). The footnote in 9.3 to a "Remark to 9.3" which does not exist. Why 
didn't anyone check to see if it was there? 

There are entire paragraphs for which prizes could be offered for the best 
guess as to what the original meant (no peeking at the original permitted). On 
p. 381 in the Remarks to Chapter 4, the one sentence paragraph following the 
statement of Theorem 1 would make a good entry for such a contest. 

A major problem for an author of a book, where the relevant literature 
covers various language groups, is to refer to a literature which is available to, 
and readily understandable by, his intended audience. In the original text, 
Nikol'skiï did an excellent job for his Russian audience, in this respect. It is, 
of course, an elementary responsibility in a translation from Russian to 
English to reverse this process. If an original article or book is in English, 
refer to it, not a Russian translation. Important material originally in Russian 
but available in English should be referred to in the English edition. It is also 
common practice to refer to German or French editions when English 
editions are not available. 

We are led to believe, by a translator's footnote on p. 377, that this will be 
done. He tells us: "In this edition we refer where possible to English or 
German versions of these books." This is stated in immediate reference to 
books on generalized functions (distributions) by Gel'fand and Silov, 
Vladimirov, and Halperin. All three references are to Russian editions. All 
three are available in English; respectively, Academic Press, 1964, MIT Press, 
1966 and University of Toronto Press, 1952. The last of these was originally 
in English. Yet our translator tells us that he is not able to find the reference! 
The very next reference on that page is to the " . . . book of Hörmander [1], 
where far-reaching results on multiplicators are obtained . . . ". The reference 
is to a translation in Russian, and we are told that the translator does not 
have the original reference. Our only hint is the title: Estimates for operators 
invariant relative to a displacement. It is not difficult to trace this back to 
Estimates for translation invariant operators in Lp spaces, Acta Math. 104 
(1960), 93-140. 

The number of such examples is large, but to terminate this list of 
absurdities we find that the translator with the help of his editors was unable 
to locate editions in English of Watson's treatise on the theory of Bessel 
functions or either of Zygmund's books on trigonometric series. Perhaps it 
was an attempt at humor (the ultimate Polish joke) to refer to the first edition 
of Zygmund's book as the "old edition in Russian" when it was actually 
published in Warsaw in an English edition. 

As I said earlier, Nikol'skiï's book deserved better* It is a fine retelling of 
an important piece of mathematical research. While written from a rather 
parochial point of view it does tell an important story and reports on some 
most interesting mathematics. The editors have chosen, however, to present it 
in a manner that imposes great difficulties for the reader. 

It should be handled with care. 

M. H. TAIBLESON 


