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1. Introduction and review. In its geometrical form, the Choquet representa
tion theorem can be viewed as an infinite dimensional generalization of a 
classical theorem of Minkowski concerning finite dimensional compact con
vex sets. Indeed, suppose that AT is a compact convex subset of a locally 
convex Hausdorff real topological vector space E. If E is assumed to be finite 
dimensional, then the Minkowski theorem asserts that each point x in K is a 
convex combination (or barycenter) of some finite set of extreme points; that 
is, there exist positive real numbers a{9 a2,..., an and points xv x2,..., xn 

in ext K, the set of extreme points of K, such that 2#* = 1 and JC = ^akxk. 
Furthermore, each point of K admits exactly one such representation if and 
only if AT is a simplex. If E is assumed to be infinite dimensional, then the 
Minkowski theorem fails, although the Krein-Milman theorem does show 
that such convex combinations of extreme points are dense in K. If K is 
metrizable, then the Choquet theorem applies (and says more than this): Each 
point in K is the barycenter (precise definition below) of a Borel probability 
measure on the Gs set ext K. Moreover, it is still true that each point of K 
admits a unique such representation if and only if K is a "simplex" (definition 
below). 

The details of the relationships between the above results, together with 
some of their applications to real analysis, probability theory, functional 
analysis, etc., may be found in [19]. Additional general references for these 
and other results left unproved in what follows are [1], [3], [20], [21], 

In order to formulate the representation theorem for nonmetrizable com
pact convex K9 we need to introduce some definitions. If A" is a compact 
Hausdorff space, let M (X) denote the space of all complex valued finite 
regular Borel measures on X. In what follows, the word "measure" will always 
mean an element of M(X). Let P(X) denote the convex set of all probability 
measures in Af(Ar), i.e., those positive measures of total mass 1. If A' is a 
compact convex subset of the locally convex space E, then for each JU, in 
P(K) there exists a unique point x in K (the resultant, or barycenter of /i) 
which is characterized by the relation 

f(x)~ffdti (=/*(ƒ)) for each ƒ in E*. 

Equivalently, h(x) = \i(h) for each h in A(K), the space of all affine real-val
ued continuous functions on K. If x is the resultant of some /A from P(K), we 
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write x = r( fi) and we say that /x represents x, or is a representing measure for 
x. There is an important partial ordering on P(K) defined as follows: We say 
/A > X provided fx(f) > X(f) for each continuous convex function ƒ on K. Iff 
is an a/fine continuous function on K, then both ƒ and —ƒ are convex; it 
follows that if fx > X, then r(fx) = r(X). The weak* compactness of P(K) 
yields the fact that any measure JA in P (K) (in particular, any point mass) is 
dominated by a maximal measure from P (K). (The terms "dominated" and 
"maximal" refer to the above ordering.) Thus, if x E AT, then there always 
exists a maximal probability measure /x dominating the point mass ex; since 
r( ii) = r(ex) = x, the measure /i has x as its barycenter. A detailed study of 
the support of a maximal measure then leads to the following result, the 
geometrical form of the representation theorem. 

THEOREM LI (CHOQUET-BISHOP-DE LEEUW). Suppose that K is a compact 
convex subset of a locally convex space. If x E K, then there exists a (maxi
mal) probability measure \k on K which has x as its barycenter and which 
vanishes on every Baire subset of K\ ext K. 

As we mentioned above, if K is metrizable, then ext K is a Gô set; in 
particular, it is a Baire set and, hence, any maximal measufe is supported by 
ext K. (Even when K is not metrizable, any probability measure with support 
contained in ext K is maximal.) If K is not metrizable, then ext K need not be 
a measurable set and examples show that the above result is essentially the 
best that can be expected. The existence of such thorny examples forces us to 
walk a different path; we must give up hope of always finding representing 
measures which sit on ext K, and we focus instead on maximal measures. 
This is most clearly evident in the Choquet-Meyer uniqueness theorem; an 
elegant result, it is formulated purely in terms of maximal measures. Before 
stating it, we need to say what is meant by an infinite dimensional simplex. 

DEFINITION. A convex subset K of a locally convex space E is said to be a 
simplex provided the cone generated by AT X {1} in the space E X R is a 
lattice in the partial ordering which it induces on E X R. 

This definition (rather abstract at first sight) can be reformulated in the 
following more geometrical way: A bounded closed convex set K is a simplex 
if and only if the intersection of any two homothetic images of K (that is, any 
two sets of the form aK + x, a > 0, x E E) is either empty, a single point, or 
a homothetic image of AT. If E is finite dimensional and K is compact, then 
this is, in turn, equivalent to the assertion that K is the convex hull of a finite 
and affinely independent set of points, that is, AT is a simplex in the usual 
sense. 

THEOREM 1.2 (CHOQUET-MEYER). Let K be a compact convex subset of a 
locally convex space. Each point of K is the barycenter of a unique maximal 
probability measure if and only if K is a simplex. 

The geometric version of the existence theorem fits most naturally into the 
context of real linear spaces; it is only when one puts it into the "analytic" 
form described below that the motivation for a complex version becomes 
apparent. 

Let X b e a compact Hausdorff space and denote by CR(X) [resp. C(X)] 
the Banach space of all real valued [resp. complex valued] continuous 
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functions on X, in the supremum norm. Suppose that A is a linear subspace 
of CR(X) or of C{X) and that A separates the points of X. We will 
occasionally need to assume that A is uniformly closed. If A contains the 
constant functions (equivalently, if 1 E A), we define the state space SA of A 
to be {L E A*: \\L\\ = 1 and L(l) = 1}. This is a weak* compact convex 
subset of A * and (considering A * as a vector space over the real numbers) the 
existence and uniqueness theorems can be applied to SA. Before actually 
doing this, note that the evaluation map <J>: X -* A* defined by <H•*)(ƒ) = 
ƒ(*), x E X, ƒ E A, is a homeomorphism of X into the weak* compact unit 
ball U of A*; in fact, into SA U \ E A. Moreover, <j>(X) contains ext SA, so 
the following definition of the Choquet boundary dA makes sense: Let dA = 
<j>" *(ext SA) be the set of all points in X which give rise to extreme evaluation 
functionals. This set is a "boundary" for A in the sense that every function in 
A attains its maximum absolute value in at least one point of dA (and perhaps 
elsewhere). The smallest closed set with this property is the well-known Silov 
boundary; it is equal to the closure of dA. If L E SA, then the representation 
theorem yields a maximal probability measure on SA which has L as its 
barycenter. Since we are working in the weak* topology, the dual space of A * 
is A. Moreover [19, p. 30], maximal measures on SA are supported by the 
compact set <f>(X) (in fact, by the closure of ext SA) so they can be carried via 
this homeomorphism into measures on X. The above facts can easily be 
combined to yield the following analytic version of the existence and unique
ness theorems for the metrizable case. 

THEOREM 1.3. Suppose that X is a compact metric space and that A is a linear 
subspace of CR{X) which separates points and contains the constants. To each 
L E SA there corresponds a probability measure /x on X such that 

/ i ( M ) = l and L(f)=ffdn (ƒ E A). 
Jx 

Each L E SA admits a unique such measure if and only if SA is a simplex. 
This result remains valid for nonmetric X if the condition that /A(3̂ 4) = 1 is 

replaced by the condition that jüt be a boundary measure (an appropriate 
maximality property which will be defined in §2). The above theorem is more 
than a corollary to the geometric version, since it actually implies the latter. 
Indeed, if # is a compact convex subset of £, take A to be the subspace A (K) 
of CR(K) consisting of all continuous affine functions on AT. It is readily 
verified that <f>: K~* SA is an affine homeomorphism of K onto SA and that 
<j>(dA) = ext SA. This, together with the fact that (the restrictions to K of) the 
functions of the form ƒ + r (f E E*9 r real) are uniformly dense in A(K) [19, 
Proposition 4.5] makes it easy to deduce the geometric version from the above 
analytic version. 

The following characterization of the Choquet boundary is occasionally 
useful 

PROPOSITION 1.4. A point x E X is in the Choquet boundary dA for A if and 
only if the only probability measure on X which represents the linear functional 
f-+f(x) (f E A) is the point mass ex. Equivalently, a point x of a compact 
convex set K is an extreme point if and only ifex is the only probability measure 
on K having x as its barycenter. 
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The analytic version of the representation theorem was first introduced by 
Bishop and de Leeuw in 1959 in order to obtain boundary measures which 
represent continuous linear functional on a uniform algebra A C C(X), that 
is, on a uniformly closed subalgebra A of C(X) which contains the constant 
functions and separates points of X. Of course, it only gives such measures 
for functional in SA. In order to represent an arbitrary functional L in A *, 
they utilized the Riesz representation theorem and the Hahn decomposition 
to produce a complex representing measure which vanished on the Baire 
subsets of X \dAy but which could possibly have its norm as great as 4[|L||. 
More than ten years later, Hustad [11] proved that it is possible to find such a 
complex representing measure of norm ||L|| (the smallest possible norm) and 
Hirsberg [9] showed that Hustad's method actually yields a boundary 
measure. Hustad's theorem makes the question of uniqueness a meaningful 
one: For which A C C(X) is it true that every L E A* admits a unique 
complex representing measure //, which is a boundary measure and which 
satisfies ||L|| » ||/x||? This was answered in [8] for the case 1 E A, and an 
existence theorem was proved for the general case. Choquet [4], [5] indepen
dently used different methods to prove an existence theorem for the general 
case, and he formulated an appropriate version of the uniqueness theorem. 

The remainder of this paper is devoted to the general existence and 
uniqueness theorems. The proof of the latter is given in somewhat more 
detail, since it has not previously appeared in print. We have benefitted 
considerably from our correspondence with G. Choquet on this subject and 
from our conversations with R. Fuhr; we are grateful to both of them. We 
also thank S. Fitzpatrick for his helpful comments. 

2. The existence theorem. In what follows, X will be a compact Hausdorff 
space and A will be a point-separating complex linear subspace (not neces
sarily uniformly closed) of C(X). Since we do not assume that 1 E A, we 
cannot define the state space SA of A, as was done in § 1. In its place we work 
with the weak* compact convex unit ball 

l / = { L e ^ * : | | L | | < l ) 
of A*. It is easy to see that the evaluation map <J>: X -+A* defined in §1 is 
still a homeomorphism, with values in I/. We let T denote the unit circle in 
the complex plane: 

r - { /EC: |/|< 1}. 
All the complications which arise in the complex versions of the existence and 
uniqueness theorems come from the fact that both U and ext U are invariant 
under multiplication by elements of T. A proof of the following elementary, 
but important, fact may be found in [6, p. 441]. 

LEMMA 2A. If L is an extreme point of U, then there exist x E X and t E T 
(not necessarily unique) such that L = t$(x). Equivalently, ext U C T$(X). 

Obviously, if L E ext U, then tL E ext U for all / E T. It follows from this 
and the above lemma that for each extreme point L, the "circle" TL of 
extreme points intersects $(X\ so ^~!(ext U) is nonempty and the following 
definition makes sense. 

DEFINITION. The Choquet boundary of A is defined to be the subset 
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<}>~\ext U) of X and is denoted by 3̂ 4. A complex measure /x in X is said to 
be a boundary measure if its total variation | /*| is either the zero measure, or 
when carried via <j> to a positive measure |/x| o <J>~! on £/, is maximal in the 
sense defined in §1. The image |/x| <> </>_1 of | /A| under <J> is also denoted by 
<KM). 

If 1 E ^4, the above definition of dA coincides with the one given in §1. 
Note that Lemma 2.1 and the subsequent remarks imply that ext U * 
T<}>(dA). To see that the term "boundary measure" is a reasonable one, 
suppose that X is a compact metric space. Then U is metrizable in the weak* 
topology and both ext U and dA are G8 sets. When combined with the 
remarks following Theorem 1.1, the formula 

*(|/i|)(ext «7) =|/x|(<>-1(ext I/)) -\n\(9A) 

shows that in the metric case \i is a boundary measure if and only if it is 
supported by the Choquet boundary 3̂ 4. 

THEOREM 2.2 (EXISTENCE). Let X be a compact Hausdorff space and suppose 
that A is a point-separating subspace of C(X), To each L0 in A* there 
corresponds a complex measure p on X such that 

(a)||/i|| = ||L0||, 
(b) L0(f) = Sxf dV> f°r each f & A, and 
(c) jüt is a boundary measure. 

The proof will be given somewhat informally. Note first that there is no 
loss of generality in assuming that ||L0|| = 1, and we will do that throughout. 
The basic ideas of the proof are best illustrated by carrying it out for the 
special case when L0 is actually a convex combination of extreme points of U. 
In that case, 

n n 

L0 = 2 akLk> ak > 0, 2 ak= 1> Lk G ext Uy k = 1, 2, . . . , n. 
*~ i l 

By Lemma 2.1 we can express each of the extreme points Lk in the form 
Lk = tk<j>(xk) for some tk ET, xk SdA. Define p = S ^ . ^ ^ e ^ ; this is 
clearly supported by 3̂ 4, hence is a boundary measure. Since | /A| = Stf^ is 
a probability measure, we have || /A|| = 1 = [|L0||. Finally, if ƒ E A, then 

*»(ƒ) - 2 W(**) - 2 «***(/) = A>(/)> 
so jit represents L0. 

The proof for an arbitrary functional L0 of norm one is patterned after the 
above. We cannot expect to write L0 as a convex combination of extreme 
points, but we can express it as the barycenter of a maximal probability 
measure X on U. This means that \(h) » h(L0) for each continuous affine 
real valued function h on f/. If ƒ E A, then the function L -> Re L(/) is such 
an affine continuous map, as is L -> Re L( — (/) = Im L(/). These two func
tions are the real and imaginary parts of the continuous affine complex 
valued function ƒ defined by 

ƒ (L) - £(ƒ), L E I / . 

Since X is real we have 
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X(/ ) - X(Re ƒ ) + /X(Im ƒ ) - Re ƒ (L0) + /Im ƒ (L0) - L0(/) . 

If X were metrizable, then X would sit on ext U. In general, any maximal 
measure sits on the closure of the extreme points [19, p. 30], so by virtue of 
Lemma 2.1, we know that X sits on the weak* compact set T$(X). We would 
now like to mimic that part of the proof of the discrete case where we 
replaced each extreme point Lk by tk<j>(xk). This is done as follows. Let <E> be 
the continuous map from the compact product space T X X onto T<j>(X) 
defined by 

$(7, x) = t<f>(x), t G T,x G X, 
If $ were one-one (as it is, for instance, if 1 G A\ then it would be a 
homeomorphism and we could identify T X X with T<t>(X). Since, however, it 
is not generally one-one (we discuss this further in §3), we use the easily 
proved fact [8, Lemma 7.2] that there exists a Borel measurable selection for 
$~*. Thus, for each L G T<j>(X) there exists (tL, xL) G T X X such that 
L = tL<j>(xL) and such that the map L-+(tL, xL) is Borel measurable. (In 
particular, each of the component maps is Borel measurable.) Finally, we 
want to copy the last step of the proof of the discrete case, which consisted of 
representing each of the functional Lk in the form tk<f>(xk) and then letting JU, 
be the complex measure on X which assigns "mass" aktk to the point xk. We 
do this by letting /x be the complex measure H\, where the latter is defined, 
for each g e C(X), by 

H\(g) = f tLg(xL) d\(L). 
JT<KX) 

This definition (due to Hustad [9]) makes sense, since for each such g, the 
map L -» tLg(xL) is bounded and Borel measurable. Moreover, an easy 
computation shows that in the discrete case it gives exactly the same measure 
jüt obtained earlier. 

It remains to show that the measure /x = HX satisfies conditions (a), (b) 
and (c) of Theorem 2.2. To see the first of these, namely, that ||X|| = 1, note 
that if g G C(X) and \g\ < 1, then 

k U ) | < f \g(xL)\dX(L)<l 
JT4>(X) 

so, as a linear functional on C(X), the norm of p is at most 1. On the other 
hand, once we have shown part (b), we will know that the restriction of /x to 
the subspace A is the norm 1 functional L0, so ii has norm exactly equal to 1. 
To see part (b), recall that we showed earlier that L0(ƒ) = X(f) whenever 
f G A. Since ƒ is actually the restriction to U of a linear functional, we also 
have f(t<}>(x)) = tf(<t>(x)) = tf (x) for any / G T9 x G X. It follows that for 
fEA9 

M( / ) = i f X ( / ) = r tJ(xL)dX(L) 
JT<t>(X) 

= ( f (*L*(xà) dKL) = X(ƒ ) = L0(ƒ). 
JT$(X) 

To prove part (c), we must show that the probability measure <KM) is 
maximal on £/. This is a mildly technical result which is proved in detail in [8, 
Theorem 7.3], using a lemma from [7]. In the special case when X is 
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metrizable, it is easily shown as follows. Recall that in this case, U is itself 
metrizable (in the weak* topology), so by Choquet's original representation 
theorem, the maximal measure X sits on the Gs set ext U = T<(>(dA). Conse
quently, the formula for JU becomes 

* * ( * ) - [ tLg(xL) d\(L), * e C ( * ) , 
JT<j>(dA) 

and the corresponding total variation measure | JU| is given by 

M U ) - / " 8{*à<tML)> s^c(x). 

This formula is actually valid for any bounded Borel measurable function g 
[8, Lemma 3.7]. Thus, if g denotes the characteristic function of dA we obtain 

H(M)-1/*!(*)-ƒ g(xL) d\(L) - i, 
J 7<f>( dA ) 

where the last equality depends on the fact that if L E T<f>(dA), then the point 
xL is in dA and hence g(xL) = 1. It is immediate from | /x|(&4) = 1 that <f>(| Ml) 
is supported by <t>(dA) and is therefore maximal. 

There is a refinement of the existence theorem which seems to be poten
tially useful in applications. In the real case it was first proved by Rao [22] 
(see, also, [16], [20], [24]) and may be formulated as follows: Assume that X is 
a compact metric space and that the point-separating subspace A of CR(X) 
contains the constants. For each x E X it is possible to choose a probability 
measure nx (which represents evaluation at x and sits on dA) in such a way 
that the map x -* \ix from X into the weak* compact metrizable space P(X) 
is Borel measurable. (This is equivalent to saying that for each ƒ E CR(X), 
the real valued function x-*\ix(f) is Borel measurable.) P. Saab [23] has 
extended Rao's theorem to the complex case, without assuming that 1 E A. 
Recall that M(X) denotes the space of complex finite regular Borel measures 
o n * . 

THEOREM 2.3 (RAO-SAAB). Suppose that X is a compact metric space and that 
A is a point-separating subspace of C(X). There exists a Borel measurable map 
x -» \kxjrom X into the weak* compact metrizable unit ball of M(X) such that, 
for each x E X, 

0) !"*(ƒ) - ƒ(*) far all f in A, and 
001^10^ = 1 = 11̂11. 
The idea of the proof is easy; one simply composes several Borel measur

able maps. First, x -» <f>(x) is continuous from X into (/.Next, Rao's theorem 
is applicable to the (weak*) compact convex set U (and the subspace of affine 
functions in CR(U))> so there exists a measurable map L -» AL, where XL is a 
probability measure on ext U with barycenter L. Finally, Hustad's map is 
continuous and carries XL into a complex boundary measure H(XL) represent
ing L, so the composition x -* fix = H(X^x)) yields the desired map. 

3. Uniqueness. Suppose, as before, that A is a point-separating linear 
subspace of C(X). We will say that uniqueness holds for A provided that for 
each L E A* there exists a unique boundary measure (i on X which represents 
L and for which || ji|| = ||L||. Recall that in the case when the scalars are real, 
uniqueness is nicely characterized in terms of the state space SA : Uniqueness 
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holds (in the real case) if and only if SA is a simplex. This result suggests an 
analogous characterization for the complex case, since we can still define SA 

(at least when 1 E A). It turns out that while SA is necessarily a simplex if 
uniqueness holds, the converse is false [8]. In order to obtain a geometrical 
criterion for uniqueness we must use the entire unit ball U. 

DEFINITION. A convex subset F of a convex set K is said to be a face of K 
provided F is nonempty and the following holds: If je, y E K and ax + 
(1 - a)y E F for some 0 < a < 1, then je, y E F. A convex set K is said to 
be a simplexoid if every proper face of A' is a simplex. 

The simplest example of a face (other than K itself) is the set F of all points 
where a nonconstant affine real-valued function on K attains its maximum 
(provided, of course, that F is nonempty). A convex polytope in Euclidean 
3-space is a simplexoid if and only if all of its two-dimensional faces are plane 
triangles. Other examples of simplexoids are the unit ball in Euclidean 
«-space and the (weakly compact) unit ball in Hilbert space. 

The following theorem was originally proved in [8]; it will be obtained here 
as a corollary to Theorem 3.3 (below). 

THEOREM 3.1. Suppose that X is compact Hausdorff and that the point*sep
arating subspace A of C(X) contains the constant functions. Then uniqueness 
holds for A if and only if the unit ball U of A* is a simplexoid. 

Since the above result does not involve the state space of A9 it would seem 
reasonable to expect that the same criterion for uniqueness would remain 
valid even if 1 g A. Very simple examples, however, show that this is not the 
case. The problem is that arbitrary subspaces of C(X) are too general. 
Suppose, for example, that E is a complex Banach space and let X be the unit 
ball of E*, in its weak* topology. We can easily identify E with the uniformly 
closed subspace A of C(X) consisting of all complex continuous affine 
functions ƒ on X which satisfy ƒ(tx) = tf(x) for each x E X, t E T. In this 
case, the map <f>: X -» U is an affine homeomorphism and no matter what 
geometrical conditions are satisfied by the dual ball U of A, uniqueness fails 
for every L E ext U. Indeed, any such L is of the form <j>(x), where x is an 
extreme point of X, and for any t E T the complex measure JU,, = tetx has 
norm one and is supported by the extreme point tx, hence is a boundary 
measure. Moreover, if ƒ E A, then /*,,(ƒ) = tf(tx) = f(x) = L(f), so each [it 

represents L. 
Choquet [4] has suggested a way to bypass such examples, by relaxing the 

uniqueness requirement. The idea is to demand only that any two boundary 
measures which represent L and have norm ||L|| be equivalent, in the sense 
defined below. 

DEFINITION. Let I b e a compact Hausdorff space and suppose that A is a 
point-separating linear subspace of C(X). Let A" denote the set of all g in 
C(X) such that sg(x) = tg(y) whenever s, t E T, x, y E X and sf(x) = 
tf(y) f° r all ƒ E A If X, /x are two complex regular Borel measures on X, we 
write X » JU, provided \(g) = /jt(g) for each g EL A". (This will generally be 
applied to measures of norm one.) 

Clearly, A~ is a uniformly closed linear subspace of C(X) which contains 
A, and the relation » is an equivalence relation depending on A. Recall that 
the map $: T X X-> T<f>(X) ÇA* was defined by $(*, JC) = t<j>(x). It is 
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immediate that g E A" if and only if sg(x) = tg(y) whenever $(£, x) =• 
$(t, y). In the example of nonuniqueness described above, where the in
finitely many distinct boundary measures /A, represented evaluation at x, we 
have jut, œ ex for each t. Indeed, the identity t<j>(tx) = <f>(x) shows that for each 
g G / w e must have tg(tx) = g(x), which is the same as ju,,(g) = ex(g), that 
is, jx, œ ex for each t. Thus, the measures /x, are all the same, modulo « . 

DEFINITION. If A is a point-separating subspace of C(X), we say that 
uniqueness holds (modulo œ ) for A provided the following is true: If L E A*, 
\\L\\ = 1, and if X, /x are complex boundary measures of norm 1 on X which 
represent L, then X œ /x. 

THEOREM 3.2. /« order that uniqueness hold (modulo œ)for A it is necessary 
and sufficient that each L of norm 1 in A* be the barycenter of a unique 
maximal probability measure on U. 

This result will subsequently be reformulated as follows. 

THEOREM 3.3. Uniqueness holds (modulo œ) for A if and only if U is a 
simplexoid. 

These theorems, formulated by Choquet, have maintained the geometric 
flavor and simplicity of Theorem 3.1 by sacrificing uniqueness. Since we are 
primarily interested in the latter property, it is important that we give 
conditions under which equivalence of two measures implies that they are, in 
fact, the same. We do this next, postponing the proof of Theorem 3.2 
temporarily. The following proposition has also been observed by Choquet 
[5]. 

PROPOSITION 3.4. The following six assertions are equivalent. 
(i) If X, /A are measures of norm one on X satisfying X œ /x, then X = /x. 
(ii) The map <& is one-one. 
(iiï)A~= C(X). 
(iv) 1 E vT. 
(v) There exists a strictly positive function in A". 
(vi) {|/|: ƒ E A} separates points of X. 

If A is a subalgebra of C(X), then A satisfies each of the above. 

PROOF. The implications (i) -> (ii) -> (iii) -> (iv) -» (v) are either obvious or 
follow readily from the definitions, as do (vi) -» (ii) and (iii) -» (i). 

(v) implies (ii). Suppose that s<j>(x) = t$(y) and that ƒ E JC is strictly 
positive. Then ƒ (x) = stf(y) and therefore st > 0. Since st E T9 this shows 
that st = 1 so s = t and hence <f>(x) = <t>(y), which implies that x = y. 

(ii) implies (vi). Suppose that x, y E X and that \f(x)\ = \f(y)\ for all 
f EL A. We want to show that x = y. In view of (ii), it suffices to show that 
there exists / E T such that f(x) = tf(y) for all ƒ E A. If f(y) = 0, then 
ƒ (x) = 0, so we need only verify that for f g E A with f (y) ^ 0 ^ g(y), we 
have ƒ (x)/f(y) = g(x)/g(.y); since these ratios have modulus 1, their com
mon value will be the desired number t. The function h = f (y) g — g(y)f is 
in 4̂ and vanishes at y; since |/*(A;)| = 1̂ (̂ )1 = 0, we have h(x) = 0, exactly 
what was needed. 

Finally, if A is a subalgebra of C(X) and s<j>(x) = t<j>(y), then for all ƒ E /I 
we have sf(x) = tf(y) and S/2(JC) = tf2(y) (since/2 E ^1). If ƒ (JC) = 0 for all 
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f E: A, then ƒ (y) = 0 as well, hence x = y and therefore s = /. If fx(x) ¥= 0 
for at least one fx E A, then the above two equations yield ƒ,(*) = fx(y)9 so 
s = f and hence ƒ (x) *= ƒ(>>) for all ƒ G v4, again giving x = y. 

The proof of Theorem 3.2 will be greatly simplified by reformulating the 
notion of equivalence of two measures; this requires some preliminary defini
tions. 

DEFINITION. Suppose that g G C(U)9 where U is the weak* compact unit 
ball of A*. Define the "homogeneous part" of g to be the function homg, 
where f or L E U we set 

(horn g)(L) = ftg(tL)dt. 
J rp 

(Integration is with respect to Haar measure on the circle T) It is not hard to 
see that homgGC( t / ) , that ||homg|| < ||g|| and that (horn g)(tL) ** 
/(horn g)(L) for each t E T9 L E U9 which means that horn g is T-homoge-
neous. Obviously, horn g = g if and only if g is T-homogeneous. Next, if /x is 
a complex regular Borel measure on U9 define horn /x by 

(horn /x)(g) = /x(hom g), g E C(U)9 

so horn jut is again a complex regular Borel measure on £/, of norm at most 
j| /x||. It is useful in what follows to observe that if /x1? /x2 are two measures on 
U, then horn /x, = horn /x2 if and only if /Xj(g) = /x2(g) for each T-homoge-
neous continuous function g on U. 

PROPOSITION 3.5. Suppose that /x, V are complex measures on X. Then /x « v 
if and only if horn <j>( /x) = horn </>0). 

PROOF. Suppose that hom< (̂jm) = horn §{v)\ then <f>(/x)(g) = <M»(g) f°r 

every continuous T-homogeneous function on U. We want to show that 
ii(/) = v(f) for each ƒ G A~. Given such a function/, define g on C(2>(Ar)) 
as follows: If L E T<j>(X)9 say L « *<ƒ>(» for some / G T, x G X, then let 
g(L) = tf(x). Since ƒ E A", this is independent of the representation of L. A 
routine argument, using the compactness of T and X, shows that g is 
continuous. By the Tietze extension theorem there exists a continuous exten
sion gx of g to all of U, so that g2 » horn gj is a continuous T-homogeneous 
function on U. Using the definition of horn g ̂  it is readily seen that g2 is an 
extension of g. By hypothesis, /x(g2 o <j>) = 0(/x)(g2) = <t>(p)(g2) = Kg2 ° *)• 
Moreover, if x G X, then (g2 o <j>)(x) = g2(</>x) » g(<J>A;) = ƒ(*), so jix(/) » 
!>(ƒ), which completes the first part of the proof. 

To prove the converse, suppose that /x œ v9 so that /x(/) = ?(ƒ) for each 
ƒ G ;4~. If g is any ^-homogeneous function in C(U), it follows from the 
definitions that g ° <}> E A~ and hence <J>(/x)(g) = p(g ° <>) = v(g © <J>) « 
<K*0(g)- Thus, </>(/x) = <£(*>) on the T-homogeneous functions in C(U)9 which 
is equivalent to horn <#>(/x) = horn <j>(v). 

We now prove the necessity portion of Theorem 3.2. Suppose, then, that 
LEA*, \\L\\ = 1, and that \l9 X2 are maximal probability measures on U 
with barycenter L. Let H be the map defined in the proof of Theorem 2.2 and 
let iik = H\k9 k ** 1, 2. As indicated in that proof, each of the measures \iX9 /x2 

is a boundary measure of norm 1 which represents L, so by hypothesis we 
must have /x1 « /x2. Proposition 3.5 shows that horn <K/Xj) = horn </>(/x2), and a 
straightforward computation, using the definition of H9 shows that for any 



THE CHOQUET REPRESENTATION IN THE COMPLEX CASE 309 

continuous T-homogeneous function g on U we must have 4>(iik)(g) «• Xk(g% 
k « 1, 2. This last equality implies that 

horn Xx = horn <j>([ix) = horn <j>(ii2)
 = horn A2. 

The proof of this half of the theorem will be complete once we have proved 
Lemma 3.6 below. We first require a definition. 

DEFINITION. Let v be a complex measure on U and express v in its polar 
decomposition: v « h\p\, where \v\ is the total variation of v and h is a Borel 
function of modulus 1. For any g E C(U) define 

(Rv)(g)=f(jg(h(L)-L)d\v\(L). 

It is clear that Rv is a positive measure on U, with \\RP\\ — |MI ^ kK^O- K 
g G C(£/) is r-homogeneous, then (Rv)(g) = ^(g), so that horn Rv == horn p. 
In particular, if ||J>|| = 1 and if g == ƒ, where ƒ G ^4, this equality shows that 
the resultant L in U of the probability measure i*j> is the "barycenter" of the 
complex measure P, that is, p(f) * f(L) for every affine continuous function ƒ 
on U. 

LEMMA 3.6. Suppose that X is a probability measure on U with barycenter L of 
norm one. Then R (horn X) = X. 

PROOF. Let p = horn A. From the definition of horn X we have p(g) = A(g) 
for any T-homogeneous g G C(£/); in particular, this holds for g = ƒ, where 
ƒ G A Using the facts that 1 = ||L|| = sup{|L(/)|: ƒ G A, \\f\\ = 1} and that 
X(f) = L(/) for ƒ G y4, we see that || J>|| = 1. Thus, if we write P = h\v\, where 
h is a Borel function on U of modulus 1, then (writing h for the complex 
conjugate of h) we have 

1 « ||^|| = |^|(i) . v(h) « (horn X)(h) « A(hom A) 

« fhom/T</A = f (th(tL)dtdX(L). 

Since |//*(7L)| = 1, Fubini's theorem shows that, almost everywhere with 
respect to the probability measure dt X dX, 

(*) th(tL) = 1 on T X U. 

Using successively the definition of R, the identity \P\ « Jw, the definition of 
horn X, Fubini's theorem and the equality (*), we obtain, for any g G C(U), 

(Rp)(g) =j^g{h{L)L) d\p\(L) ~jh{L)g(h{L)L) dp{L) 

= ƒV[ ƒ h(tL)g(h(tL)tL) dX(L)] 

g(L)dX(L)dt=X(g), 

dt 

if 'TJU 

which shows that Rv = X and proves the lemma. 
We can now finish the necessity portion of Theorem 3.2, by showing that 

\ j = A2. We know that horn Xx = horn A2, so by Lemma 3.6, we have A, = 
R (horn Xx) = R (horn X2) = A2. 

We now turn to the sufficiency portion of the proof of Theorem 3.2. 
Suppose, then, that ixx, \i2

 a r e boundary measures of norm 1 on X9 each of 
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which represents the same functional L G A*, where ||L|| = 1. Let vk = <t>(iik) 
and let Xk = R(vk), k = 1, 2. Each of the measures X,, X2 is a probability 
measure on U and we have, f or k = 1,2, 

(1) \(s) ~ vk(ê) f° r aU continuous ÜT-homogeneous g on [/. 

If we apply (1) to g » ƒ, ƒ G ,4, we get 

M ƒ ) - '*(/ ) - M*(/ ° *) = **(ƒ) - **(/)> 
so both Xj, X2 have the same barycenter L G f/ of norm 1 and therefore, by 
hypothesis, X, = X2. On the other hand, (1) shows that horn \k = horn vk, so 
we conclude that 

horn <j>( jutj) = horn ^ = horn Xj = horn X2 = horn v2 = horn <J>( /x2). 

By Proposition 3.5, this implies that /A, » \i2 and the proof is complete. 
Theorem 3.3 is a consequence of Theorem 3.2, combined with the fact that 

U is a simplexoid if and only if each L G U of norm 1 is the barycenter of a 
unique maximal measure [8, p. 12]. Theorem 3.1 follows from Theorem 3.3, 
together with Proposition 3.4 (iv). 

The tools we have developed for the uniqueness theorems are readily 
applicable to proving, in the general complex case, the following characteriza
tion of the Choquet boundary. It uses (and is analogous to) the characteriza
tion for the real case given in Propositon 1.4. 

PROPOSITION 3.7. Suppose that A is a point-separating subspace of C{X). A 
point x G X is in the Choquet boundary dA if and only if ixœ ex whenever /A is 
a complex measure of norm one on X satisfying /*(ƒ) = f{x) for each f EL A. 

Note that Proposition 3.4 gives a number of conditions under which we can 
replace JU œ ex by /A = ex; in particular, this is true if 1 G A. 

PROOF. Suppose first that x Ed A, that ||/A|| = 1 and that /A represents 
evaluation at x. We want to show that JU « ex; by Proposition 3.5 it suffices to 
prove that horn <|>( /A) = horn <j>(ex) = horn e^xy Now, the measure X = R<j>( JU,) 
is a probability measure on U with barycenter <j>(x) G ext U, so by Proposi
tion 1.4, we have X = e^xy On the other hand, for any v it is true that 
horn Rv = horn v, so we conclude from Lemma 3.6 and the above that 
horn </>( JU) = horn R<j>( /A) = horn X = horn e^xy which completes the proof. 
For the converse, suppose that x G X \dA, so that <f>(x) 0 ext U. By the 
Choquet-Bishop-de Leeuw theorem we can find a maximal probability 
measure X on U with barycenter <j>(x). If X were the same as the point mass at 
<l>(x), we could [by writing <t>(x) = (L{ + L2)/2, L{, L2 distinct points of U, 
and then letting X' = (eL + eL )/2] find a probability measure X' =£ X with 
X' > X, contradicting the maximality of X. Thus, X ¥* e (̂jc). Since, by Lemma 
3.6, X = R (horn X) and e^x) = R (horn e ^ ) , we must have horn X =£ 
horn e^x), which means there exists a T-homogeneous continuous function g 
on U such that \(g) ^ g(<t>(x)). To complete the proof we want to find a 
measure /A of norm 1 on X which represents evaluation at x but which is not 
equivalent to ex. The proof of Theorem 2.2 shows that the measure JU, = HX 
will certainly have the first two properties, so we need only show that 
/*(ƒ) ^ ƒ(*) f° r some ƒ G A~. Define ƒ on X byf(y) = g(<l>(y)), where g is the 
function obtained above. The homogeneity of g readily implies that f E A~ 
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and that X(g) - (HX)(f) = /*(ƒ), while ƒ(x) ~ g(<t>(x)) * A(g), which was to 
be shown. 

4. Related results. The notion of a simplexoid is closely related to what 
Effros [7] calls a T-simplex: The unit ball U of A* (where A is separating 
subspace of C(XJ) is called a T-simplex provided horn /A * horn X whenever 
/i and X are probability measures on U having the same barycenter L E U. It 
follows from Theorems 3.2 and 3.3 and Proposition 3.5 that U is a simplexoid 
if and only if horn \i * horn X whenever fi and X are probability measures on U 
having the same barycenter 1 6 1 / with \\L\\ * 1. Thus, we would expect the 
J-simplexes to form a proper subclass of the simplexoids, and this is indeed 
the case: if 1 E A, then U is a T-simplex if and only if it is a simplexoid and 
A is selfadjoint [8, Theorem 4.4], [10]. By considering a given complex Banach 
space £ as a subspace A of C(f/), U the weak* compact unit ball of £*, one 
can formulate Effros' result [7]: The set U is a T-simplex if and only if E is a 
Lindenstrauss space, that is, the space £* is linearly isometric to some 
complex L, space. Such spaces E have been thoroughly studied; see, for 
instance, [10], [12]-[15], [17], [18]. 

An interesting method of proof of Hustad's existence theorem in the metric 
case, using the notion of dilations, has been sketched by Briem [2, Theorem 
!]• 
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