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assert their inspiration lies in physics, few of them face up to the fact that 
physics is an experimental science so that theories are of maximal use 
confronting numbers experimentalists observe in the laboratory. For a long 
while, mathematicians have restricted their interest in numbers to statements 
such as: there exist no nonvanishing vector fields on spheres of even dimen­
sion or that the set of isomorphism classes of fc-dimensional vector bundles 
over a paracompact space B has a natural bijective correspondence with the 
set of homotopy classes of mappings of B into the Grassmann manifold of 
A>dimensional subspaces of an infinite dimensional space. We have passed 
the art of computation along to computerologists-selling both ourselves and 
the world out. 
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The theory of vector measures has been under increasingly heavy study for 
the last decade. By the early seventies coherent bodies of knowledge had 
solidified in the areas of vector measure theory that grew from either the 
Orlicz-Pettis theorem or the Dunford-Pettis Radon-Nikodym theorem for the 
Bochner integral. But as late as 1974 the range of a vector measure was still 
an object of some mystery. 

At that time the two main theorems about the range of a vector measure 
were Liapunov's convexity theorem (the range of a nonatomic vector measure 
with values in a finite dimensional space is compact and convex) and the 
Bartle-Dunford-Schwartz theorems (a vector measure with values in a Banach 
space has a relatively weakly compact range and is absolutely continuous with 
respect to a scalar measure). The infinite dimensional version of Liapunov's 
theorem remained a particular enigma; Liapunov had shown, by example, that 
his convexity theorem failed for vector measures with values in the sequence 
spaces lp (1 < p < oo). The very scope of Liapunov's example served to block 
serious research into the infinite dimensional version of Liapunov's convexity 
theorem. This, in turn, held up the understanding of the bang-bang principle 
for control systems with infinitely many degrees of freedom (e.g. a control 
system governed by a partial differential equation). 

Also in the early seventies it became clear that a sharpened form of the 
Bartle-Dunford-Schwartz theorem was needed. It was realized that the range 
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of a vector measure is distinguished by properties far stronger that relative 
weak compactness. The unit ball of any reflexive quotient of C([0,1]) is the 
range of a vector measure, but the unit ball of three-dimensional lx is not. 
Some work of Bolker's in the finite dimensional case indicated that the range 
of a vector measure with values in a Banach space should be characterized by 
its geometry. But, other than what can be deduced from the Kreïn-Mil'man 
theorem, little was known about the geometry of the range of a vector 
measure. 

The years 1973-1975 saw marked progress in the study of the range of a 
vector measure, progress to which the authors of this book have contributed 
in no small way. This welcome contribution to the literature is their report on 
the current state of the knowledge about the range of a vector measure and its 
applications to control systems. 

I think the highlight of the book is the author's presentation of the infinite 
dimensional version of Liapunov's theorem. By Liapunov's example, non-
atomicity must have a stronger meaning in the finite dimensional case than it 
has in the infinite dimensional case. Knowles in 1974, partially aided by a 
theorem of Kingman and Robertson, was able to isolate the essential kernel 
of the meaning of nonatomicity in Liapunov's theorem. In so doing he made 
Liapunov's theorem into one of the charms of measure theory. I cannot resist 
trying to communicate the basic idea of Knowles' approach. 

Let X be a Banach space, 2 be a a-field and m: 2 -» X be a vector measure. 
Call m Liapunov if for each A E 2 the set {m(E n ^ ) : £ E 2 } i s weakly 
compact and convex. By the Bartle-Dunford-Schwartz theorem there is a finite 
positive measure JH on 2 with exactly the same null sets as m. For each £ 6 S 
of positive /x-measure let L^ (//,,£) be the subspace of L^{frE) consisting of 
functions vanishing off E. Note that if X is finite dimensional and m is 
nonatomic then the operator ƒ -» fEfdm, ƒ E L^(\JL,E\ is many-to-one on 
each L^{\i,E) because each L^{\i,E) is infinite dimensional. This is the 
kernel of nonatomicity in the finite dimensional case. For general Banach 
spaces X, Knowles proved that m is Liapunov if and only if this operator is 
many-to-one on each L^QiyE). Some of the charm of Knowles' theorem 
derives from its elegant proof which is based in part on Lindenstrauss' well-
known proof of the finite dimensional version of Liapunov's theorem. 

Here is an easy consequence of Knowles' theorem: A vector measure is 
Liapunov if and only if its range is mid-point convex, a fact originally proved 
in the finite dimensional case by Halmos. 

After giving a thorough discussion of Liapunov's theorem, the authors relate 
Liapunov vector measures to the bang-bang principle of control theory. This 
is "an attempt to extend the approach and results concerning the control of 
systems with a finite number of degrees of freedom to systems governed by 
partial differential equations." A number of concrete examples are given 
including the establishment of the bang-bang principle for certain systems 
governed by the wave equation, the heat equation and the diffusion equation. 
There is also an illuminating discussion that reveals that St. Venant's principle 



BOOK REVIEWS 105 

in linear elasticity theory implies that the relation between the deformations 
(or stresses) and forces causing them is expressible as integration with respect 
to a Liapunov vector measure. This means that St. Venant's principle implies 
the bang-bang principle. 

The uniqueness of controls for systems governed by partial differential 
equations is related to the extreme points of the attainable set which, in turn, 
is often related to the range of a vector measure. Thus, once the bang-bang 
principle is understood, it is natural to examine the extremal structure of the 
range of a vector measure. The authors give a tightly organized presentation 
of this subject. The main theorems are as follows: Every extreme point of the 
closed convex hull of the range of a vector measure belongs to the range of 
the measure (Liapunov). Every extreme point of the range is a denting point 
(Anantharaman). Every exposed point of the range of a vector measure is 
strongly exposed (Anantharaman). Also included here is Anantharaman's 
proof of Rybakov's theorem. This proof is a beautiful melding of Banach 
space theory and measure theory to the profit of both fields. 

Next the authors consider the problem of characterizing those subsets of 
Banach spaces that are ranges of vector measures. As the authors state, 
"The problem to construct for a given set K a vector measure (whose range is 
K) is unreasonably ambitious. More tractable is the following one. If AT is a 
convex set, find a vector measure m such that K is the closed convex hull of 
the range of m." They show that this is not much of a compromise by showing 
that the closed convex hull of the range of a vector measure is itself the range 
of a (Liapunov) vector measure. The central theorem is due to Kluvanek and 
is based on Choquet's conical measures. This theorem reveals that a set K is 
the closed convex hull of the range of a vector measure if and only if A' is a 
zonoform. This is the definitive extension of Bolker's earlier (finite dimension­
al) work. This is then combined with some theorems of Choquet's and Herz's 
to relate ranges of vector measures to weakly compact convex symmetric sets 
with negative-definite support functionals. As the authors freely admit, these 
characterizations are, at present, possibly a bit too abstract to be of immediate 
use in vector measure theory or control theory. More must be known about 
zonoforms. On the other hand, they do allow vector measure theory to be 
applied to the theory of zonoforms. Thus, for instance, every exposed point of 
a zonoform is strongly exposed. Also these results may be of use in the 
problem of constructing a control system with a given attainable set. 

The book closes with a treatment of optimal control for systems with 
infinitely many degrees of freedom steered by a sequence of independently 
operating controls. The work here is "a contribution to the programme of 
extending (the approach of Hermes and LaSalle, Functional analysis and time 
optimal control, Academic Press, New York, 1969) to the infinite dimensional 
situations." 

One misimpression should be rectified here. Although I have stated the 
theorems above for Banach spaces only, this book is executed in the context 
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of measures with values in locally convex spaces. Sometimes the theory 
becomes a bit more complicated than I have indicated above, but Kluvanek's 
notion of a closed vector measure is used to hold complications to a minimum. 
Every vector measure with values in a metrizable locally convex space is 
closed; thus closed vector measures seem to be the natural generalizations of 
Banach space-valued measures to the locally convex context. I hasten to add 
that this generalization is not an idle extension that searches for generality for 
the sake of generality. Indeed a functional analytic approach to many concrete 
problems of control systems is impossible within the context of Banach spaces. 

There are several reasons to be thankful for this book. In addition to 
bridging the gap between pure and applied mathematics, it is the definitive 
work on the range of a vector measure. It reads easily and its literature surveys 
(which appear at the end of each chapter) are chock-full of tidbits of 
information that are useful to the student, scholar or researcher. It is a book 
worth having and using. 

J. J. UHL, JR. 


