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The present work falls into two parts. In the first, a left transformation 
group [2] (G, X) with G a compact metric group and X a locally compact Haus-
dorff space is given; in the second, a bitransformation group [2] (G, X, T) with 
G, X compact Hausdorff and T arbitrary is considered. It is always assumed 
that G acts freely; thus g • x = x implies g = identity in G (x E X). 

1. Let IT: X —• XjG = Y be the projection. Let ju be a Radon measure on 
X,v = nQx). 

1.1. THEOREM. There is a disintegration [1] ,\: y —*\y of JJL with respect 
to ir such that 

(a) Xy is supported on 7r~ *(>/); 
(b) X is v-Lusin-measurable 

(thus, ifKCY is compact, there is a countable collection Kt of compact sets, 

with v(K ~ (JJLjAV) = 0, such that \\Kt is continuous for each i). IfX' is an­

other disintegration of ix with respect to T\ satisfying (a) and (b), then X' = X 
v-a.e. 

To prove 1.1, one first assumes X is compact and G is a Lie group. In this 
case, X is "measure-theoretically" the product Y x G; this follows from the 
existence of local cross-sections to the projection n [6]. Let n2 : X ~ Y x G 

—> G, and define a map £ from Ll(Y, v) to the space of Radon measures on G 
as follows: £(ƒ) = TÏ2 [if ° n) ' M] • Apply the Dunford-Pettis Theorem [3] to 
? to obtain a map co from Y to M+(G) = the set of positive Radon measures 17 
on G such that ||T?|| = 1. The map X is easily obtained from co. One now com­
pletes the proof by (i) approximating G by a sequence of Lie groups [6] ; (ii) us­
ing the fact that there is a locally countable collection of pairwise disjoint com­
pact subsets of Y the complement of whose union is locally i>-null [1]. 

2. First suppose G is metric. Let JU be a T-ergodic measure on X, and let 
X be a disintegration of // as in 1.1. Let G D G0 = {g E G\fxf(gx) dix(x) = 
fxf(

x) dii(x) for all ƒ E C(X)} ; G0 is a closed subgroup of G. Denote the nor­
malized Haar measure on G0 by y0. 
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2.1. THEOREM. For each y G Y, there exists x E n^iy) such that fxfd\ 

= SGf<8xUy0<g)(feC(X)). 

Thus each Xy "looks like" 7 0 . 
To prove 2.1, define <px: G —• X: g —• g • x for each x EX. Then <j>x is 

a homeomorphism onto ir~ln(x). Define F: X —•* M+(G): F(x) = 0J1(Xy) 
where ƒ = 7r(x). 

2.2. LEMMA. Let H map X to a Hausdorff space, and suppose (i) H is JU-

Lusin-measurable, (ii) H(xt) = #(x) />a.e. for each fixed t ET Then H = 
const [x~a.e. 

This lemma may be applied to F\ thus F(x) = const ju-a.e. Results of [5] 
now imply that F(x) = y0 /x-a.e., and 2.1 follows immediately. 

If G is not metric, our results are quite a bit weaker. We do have an ana­
logue of 2.1, however, if Y has a strong lifting [3]. Let M0(X) = {17: T? is a 
positive Radon measure on X, ||TJ|| = 1,17 is G0-invariant}. It is easily seen that 
2.1 is equivalent with the following 

2.3. STATEMENT. For each y G Y, \ y is extreme in the compact convex 
set M0(X). 

2.4. THEOREM. Suppose Y has a strong lifting [3]. Then there exists a 

weakly measurable disintegration X such that (i) Xy is supported on n~l(y)\ (ii) 
Xy is extreme in M0(X) for all y. 

The proof is a straightforward argument using 2.1 and approximation of G 

by Lie groups. 
These results represent a portion of the author's doctoral thesis [4]. He 

wishes to thank his advisor, Professor Robert Ellis, for his many valuable sugges­
tions and his constant encouragement. 
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