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remains a skeptic here. I believe that the observational data are too feeble, 
and the physical theory too tentative to support strong and conclusive beliefs. 

"It seems to be a good principle that the prediction of a singularity by a 
physical theory indicates that the theory has broken down, i.e. it no longer 
provides a correct description of observations. The question is: when does 
General Relativity break down? One would expect it to break down anyway 
when quantum gravitational effects become important. . . . This would corre­
spond to a density of 1094 gm cm - 3 . However one might question whether a 
Lorentz manifold is an appropriate model for space-time on length scales of 
this order." 

Cosmology is not a "hard experimental science" in the sense of 
aerodynamics, or even macro-economics. That is, the experimenter does 
not have access to an effective input control to the physical system. While 
there are plenty of observed data from millions of stars, they are not 
necessarily the data one might want if there were a choice. Unless we greatly 
modify our philosophy of scientific knowledge, cosmology must remain a 
speculation. 

I recall once hearing a lecture on economics where the authority asserted 
something like, "since the coefficient of o2 is negative, we must expect the 
government to raise taxes", and I said to myself, "Hey, wait just a minute-
let's multiply by — 1". I had somewhat the same emotion when I read that the 
coefficient of a2 in Raychaudhuri's equation is negative, therefore we must all 
fall eventually into a black hole and this is our final fate. But even if this is 
the case, it might not be too dismal. Remember, Alice found a Wonderland. 
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Topics in stochastic processes, by Robert B. Ash and Meivin F. Gardner, 
Probability and Mathematical Statistics, vol. 27, Academic Press, New 
York, 1975, viii + 321 pp., $34.50. 

The theory of stochastic processes has mushroomed in the last twenty 
years; not only because of its intrinsic interest, but also because it is closely 
connected with so many different areas of mathematics. It feeds on analytic 
techniques from measure theory, Fourier analysis, semigroups of operators 
and spectral theory, potential theory, ergodic theory; and in turn it has 
applications to topology, functional inequalities, differential equations, infor­
mation theory and prediction theory, and through the stochastic integral to 
several areas of mathematical physics. Thus stochastic processes is a good 
modern example of an area of mathematics which has been stimulated by its 
applications, while itself leading to extensive research in more established 
areas in order to develop the techniques needed. 

The essential apparatus of mathematical building bricks is both extensive 
and deep. There is therefore no hope of writing a self contained text book of 
acceptable length which covers more than a small subset of the theory. The 
subset chosen by Ash and Gardner is made by selecting some special 
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processes with interesting applications to physics or engineering and develop­
ing the framework needed for studying these processes. They start the 
investigation of several types of stochastic process without getting very far in 
any direction. The book assumes basic measure theory and the standard 
results about absolute integrals as well as basic probability theory. The 
authors also use a variety of results from complex analysis and Fourier 
analysis, but these are summarised conveniently in two Appendices. 

The start of our intuitive understanding of stochastic processes is largely 
the result of the work of Paul Levy [3], who seemed to think of a process from 
the point of view of a particle which at time t0 was sitting at X(t0) and then 
continued to move along X(t) as t grew. Levy's intuition was largely based on 
a deep study of mathematical Brownian motion. The modern theory of 
continuous parameter Markov processes has grown out of Levy's work. 
Intuitively, we should think of a Markov process as one in which the future 
X(t), t >? 0 , i s independent of the past X(t), t<t0, given the present X(t0). 
The so-called 'strong Markov property' extends this definition to random 
times t0 which are determined by the process for values of t < t0. Levy used 
the strong Markov property as well as the Markov property without formulat­
ing them precisely. A rigorous theory of Markov processes requires careful 
measure theoretic formulation-and this was first put together systematically 
by J. L. Doob [1] in 1953. In order to make simple properties of the sample 
path, such as {a < X(t) < b for all t in an interval ƒ} measurable, one has to 
assume separability-which can be thought of as a condition that X(t) is 
completely determined by values of t in a countable set. This leads on to the 
establishment of measurability properties for X(t, œ) in the product space 
T X fi-which are needed to justify the use of integration methods. Ash and 
Gardner, in Chapter 4, obtain these deep properties for Markov processes 
with independent increments. They use the martingale convergence theorem 
as a tool to establish sample path properties, and look in more detail at the 
case of Brownian motion which is historically so important, obtaining results 
like the law of iterated logarithm which describes the asymptotic growth rate 
of the path. 

There is an important class of stochastic processes which can be studied 
rigorously without all the apparatus of separability, measurability and con­
tinuity discussed in Chapter 4-this is the class of complex-valued processes 
X{t) for which | ^ ( / ) | 2 is always integrable. These are called L2-processes. We 
can then define 

K(s9i) = Cov[X(s),X(t)] = E[(X(s) - m(s))(X(t) - m(t))] 

where m(t) = E(X(t)) exists, and call it the covariance function of the 
process. In the main Ash and Gardner restrict their discussion to the case of 
(wide sense) stationary processes for which 

m(t) = c and K(t, s) = K(t + h, s + h). 

In this case K(s, t) is determined by K(t) = K(s + /, s). The celebrated 
theorem of Bochner tells us that a complex valued K on R that is continuous 
at the origin is the covariance of a stationary L2-process if and only if there is 
a finite Borel measure /x on R (called the spectral measure) such that 
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K(t) = jReity d{x(y). The L2-process is not determined by K, and it is possible 
to choose one that is Gaussian, that is, such that X{t^), X(t2), . . . , X(in) 
have a jointly Gaussian distribution. The expansion of an L2-process X(t) on 
a finite interval a < t < b can be given in terms of the eigenfunctions of 
K(s, t) in L2[a, b], and this ties in the theory of L2-processes to that of 
Hilbert spaces. In particular the usual spectral theory can be applied to the 
spectrum \i when the process is stationary. Ash and Gardner give an 
illuminating account of this theory in Chapters 1 and 2. They use the theory 
to attack the prediction problem-which we can think of as seeking to predict 
X(t0 + s) given the process X(t) for t < t0. They develop their methods in a 
number of cases which have application to engineering. A fuller treatment of 
the prediction problem is given in Gihman and Skorohod [2]. 

We can think of ergodic theory as the study of measure preserving 
transformations T on a measure space (Œ, S7, ju,) in which the only T-invariant 
sets are those with zero or full measure. When JU,(£2) = 1 the 'strong law of 
large numbers' states that 

n /-o 

almost surely as x -» oo, where X is a random variable with finite expectation 
and Xi are independent realisations of X. In Chapter 3, Ash and Gardner give 
a standard development of ergodic theory as far as a proof of the pointwise 
ergodic theorem which, on a probability space can be formulated as 

y±lX(T'a)^E(X) 
n i=o 

almost surely, for any random variable X with finite expectation. Thus the 
pointwise ergodic theorem is very closely related to the strong law of large 
numbers. The chapter then discusses briefly the application of ergodic theory 
to Markov chains and goes on to obtain the Shannon-McMillan theorem on 
the convergence of 

-Uogp(X„...,Xn_x) 

in the case where the Xt are the discrete coordinate random variables of a two 
sided shift T. When T is ergodic, this limit is a constant H which can be 
identified as the entropy (or degree of uncertainty) given by 

H(X)= -^p(x)\ogp{x), 
X 

where p(x) — P {X = x}. This is a basic result in the modern theory of 
information. 

The final chapter of the book is a brief introduction to the study of 
differential equations with random coefficients. For this purpose the Itô 
stochastic integral is established, as this is the basic tool needed. Think of one 
dimensional Brownian motion B(t,o)) as defined on a probability space 
(ïï, S7, P) and ƒ : T X Û ^ R a s a function with values f(t,co). The object is to 
define jbJ{t, oo) dB (7, co) under appropriate conditions. This cannot be 
defined as a Lebesgue-Stieltjes integral since B(t,co) is not of bounded 
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variation. Itô's definition is obtained as a limit of step function approxima­
tions which works when (i) ƒ is 95 X <$ measurable; (ii) for each / G [a, b], 
f(t) G L2(fi, P) and fb

aE(\f(t)\2) dt < oo; (iii) for each t G [a, b]9 ƒ(*, • ) is 
measurable ^(t), the a-field generated by {B(s\ s < t}. Note that condition 
(ii) restricts the average size of | / ( 0 | a n d (n0 s a v s that the dependence of 
ƒ(/, co) on co is restricted to information about the past and present values of 
B (s, co). This chapter does no more than give a taste of a large subject with 
important applications. An interested reader would go on to consult the book 
by McKean [4]. 

The reviewer enjoyed his commision to read the book. He suspects that the 
book will have limited value as a reference work because no topic is pushed 
very far. It does have a good selection of examples worked out in the text as 
well as problems at the end of each chapter, which are provided with outline 
solutions. This means that a competent graduate student or an analyst 
unfamiliar with stochastic processes would profit greatly by careful study of 
the book. It would make a good text for an advanced graduate course 
provided the lecturer was satisfied with the topics selected. The authors have 
provided a valuable new perspective on a variety of important analytic tools 
used for the study of stochastic processes. 
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Homotopy theory; an introduction to algebraic topology, by Bray ton Gray, 
Academic Press, New York, 1976, xiii + 368 pp., $22.00. 

"This book is an exposition of elementary algebraic topology from the 
point of view of a homotopy theorist." It is with this sentence that the Preface 
to Brayton Gray's book begins, so perhaps we would be well advised to learn 
something of the homotopy theorist's point of view before examining the 
contents of the book itself. 

In a vague sense homotopy theory studies properties of topological spaces 
that remain invariant under a continuous deformation. The achievements of 
the theory stem from the fact that so many seemingly rigid problems are 
really homotopy theoretic in nature. 

Around the turn of the century, during the formative period of algebraic 
topology, Poincaré introduced [9] (among other things) the homology 
(groups) of a polyhedron. A polyhedron is a configuration of basic convex 
sets called simplexes, and it was from the combinatorial properties of the 
configuration that the homology of a polyhedron was defined. It then became 
essential to demonstrate that these combinatorially defined invariants were in 


