INDEPENDENT KNOTS IN BIRKHOFF INTERPOLATION ${ }^{1}$

BY G. G. LORENTZ

Communicated by Alberto P. Calderón, April 8, 1976
We consider Birkhoff interpolation for an incidence matrix $E=\left(e_{i k}\right)_{i=1}^{m} ;{ }_{k=0}^{n}$, the "polynomials" $P=\Sigma_{0}^{n} a_{k} u_{k}(x)$, for a system $U=\left\{u_{k}\right\}_{0}^{n}$ of functions $u_{k} \in$ $C^{n}[a, b]$ (or $P=\left\{x^{k}\right\}_{0}^{n}$) and the knots $X=\left(x_{1}, \ldots, x_{m}\right)$ satisfying $a \leqslant x_{1}$ $<\cdots<x_{m} \leqslant b$. The method of independent knots appears for the first time in [4]; it is somewhat related to the coalescence method [1], [3].

A function $f \in C^{n}[a, b]$ is annihilated by E, X if

$$
\begin{equation*}
f^{(k)}\left(x_{i}\right)=0 \quad \text { for all }(i, k) \text { with } e_{i k}=1 \tag{1}
\end{equation*}
$$

From zeros of f and its derivatives given by (1), one can derive further zeros by means of Rolle's theorem. This leads to the following definition. A Rolle set R for a function f annihilated by E, X is a collection $R_{k}, k=0, \ldots, n$, of Rolle sets of zeros (with multiplicities) of the $f^{(k)}$. The sets R_{k} are defined inductively: R_{0} consists of the zeros of f given by (1); if R_{0}, \ldots, R_{k} have been defined, we select R_{k+1}-some of the zeros of $f^{(k+1)}$-as follows: $(\alpha) R_{k+1}$ contains all zeros of $f^{(k)}$ of multiplicity >1, their multiplicities reduced by 1 . (β) R_{k+1} contains all zeros of $f^{(k+1)}$ (with multiplicities) given by (1). (γ) For any two adjacent zeros $\alpha, \beta \in R_{k}$ we select a zero γ of $f^{(k+1)}$ by means of Rolle's theorem, provided one exists not listed in (1). This new zero γ may be different from the x_{i}; it may be one of the x_{i}, but not listed in (1) as a zero of $f^{(k+1)}$; finally, γ may appear as an additional multiplicity of a zero x_{i} of $f^{(k+1)}$ by (1). In this case, $e_{i, k+1}=\cdots=e_{i, k+t}=1, e_{i, k+t+1}=0$. If no zero γ as specified exists, there is a loss. (δ) We adjust the multiplicities in the last case of (γ) : if also $e_{i, k+t+2}=\cdots=e_{i, k+s+1}=0$, then γ belongs to R_{k+1} with multiplicity s. A Rolle set constructed without losses is maximal. A function f annihilated by E, X may have several Rolle sets, some of them maximal, others are not. Let m_{k} be the number of ones in the column k of E, let

$$
\begin{equation*}
\mu_{k}=\left(\cdots\left(\left(m_{0}-1\right)_{+}+m_{1}-1\right)_{+}+\cdots+m_{k-1}-1\right)_{+}+m_{k} \tag{2}
\end{equation*}
$$

Lemma 1. The number of distinct Rolle zeros of $f^{(k)}$ in a maximal Rolle set is exactly μ_{k}.

Let E be a Birkhoff matrix, let E^{0} be derived from E by replacing a one,
$e_{i_{0} q}=1,1<i_{0}<m$ by zero, let $E^{\prime}, E^{\prime \prime}$ consist of rows $1, \ldots, i_{0}$ and i_{0}, \ldots, m of E^{0}. Let $\mu_{k}^{0}, \mu_{k}^{\prime}, \mu_{k}^{\prime \prime}$ be defined for the matrices by (2).

Lemma 2. If $e_{i_{0} q}=1$, one has $\tau=\mu_{q}^{0}-\mu_{q}^{\prime}-\mu_{q}^{\prime \prime}>0$, and if, in addition, $e_{i_{0}-1, q}=0$, then $\tau>0$.

A set $Y \subset[a, b]$ is independent with respect to U if for each $X \subset Y$, each polynomial P annihilated by E, X has a maximal Rolle set. Results on independent sets are based on inequalities of Markov type and on

Lemma 3. For each $l>0$ there is a number $d>0$ with the property that if $P(\alpha)=P(\beta)=0, \beta-\alpha>l$, then at least one point $\alpha+d<\xi<\beta-d$ satisfies $P^{\prime}(\xi)=0$.

Theorem 1. There exist independent sets $Y=\left\{y_{s}\right\}_{s=-\infty}^{+\infty}$ so that $a<$ $\cdots<y_{-s}<\cdots<y_{s}<\cdots<b$; the y_{s} can be defined inductively; at each step it is enough to take $y_{s}\left(\right.$ or $\left.y_{-s}\right)$ sufficiently close to b (or to a).

Theorem 2. If $Y=\left\{y_{s}\right\}_{s=-\infty}^{+\infty}$ is an independent set, there exist points $z_{s t}$ in $\left(y_{s}, y_{s+1}\right)$ so that the set formed by all $z_{s t}$ and all y_{s} is independent.

Lemma 3. Let $1 \leqslant s<i_{0}<t \leqslant m$. There exists an independent set $\left(x_{1}, \ldots, x_{m}\right)$ and an interval $I=[c, d] \subset\left(x_{i_{0}-1}, x_{i_{0}+1}\right)$ so that: (i) If P is annihilated by E, X, then Rolle zeros of P are derived only from $x_{i}, s \leqslant i \leqslant t$; (ii) problem (1) for E, X is regular if $x_{i_{0}} \in I$, and row i_{0} of E is consevrative.

By means of these results we can estimate the number of changes of signs of determinants $D_{E}(X)$ of (1). Let $U=P$.

Theorem 3. If X is as in Lemma 3, and if row i_{0} of E has exactly one odd supported sequence beginning with $e_{i_{0}, q}=1$, then, as $x_{i_{0}}$ moves from c to $d, D_{E}(X)$ changes sign at least τ times. If $X^{\prime}, X^{\prime \prime}$ have $x_{i_{0}}$ in the extreme positions,

$$
\begin{equation*}
\operatorname{sign} D_{E}\left(X^{\prime}\right)=(-1)^{\tau} \operatorname{sign} D_{E}\left(X^{\prime \prime}\right) \tag{3}
\end{equation*}
$$

Corollaries. 1. If E is a Birkhoff matrix, $s=1, t=m$, then $\tau>0$ and E is strongly singular. This is the main theorem of [2], but with a precise number of changes of sign.
2. Assume that row i_{0} consists of disioint portions $S_{j}, j=1, \ldots, p$, which follow each other. Let matrix E_{j} have rows s, \ldots, t of E, with row i_{0} replaced by three rows $S_{1} \cup \cdots \cup S_{j-1}, S_{j}$, and $S_{j+1} \cup \cdots \cup S_{p}$. Let S_{j} have exactly one odd supported sequence in E_{j} with τ_{j} constructed as in Lemma 2. Then E is strongly singular if $\Sigma \tau_{j}+\sigma$ is odd, where σ is the difference of the interchanges of rows for the two coalescences $\left(\cdots\left(S_{1} \cup S_{2}\right) \cup \cdots \cup S_{p}\right) \cup$ $E_{i_{0}+1}$ and $S_{1} \cup\left(S_{2} \cup \cdots \cup\left(S_{p} \cup E_{i_{0}+1}\right) \cdots\right)$. If $s=1, t=m$, this is the criterion [1, Theorem 2.3].
3. If $s \neq 1, t \neq m$, we obtain new criteria. One notices the phenomenon that a submatrix F of E may be "so bad" that any of its extensions to a Birkoff matrix is strongly singular.

REFERENCES

1. S. Karlin and J. M. Karon, Poised and non-poised Hermite-Birkoff interpolation, Indiana Univ. Math. J. 21 (1971/72), 1131-1170. MR 47 \#3877.
2. G. G. Lorentz, Birkoff interpolation and the problem of free matrices, J. Approximation Theory 6 (1972), 283-290. MR 49 \#5639.
3. - Coalescence of matrices, J. Approximation Theory (to appear).
4. G. G. Lorentz and K. L. Zeller, Birkoff interpolation, SIAM J. Numer. Anal. 8 (1971), 43-48. MR 45 \#4595.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN, TEXAS 78712

