INDEPENDENT KNOTS IN BIRKHOFF INTERPOLATION¹

BY G. G. LORENTZ

Communicated by Alberto P. Calderón, April 8, 1976

We consider Birkhoff interpolation for an incidence matrix $E = (e_{ik})_{i=1}^{m}; {n \atop k=0}^{n}$, the "polynomials" $P = \sum_{0}^{n} a_{k} u_{k}(x)$, for a system $U = \{u_{k}\}_{0}^{n}$ of functions $u_{k} \in C^{n}[a, b]$ (or $P = \{x^{k}\}_{0}^{n}$) and the knots $X = (x_{1}, \ldots, x_{m})$ satisfying $a \leq x_{1} < \cdots < x_{m} \leq b$. The method of independent knots appears for the first time in [4]; it is somewhat related to the coalescence method [1], [3].

A function $f \in C^n[a, b]$ is annihilated by E, X if

(1) $f^{(k)}(x_i) = 0$ for all (i, k) with $e_{ik} = 1$.

From zeros of f and its derivatives given by (1), one can derive further zeros by means of Rolle's theorem. This leads to the following definition. A Rolle set R for a function f annihilated by E, X is a collection \mathcal{R}_k , $k = 0, \ldots, n$, of Rolle sets of zeros (with multiplicities) of the $f^{(k)}$. The sets R_k are defined inductively: R_0 consists of the zeros of f given by (1); if R_0, \ldots, R_k have been defined, we select R_{k+1} -some of the zeros of $f^{(k+1)}$ -as follows: (a) R_{k+1} contains all zeros of $f^{(k)}$ of multiplicity > 1, their multiplicities reduced by 1. (β) R_{k+1} contains all zeros of $f^{(k+1)}$ (with multiplicities) given by (1). (γ) For any two adjacent zeros $\alpha, \beta \in \mathbb{R}_k$ we select a zero γ of $f^{(k+1)}$ by means of Rolle's theorem, provided one exists not listed in (1). This new zero γ may be different from the x_i ; it may be one of the x_i , but not listed in (1) as a zero of $f^{(k+1)}$; finally, γ may appear as an additional multiplicity of a zero x, of $f^{(k+1)}$ by (1). In this case, $e_{i,k+1} = \cdots = e_{i,k+t} = 1$, $e_{i,k+t+1} = 0$. If no zero γ as specified exists, there is a loss. (δ) We adjust the multiplicities in the last case of (γ): if also $e_{i,k+t+2} = \cdots = e_{i,k+s+1} = 0$, then γ belongs to R_{k+1} with multiplicity s. A Rolle set constructed without losses is maximal. A function f annihilated by E, Xmay have several Rolle sets, some of them maximal, others are not. Let m_k be the number of ones in the column k of E, let

(2)
$$\mu_k = (\cdots ((m_0 - 1)_+ + m_1 - 1)_+ + \cdots + m_{k-1} - 1)_+ + m_k.$$

LEMMA 1. The number of distinct Rolle zeros of $f^{(k)}$ in a maximal Rolle set is exactly μ_k .

Let E be a Birkhoff matrix, let E^0 be derived from E by replacing a one,

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 41A05; Secondary 15A36. ¹Research partially supported by NSF grant MPS 75-09833.

 $e_{i_0q} = 1, 1 < i_0 < m$ by zero, let E', E'' consist of rows $1, \ldots, i_0$ and i_0, \ldots, m of E^0 . Let μ_k^0, μ_k', μ_k'' be defined for the matrices by (2).

LEMMA 2. If $e_{i_0q} = 1$, one has $\tau = \mu_q^0 - \mu_q' - \mu_q'' > 0$, and if, in addition, $e_{i_0-1,q} = 0$, then $\tau > 0$.

A set $Y \subset [a, b]$ is *independent* with respect to U if for each $X \subset Y$, each polynomial P annihilated by E, X has a maximal Rolle set. Results on independent sets are based on inequalities of Markov type and on

LEMMA 3. For each l > 0 there is a number d > 0 with the property that if $P(\alpha) = P(\beta) = 0$, $\beta - \alpha > l$, then at least one point $\alpha + d < \xi < \beta - d$ satisfies $P'(\xi) = 0$.

THEOREM 1. There exist independent sets $Y = \{y_s\}_{s=-\infty}^{+\infty}$ so that $a < \cdots < y_{-s} < \cdots < y_s < \cdots < b$; the y_s can be defined inductively; at each step it is enough to take y_s (or y_{-s}) sufficiently close to b (or to a).

THEOREM 2. If $Y = \{y_s\}_{s=-\infty}^{+\infty}$ is an independent set, there exist points z_{st} in (y_s, y_{s+1}) so that the set formed by all z_{st} and all y_s is independent.

LEMMA 3. Let $1 \le s \le i_0 \le t \le m$. There exists an independent set (x_1, \ldots, x_m) and an interval $I = [c, d] \subseteq (x_{i_0-1}, x_{i_0+1})$ so that: (i) If P is annihilated by E, X, then Rolle zeros of P are derived only from x_i , $s \le i \le t$; (ii) problem (1) for E, X is regular if $x_{i_0} \in I$, and row i_0 of E is consevrative.

By means of these results we can estimate the number of changes of signs of determinants $D_E(X)$ of (1). Let $\mathcal{U} = \mathcal{P}$.

THEOREM 3. If X is as in Lemma 3, and if row i_0 of E has exactly one odd supported sequence beginning with $e_{i_0,q} = 1$, then, as x_{i_0} moves from c to d, $D_E(X)$ changes sign at least τ times. If X', X" have x_{i_0} in the extreme positions,

(3) $\operatorname{sign} D_E(X') = (-1)^{\tau} \operatorname{sign} D_E(X'').$

COROLLARIES. 1. If E is a Birkhoff matrix, s = 1, t = m, then $\tau > 0$ and E is strongly singular. This is the main theorem of [2], but with a precise number of changes of sign.

2. Assume that row i_0 consists of disjoint portions S_j , j = 1, ..., p, which follow each other. Let matrix E_j have rows s, ..., t of E, with row i_0 replaced by three rows $S_1 \cup \cdots \cup S_{j-1}$, S_j , and $S_{j+1} \cup \cdots \cup S_p$. Let S_j have exactly one odd supported sequence in E_j with τ_j constructed as in Lemma 2. Then E is strongly singular if $\Sigma \tau_j + \sigma$ is odd, where σ is the difference of the interchanges of rows for the two coalescences $(\cdots (S_1 \cup S_2) \cup \cdots \cup S_p) \cup$ E_{i_0+1} and $S_1 \cup (S_2 \cup \cdots \cup (S_p \cup E_{i_0+1}) \cdots)$. If s = 1, t = m, this is the criterion [1, Theorem 2.3]. 3. If $s \neq 1$, $t \neq m$, we obtain new criteria. One notices the phenomenon that a submatrix F of E may be "so bad" that any of its extensions to a Birkoff matrix is strongly singular.

REFERENCES

1. S. Karlin and J. M. Karon, *Poised and non-poised Hermite-Birkoff interpolation*, Indiana Univ. Math. J. 21 (1971/72), 1131-1170. MR 47 #3877.

2. G. G. Lorentz, Birkoff interpolation and the problem of free matrices, J. Approximation Theory 6 (1972), 283-290. MR 49 #5639.

3. ——, Coalescence of matrices, J. Approximation Theory (to appear).

4. G. G. Lorentz and K. L. Zeller, *Birkoff interpolation*, SIAM J. Numer. Anal. 8 (1971), 43-48. MR 45 #4595.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN, TEXAS 78712