BORDISM OF DIFFEOMORPHISMS

BY M. KRECK

Communicated by P. T. Church, April 28, 1976

1. Introduction. In this note we determine the bordism groups Δ_n of orientation preserving diffeomorphisms of *n*-dimensional closed oriented smooth manifolds. These groups were introduced by W. Browder [1]. Winkelnkemper showed that each diffeomorphism of the sphere S^n is nullbordant [7]. On the other hand, he showed that Δ_{4k+2} is not finitely generated. Medrano generalized this result to Δ_{4k} [5]. For this he introduced a powerful invariant in the Witt group $W_{\pm}(\mathbf{Z}, \mathbf{Z})$ (I_{\pm} in Medrano's notation) of isometries of free finite-dimensional Z-modules with a symmetric (antisymmetric) unimodular bilinear form. The invariant is given by the middle homology modulo torsion, the intersection form and the isometry induced by the diffeomorphism. For a diffeomorphism $f: M \longrightarrow M$ we denote this invariant by I(M, f), the isometric structure of (M, f). It is a bordism invariant and leads to a homomorphism $I: \Delta_{2k} \longrightarrow W_{(-1)k}(\mathbf{Z}, \mathbf{Z})$.

Neumann has shown that the homomorphism *I* is surjective, that $W_{\pm}(\mathbf{Z}, \mathbf{Z}) \otimes \mathbf{Q} \cong \mathbf{Q}^{\infty}$ and that $W_{\pm}(\mathbf{Z}, \mathbf{Z})$ contains infinitely many summands of orders 2 and 4 [6]. On the other hand, $W_{\pm}(\mathbf{Z}, \mathbf{Z})$ is a subgroup of $W_{\pm}(\mathbf{Z}, \mathbf{Q})$, the Witt group of isometries of finite-dimensional **Q**-vector spaces. This group plays an important role in the computation of bordism groups C_{2k-1} of odd-dimensional knots, which can be embedded in $W_{(-1)k}(\mathbf{Z}, \mathbf{Q})$. It is known that $W_{\pm}(\mathbf{Z}, \mathbf{Q}) \cong$ $\mathbf{Z}^{\infty} \oplus \mathbf{Z}^{\infty}_{2} \oplus \mathbf{Z}^{\infty}_{4}$ [3]. Thus the group $W_{\pm}(\mathbf{Z}, \mathbf{Z})$ is also of the form $\mathbf{Z}^{\infty} \oplus \mathbf{Z}^{\infty}_{2} \oplus$ \mathbf{Z}^{∞}_{4} .

It turns out that the isometric structure is essentially the only invariant for bordism of diffeomorphisms.

2. Bordism of odd-dimensional diffeomorphisms. Two diffeomorphisms (M_1, f_1) and (M_2, f_2) are called bordant if there is a diffeomorphism (N, F) on an oriented manifold with boundary such that $\partial(N, F) = (M_1, f_1) + (-M_2, f_2)$. The bordism classes $[M^n, f]$ form a group under disjoint sum, called Δ_n .

The mapping torus of a diffeomorphism (M, f) is $M_f = I \times M/(0, x) \sim (1, f(x))$. This construction leads to a homomorphism $\Delta_n \to \Omega_{n+1}$ ($[M, f] \mapsto [M_f]$), where Ω_{n+1} is the ordinary bordism group of oriented manifolds.

In [4] we proved the following result.

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 57D90.

THEOREM 1. For k > 2 the map $[M, f] \mapsto ([M], [M_f])$ is an isomorphism $\Delta_{2k-1} \rightarrow \Omega_{2k-1} \oplus \hat{\Omega}_{2k}$, where $\hat{\Omega}_{2k}$ is the kernel of the signature homomorphism τ .

3. The even-dimensional case. Consider triples $(G, \langle , \rangle, h)$, where G is a finite-dimensional free Z-module, \langle , \rangle a symmetric (resp. antisymmetric) unimodular bilinear form on G and h an isometry of (G, \langle , \rangle) . $(G, \langle , \rangle, h)$ is called hyperbolic if there exists an invariant subkernel, i.e. a subspace $U \subset G$ with $U \subset U^{\perp}$, 2 dim $U = \dim G$ and $h(U) \subset U$. $(G, \langle , \rangle, h)$ and $(G', \langle , \rangle, h')$ are called bordant if $(G, \langle , \rangle, h) \oplus (G', -\langle , \rangle', h')$ is hyperbolic. This is an equivalence relation. The equivalence classes form a group under orthogonal sum, called $W_+(\mathbf{Z}, \mathbf{Z})$ (resp. $W_-(\mathbf{Z}, \mathbf{Z})$).

The isometric structure of a diffeomorphism (M^{2k}, f) is given by $(H_k(M; \mathbb{Z})/\text{Tor}, \circ, f_*)$, where \circ is the intersection form. If (M, f) bounds a diffeomorphism (N, F) the isometric structure is hyperbolic, an invariant subkernel being given by the kernel of $i_*: H_k(M; \mathbb{Z})/\text{Tor} \to H_k(N; \mathbb{Z})/\text{Tor}$, so we have a homomorphism $I: \Delta_{2k} \to W_{(-1)k}(\mathbb{Z}, \mathbb{Z})$. Neumann has shown that this homomorphism is surjective [6].

THEOREM 2. For k > 1 the homomorphism

$$\Delta_{2k} \longrightarrow W_{(-1)k}(\mathbf{Z}, \mathbf{Z}) \oplus \widehat{\Omega}_{2k} \oplus \Omega_{2k+1},$$

[M, f] $\mapsto (I(M, f), [M] - \tau(M)[P_k\mathbf{C}], [M_r])$

is an isomorphism (k even), injective with cokernel $\mathbf{Z}_{2}(k \text{ odd})$.

4. Idea of the proof. Consider a diffeomorphism (M^n, f) such that Mand M_f are nullbordant. This implies that there exists a differentiable map g: $N^{n+2} \rightarrow S^1$ with $\partial N = M_f$ and $g|_{\partial N}$ the canonical projection from M_f to S^1 . Let $x \in S^1$ be a regular value of g. $F := g^{-1}(x)$ is a 1-codimensional submanifold of N with trivial normal bundle meeting ∂N transversally along ∂F : Cut Nalong F to obtain a differentiable manifold N_F with corners. The boundary of N_F consists of two copies F_0 and F_1 of F with opposite orientations and a manifold $V = \partial N_{\partial F}$ fibred over the unit interval I. $\partial V = \partial F_0 + \partial F_1$. The corners of N_F are at ∂F_0 and ∂F_1 .

We now make the following strong assumption (compare [2, 2.3]): The components of F are simply connected and F_0 and F_1 are deformation retracts of N_F .

Then $(N_F; F_0, F_1)$ is a relative *h*-cobordism between $(F_0, \partial F_0)$ and $(F_1, \partial F_1)$. For n > 5 the *h*-cobordism theorem implies that the diffeomorphism on *M* can be extended to a diffeomorphism of *F*.

Our aim is, starting with an arbitrary N_F to obtain an $N'_{F'}$ which satisfies the above assumption. For this we modify N_F by addition and subtraction of handles. If *n* is odd $(n \neq 3)$ we have shown in [4] that this works. If *n* is even (n > 2) and I(M, f) = 0 we can do the same. The details of the proof will appear elsewhere.

REFERENCES

1. W. Browder, Surgery and the theory of differentiable transformation groups, Proc. Conf. on Transformation Groups (New Orleans, La., 1967), Springer-Verlag, New York, 1968, pp. 1–46. MR 41 #6242.

2. W. Browder and J. Levine, Fibering manifolds over a circle, Comment. Math. Helv. 40 (1966), 153-160. MR 33 #3309.

3. M. A. Kervaire, *Knot cobordism in codimension two*, Manifolds-Amsterdan 1970 (Proc. Nuffic Summer School), Lecture Notes in Math., vol. 197, Springer-Verlag, Berlin and New York, 1971, pp. 83-105. MR 44 #1016.

4. M. Kreck, Cobordism of odd-dimensional diffeomorphisms, Topology (to appear).

5. S. López de Medrano, Cobordism of diffeomorphisms of (k - 1)-connected 2kmanifolds, Proc. Second Conf. on Compact Transformation Groups (Amherst, 1971), Part I., Lecture Notes in Math., vol. 298, Springer-Verlag, Berlin and New York, 1972, pp. 217– 227. MR 51 #1847.

6. W. D. Neumann, Signature related invariants of manifolds (in preparation).

7. H. E. Winkelnkemper, On equators of manifolds and the actions of θ^n , Thesis, Princeton Univ., 1970.

MATHEMATISCHES INSTITUT DER UNIVERSITÄT, SONDERFORSCHUNGSBE-REICH THEORETISCHE MATHEMATIK, WEGELERSTR. 10, 53 BONN, GERMANY