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1. Introduction. In this note we determine the bordism groups An of 
orientation preserving diffeomorphisms of n-dimensional closed oriented smooth 
manifolds. These groups were introduced by W. Browder [1] . Winkelnkemper 
showed that each diffeomorphism of the sphere Sn is nullbordant [7]. On the 
other hand, he showed that A4k + 2 is not finitely generated. Medrano general
ized this result to A4k [5]. For this he introduced a powerful invariant in the 
Witt group W±(Z, Z) (I± in Medrano's notation) of isometries of free finite-di
mensional Z-modules with a symmetric (antisymmetric) unimodular bilinear 
form. The invariant is given by the middle homology modulo torsion, the inter
section form and the isometry induced by the diffeomorphism. For a diffeomor
phism ƒ : M —> M we denote this invariant by I(M, ƒ), the isometric structure of 
(Af, ƒ). It is a bordism invariant and leads to a homomorphism I: A2k —• 
W(_1)k(Z, Z). 

Neumann has shown that the homomorphism I is surjective, that W±(Z9 Z) 
® Q ÊË Q°° and that W±(Z, Z) contains infinitely many summands of orders 2 
and 4 [6]. On the other hand, W±(Z, Z) is a subgroup of W±(Z, Q), the Witt 
group of isometries of finite-dimensional Q-vector spaces. This group plays an 
important role in the computation of bordism groups C2k_x of odd-dimensional 
knots, which can be embedded in W,1)k(Z, Q). It is known that W±(Z, Q) s* 
Z°° 0 Z2 0 Z~ [3]. Thus the group W±(l9 Z) is also of the form Z°° 0 Z^ 0 
Z°° 

It turns out that the isometric structure is essentially the only invariant for 
bordism of diffeomorphisms. 

2. Bordism of odd-dimensional diffeomorphisms. Two diffeomorphisms 
(Mv fx) and (M2, f2) are called bordant if there is a diffeomorphism (N, F) on 
an oriented manifold with boundary such that d(N, F) = (Mv fx) + (-M2, f2). 

The bordism classes [Af1, ƒ] form a group under disjoint sum, called An. 

The mapping torus of a diffeomorphism (Af, ƒ) is Mf = I x M/(O, x) ~ 
(1, fix)). This construction leads to a homomorphism An —• £ln + î ([M, f] H-> 
[Aff]), where £ln + 1 is the ordinary bordism group of oriented manifolds. 

In [4] we proved the following result. 
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THEOREM l. For k> 2 the map [Af, f] H> ([M], [Mf] ) is an isomor

phism A2k_ j —• £l2k-1 ® ^2/c> wAere Û2fc is the kernel of the signature homo-

morphism r. 

3. The even-dimensional case. Consider triples (G, < , ), h), where G is a 

finite-dimensional free Z-module, < , > a symmetric (resp. antisymmetric) unimod-

ular bilinear form on G and h an isometry of (G, <, >). (G, < , >, h) is called hy

perbolic if there exists an invariant subkernel, i.e. a subspace U C G with U C 

t/1, 2 dim tf = dim G and ft(C0 C (7. (G, < , >, A) and (G\ <, >,' h') are called 

bordant if (G, <, >, h) © (G\ -< , >', h') is hyperbolic. This is an equivalence 

relation. The equivalence classes form a group under orthogonal sum, called 

W+(Z, Z)(resp. Pf_(Z,Z)). 
The isometric structure of a diffeomorphism (Af2/C, ƒ) is given by 

{Hk(M\ Z)/Tor, ° , ƒ*), where ° is the intersection form. If (M, ƒ) bounds a 
diffeomorphism (N, F) the isometric structure is hyperbolic, an invariant subker-
nel being given by the kernel of ƒ*: Hk(M\ Z)/Tor -—> i/fc(JV; Z)/Tor, so we have 
a homomorphism I: A2k —• W, nfc(Z, Z). Neumann has shown that this homo-
morphism is surjective [6]. 

THEOREM 2. For k> I the homomorphism 

&ik — *VD*(Z, Z) e ô2fc e n2jk+1, 

[M,/] - (/(M,/), [M] -T(M)[PfcC], [Jlf,]) 

w ÛTW isomorphism (k even), injective with cokernel Z2(k odd). 

4. Idea of the proof. Consider a diffeomorphism (Af\ ƒ) such that M 
and Mf are nullbordant. This implies that there exists a differentiable map g: 

jyn + 2 —^ £i ^ ^ ĝ y __ ^ an (j gl a i v the canonical projection from M* to S1 . 
Let x E S1 be a regular value of g. F: = g^C*) is a 1-codimensional submani-
fold of TV with trivial normal bundle meeting 97V transversally along dF: Cut N 

along F to obtain a differentiable manifold NF with corners. The boundary of 
NF consists of two copies F0 and Fx of F with opposite orientations and a 
manifold V = 97VdF fibred over the unit interval /. dV = bF0 + 3 ^ . The cor
ners of NF are at bF0 and 9FX. 

We now make the following strong assumption (compare [2, 2.3]): The 
components of F are simply connected and F0 and Ft are deformation retracts 
ofNF. 

Then (NF\ F0, Ft) is a relative /z-cobordism between (F0, dF0) and 
(F j , 9Fj). For « > 5 the Zz-cobordism theorem implies that the diffeomorphism 
on M can be extended to a diffeomorphism of F. 

Our aim is, starting with an arbitrary NF to obtain an NF> which satisfies 
the above assumption. For this we modify NF by addition and subtraction of 
handles. If n is odd (n =fi 3) we have shown in [4] that this works. If n is even 
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(n > 2) and I(M, ƒ) = 0 we can do the same. The details of the proof will ap
pear elsewhere. 
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