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By the Jordan-Zassenhaus Theorem there is only a finite number of conju­
gate classes (called Z-classes) of finite subgroups of GL(«, Z). After various 
authors have determined all of these groups for n < 4 [4] , [3], as well as the 
maximal finite subgroups of GL(5, Z) [2], [7], [8], we develop new methods 
for the determination of the absolutely irreducible maximal finite subgroups of 
GL(«, Z) and compute these groups for n = 5, 6, 7. (We remark that irreducibility 
is tantamount to absolute irreducibility in case n is an odd prime number.) The 
algorithm proceeds in three steps. 

1. Every absolutely irreducible finite subgroup G of GL(n, Z) fixes, up to 
scalar multiples, exactly one positive definite symmetric matrix I E Z n X " called 
the form of G: 

gTXg = X for all# £ G 

It follows that each maximal finite absolutely irreducible subgroup H of GL(/t, Z) 
is the full Z-automorph of its form. (The Z-automorph of a positive form is 
certainly finite.) But the form of H is already determined by each of the abso­
lutely irreducible subgroups of H. So at step 1 we determine all finite minimal 
absolutely irreducible subgroups of GL(#, Z) up to conjugacy under GL(#, Q), 
i.e. those absolutely irreducible groups which do not contain any proper absolutely 
irreducible subgroups. This is essentially a task of classical representation theory. 
As for the primitive groups we refer to papers by Brauer [1] , Wales [9], and 
Lindsey [5] . To find the imprimitive groups we first had to prove an integral 
version of Clifford's Theorem. For n = 5 and 7 there are 2 minimal absolutely 
irreducible groups to be considered, but 33 for n = 6 because 6 is no prime so 
that many imprimitive groups turn up. 

2. Step 2 consists of finding the Z-classes of the groups determined at step 
1 which was done by means of electronic computation using the centering algo­
rithm developed in [6] . Let us describe the algorithm in module theoretic terms. 
Let L and M be Q-equivalent ZG-representation modules, i.e. QL = Q G QM, 
then M is Z-equivalent to a submodule M' of L of finite index in L. One can 
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choose M' in such a way that the prime divisors of L : M' also divide \G\. Only 
suchAf''s are considered. If L is absolutely irreducible,a set of representatives of 
the Z-classes lying in the same Q-class as L is obtained as the set R(L) of all those 
ZG-submodules M of L which are not contained in pL for any p dividing |G|. 
The computation of R(L) requires the knowledge of the Z G-composition factors 
of LjpL for all prime divisors p of |G|, say Ax, . . . , Ak. Let M G R(L) and let 
L = Mx >M2> • • • > Ms = M be a ZG composition series of L/M. Then the 
factor modules M-/M.+ x (i = 1, 2, . . . , s - 1) are isomorphic to certain A-'s 

(ƒ = 1, . . . , k). Hence M(+1 is obtained from M. as the kernel of a ZG-epimor-
phism <^: M?. —> A-m. Thus Aff.+ x can be obtained from M. by solving systems of 
linear equations over a finite field. Each time a new Mi+1 is obtained, one only 
has to test whether Mi+ x G R(L)(md need not compare M.+ x with any earlier Mk). 

3. Having determined the Z-classes of the finite minimal irreducible sub­
groups one has to find the full Z-automorphs of their forms. They are the 
maximal finite irreducible subgroups of GL(w, Z). 

For n = 5 the maximal finite absolutely irreducible subgroups of GL(«, Z) 
fall into 7 Z-classes forming 2 Q-classes of isomorphism types C2 x S6 or C2 'v 
S5 . For n = 7 there are 7 Z-classes forming 3 Q-classes. The isomorphism types 
are C2 x 5 8 , C2 'v S7 and the Weyl group W(E7). For rc = 6 there are 17 
Z-classes forming 9 Q-classes. The isomorphism types are C2 'v S6, (C2 x S4) 'v 
C2, a subgroup of index 2 of C2 'v 5 6 , (C2 x 53) 'v ^ 3 , C2 x M ^ ) , ^3 x »S4 

x C2, C2 x 5 7 , C2 x PGL(2, 7), C2 x S5. 
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