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In this note we give a short survey on joint work with K. Behnke; details 
will appear in [1] and [2]. 

Let n, q be positive integers with 2 < q < n and gcd(«, q) = l, m = n - q. 
We define elements 0W , \jj , r\ E. GL(2, C) by 

where i = \/— 1 and ffe = exp(2iri/k). The group Gn C GL(2, C) is generated 
by 

(a) 0 m , \jj , 77 in case m odd, 

(b) 1// , T? o 0 2 m in case m even. 

Gn has finite order Amq\ G + 1 is the binary dihedral group of order 4g. 
Gw acts on C2 in the usual way; the quotient C2/Gn has precisely one 

(normal) complex-analytic singularity. We call it the dihedral singularity of type 

Dn . If we expand n/q into the modified continued fraction à la Hirzebruch-
Jung, 

n/q = b3 _ j ] ^ 2pV^ bp > 2, r > 4, 

it can be characterized by the dual graph of its minimal resolution (cf. [3]): 

J ^ > - # . . . • , I S P ^ C ) . 

The equations are calculated by invariant theory. As in the cyclic group case [5], 
we put 

n/m = a2 - Jj a3 - • • • - 1] ae_x, a€ > 2. 

Further set ^43 = Ö3 + 1, Ae = #e , e + 3, and 
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s2 ~ 1' S3 ~ *> S e+1 ~~ ^eSe ~ 

t2 — a2, t3 — a2 — 1, t€ + l = A€t€ 

re = mt€ - qse, 
Then we have 

- * e - l > 

-U-i> 

3<e<e-

3<e<e-

2<e<e-

1, 

1, 

1. 

THEOREM 1. A minimal set of generators for S = C [u, v] n>Q is 

formed by the polynomials 

zx = (uv)2m, ze = (uv)r*(u2qs* + ( - l)Wqs*)9 e = 2, . . . , e. 

After a (noncanonical) change of variables it is possible to find simple equations. 

THEOREM 2. The dihedral singularity of type Dn is (minimally) described 

by Vi(e — 1) (e — 2) equations 

zl-z^+z"2"1), 

z l z e = Z2Z3 * * ' Ze-~2 Ze-1 > 6 = 4 , . . . , e , 

z 2 z e = z 3 3 " • z 6 e - ~ 2 2 ^ - l 1 ( z 3 + z i 2 )> e = 4 , . . . , e , 

e = 4, . . . 9e - 1, 

ZsZ 6 + l ~ 1
7

a ô + 2 - z . • . 7 " e - 2 " 
6^e ~ ' ô + l *6 + 2 e - 2 ^ e - l 

4 < Ô 4- 1 < e - 1 <e - 1. 

In the case e = 4 l/zese equations are given by the maximal subdeterminants of the 
3 x 2-matrix 

a , - 1N 

Z2 7 2 4 . / 2 - 1 Z4 
z 3 ^ Z l 

This is in accordance with (and proved by) Ward's theorem on equations 
defining rational singularities [6]. 

For the computation of T1, the vector space of infinitesimal deformations, 
we use Pinkham's method [4]. In [1] we reduce the problem to the solution 
of a (large) system of linear equations and give some examples. A general formu
la for the dimension of Tl will be proved in [2] : 

THEOREM 3. 

e - l 

dim T1 = £ a€ + c, 
e = 2 
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where 

!

1, e = 3 , 

2, tf3 = 2, 
3, a3>3. 

In another forthcoming manuscript we determine the invariants and equa
tions for all remaining quotient surface singularities. 
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