DIHEDRAL SINGULARITIES:
 INVARIANTS, EQUATIONS AND INFINITESIMAL DEFORMATIONS

BY OSWALD RIEMENSCHNEIDER

Communicated by Robert Fossum, May 7, 1976
In this note we give a short survey on joint work with K. Behnke; details will appear in [1] and [2].

Let n, q be positive integers with $2 \leqslant q<n$ and $\operatorname{gcd}(n, q)=1, m=n-q$. We define elements $\phi_{m}, \psi_{q}, \eta \in \mathrm{GL}(2, \mathbf{C})$ by

$$
\phi_{m}=\left(\begin{array}{cc}
\zeta_{2 m} & 0 \\
0 & \zeta_{2 m}
\end{array}\right), \quad \psi_{q}=\left(\begin{array}{cc}
\zeta_{2 q} & 0 \\
0 & \zeta_{2 q}^{-1}
\end{array}\right), \quad \eta=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right),
$$

where $i=\sqrt{-1}$ and $\zeta_{k}=\exp (2 \pi i / k)$. The group $G_{n, q} \subset \operatorname{GL}(2, \mathbf{C})$ is generated by
(a) ϕ_{m}, ψ_{q}, η in case m odd,
(b) $\psi_{q}, \eta \circ \phi_{2 m}$ in case m even.
$G_{n, q}$ has finite order $4 m q ; G_{q+1, q}$ is the binary dihedral group of order $4 q$.
$G_{n, q}$ acts on \mathbf{C}^{2} in the usual way; the quotient $\mathbf{C}^{2} / G_{n, q}$ has precisely one (normal) complex-analytic singularity. We call it the dihedral singularity of type $D_{n, q}$. If we expand n / q into the modified continued fraction à la HirzebruchJung,

$$
n / q=b_{3}-1 \sqrt{b_{4}}-\cdots-1 \sqrt{b_{r}}, \quad b_{\rho} \geqslant 2, r \geqslant 4
$$

it can be characterized by the dual graph of its minimal resolution (cf. [3]):

The equations are calculated by invariant theory. As in the cyclic group case [5], we put

$$
n / m=a_{2}-1 \sqrt{a_{3}}-\cdots-1 \sqrt{a_{e-1}}, \quad a_{\epsilon} \geqslant 2
$$

Further set $A_{3}=a_{3}+1, A_{\epsilon}=a_{\epsilon}, \epsilon \neq 3$, and

[^0]\[

$$
\begin{array}{cl}
s_{2}=1, s_{3}=1, \quad s_{\epsilon+1}=A_{\epsilon} s_{\epsilon}-s_{\epsilon-1}, & 3 \leqslant \epsilon \leqslant e-1, \\
t_{2}=a_{2}, t_{3}=a_{2}-1, t_{\epsilon+1}=A_{\epsilon} t_{\epsilon}-t_{\epsilon-1}, & 3 \leqslant \epsilon \leqslant e-1, \\
r_{\epsilon}=m t_{\epsilon}-q s_{\epsilon}, & 2 \leqslant \epsilon \leqslant e-1 .
\end{array}
$$
\]

Then we have
Theorem 1. A minimal set of generators for $S_{n, q}=\mathbf{C}[u, v]^{G_{n, q}}$ is formed by the polynomials

$$
z_{1}=(u v)^{2 m}, \quad z_{\epsilon}=(u v)^{r} \epsilon\left(u^{2 q s_{\epsilon}}+(-1)^{t_{\epsilon} \epsilon} v^{2 q s_{\epsilon}}\right), \quad \epsilon=2, \ldots, e .
$$

After a (noncanonical) change of variables it is possible to find simple equations.
Theorem 2. The dihedral singularity of type $D_{n, q}$ is (minimally) described by $1 / 2(e-1)(e-2)$ equations

$$
\begin{array}{ll}
z_{2}^{2}=z_{1}\left(z_{3}^{2}+z_{1}^{a_{2}-1}\right), & \epsilon=4, \ldots, e, \\
z_{1} z_{\epsilon}=z_{2} z_{3}^{a_{3}-2} \cdots z_{\epsilon-2^{2}}^{a_{\epsilon-2}} z_{\epsilon-1}^{a_{\epsilon-1}-1}, & \epsilon=4, \ldots, e, \\
z_{2} z_{\epsilon}=z_{3}^{a_{3}-2} \cdots z_{\epsilon-2}^{a_{\epsilon-2}-2} z_{\epsilon-1}^{a_{\epsilon-1}-1}\left(z_{3}^{2}+z_{1}^{a_{2}-1}\right), & \epsilon=4, \ldots, e-1, \\
z_{\epsilon-1} z_{\epsilon+1}=z_{\epsilon}^{a}, & \\
z_{\delta} z_{\epsilon}=z_{\delta+1}^{a_{\delta+1}-1} z_{\delta+2}^{a_{\delta+2}-2} \cdots z_{\epsilon-2^{\prime}}^{a_{\epsilon-2}-2} z_{\epsilon-1}^{a_{\epsilon-1}-1}, & \\
& 4 \leqslant \delta+1<\epsilon-1 \leqslant e-1 .
\end{array}
$$

In the case $e=4$ these equations are given by the maximal subdeterminants of the 3×2-matrix

$$
\left(\begin{array}{ccc}
z_{1} & z_{2} & z_{3}^{a_{3}-1} \\
z_{2} & z_{3}^{2}+z_{1}^{a_{2}-1} & z_{4}
\end{array}\right)
$$

This is in accordance with (and proved by) Wahl's theorem on equations defining rational singularities [6].

For the computation of T^{1}, the vector space of infinitesimal deformations, we use Pinkham's method [4]. In [1] we reduce the problem to the solution of a (large) system of linear equations and give some examples. A general formula for the dimension of T^{1} will be proved in [2]:

Theorem 3.

$$
\operatorname{dim} T^{1}=\sum_{\epsilon=2}^{e-1} a_{\epsilon}+c
$$

where

$$
c= \begin{cases}1, & e=3 \\ 2, & a_{3}=2 \\ 3, & a_{3} \geqslant 3\end{cases}
$$

In another forthcoming manuscript we determine the invariants and equations for all remaining quotient surface singularities.

REFERENCES

1. K. Behnke and O. Riemenschneider, Diedersingularitäten, Abh. Math. Sem. Univ. Hamburg (to appear).
2. -, Infinitesimale Deformationen von Diedersingularitäten (in preparation).
3. E. Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1967/68), 336-358. MR 36 \#5 136.
4. H. Pinkham, Deformations of quotient surface singularities, Proc. Sympos. Pure Math., vol. 30, Part 1 (Proc. Conf. on Several Complex Variables, Williamstown, 1975), Amer. Math. Soc., Providence, R. I. (to appear).
5. O. Riemenschneider, Deformationen von Quotientensingularitäten (nach zyklischen Gruppen), Math. Ann. 209 (1974), 211-248. MR 51 \#3518.
6. J. Wah1, Equations defining rational singularities, 1975 (preprint).

MATHEMATISCHES SEMINAR DER UNIVERSITÄT HAMBURG, BUNDESSTRASSE 55,2000 HAMBURG 13 , WEST GERMANY

[^0]: AMS (MOS) subject classifications (1970). Primary 32C40, 32G05, 14B05, 14J15;

