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Certain models in quantum field theory can be defined by a generalized ran­
dom process 0 ( / ) = f<j>(x)f(x) dx for ƒ E S(Rd) satisfying the following condi­
tions [3] : (a) Regularity. The expectation of e^^ is entire analytic on S(Rd)', 
(b) Euclidean invariance (including reflections) of the underlying measure dfi. 
This means that 

/[n*(//)]^=j[n^/i)]^. 
Here (rif)(x) = f(j\~lx) and T? belongs to the Euclidean group. This identity 
induces a unitary transformation T on the space E = L2(diJ) of random variables, 
(c) Reflection positivity. Let r denote reflection in the x0 plane, and let y be a 
function of the random variables {0( ƒ )} where suppt ƒ lies in the half space 
x0 > 0. Then 

(2) fv(Trv)dn>0. 

This final condition enables us to define the Hilbert space H (which plays 
the role of L2 of the state space) and a contraction semigroup e~tH (which de­
fines the transition probabilities for the process). The inner product on f/ is given 
by (2) after dividing out by the space of null vectors. The semigroup e~tH arises 
from translation in the x0 = t direction. 

The simplest example of a process satisfying the above conditions is the 
Gaussian process whose generating functional is 

(3) J > « dn0 = exp(-y2<ƒ, ( - A + \)-lf))L\ 

This process is known as the Ornstein-Uhlenbeck process. For d — 1, 2 we con­
sider the following limiting process: 

r / e / 0 ( / ) e x p ( - P A ) e x p ( ~ Ö ± 2 )<*Mo 
(4) JV<^>^+-= lim L K) *2W _°, 

At* 2 J e x p ( - P A ) e x p ( - Ô ± ) * o 
R \ A . 
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where 

PA = ƒ [X: 4>4(*): - :4>2(*):1 d^x 
JA 

and 

< & = f [:02(x): + (4X)-y20(x)] d<2>x. 

When d — \,H = L2{dx) and the generator / / equals — ^<i2/<£c — ^ x 2 4- Xx4. 
In this case, the polynomial Q± has no effect on H and d/i+ = dix~. 

We study the case d = 2 and show that for small X the limit exists and de­
pends on Q±. If we set Q = 0 and replace A in (3) by the Laplacian with 
Dirichlet boundary conditions on 3A, we show that the translation group Tt de­
fined on E does not act ergodically [1], hence the ground state of the correspond­
ing Hamiltonian H is not unique. The effect of Q± is to choose a unique ground 
state. The dependence on boundary conditions is a phenomenon called phase 
transition in statistical mechanics and occurs, for example, in the Ising model. 
See [4]. 

The following results are established in [2]. 

THEOREM 1. For small X and for the quadratic boundary conditions Q± of 

[2], the limit djjf in (4) exists and defines a measure on S(R2) which is ergodic 

under R2-translation with an exponential mixing rate m > 0. To define the 

exponential mixing rate m, let A and B be functions of 0( ƒ) for f E CQ(R2). 

Then 
(ln((ATxB)-(AXB))) 

m = inf lim { \ . 
A,B Ixhoo i \X\ i 

Ergodicity combined with conditions (a)-(c) above are a mild strengthening 

of the Osterwalder-Schrader axioms. Verification of (a)-(c) gives our next result. 

THEOREM 2. The measure dfjr satisfies all Osterwalder-Schrader axioms and 

has nonzero expectation value 

\(t>{x)dix
± = ±(4X)-1/2 + <9(X3/2) 

for\< 1. 

The above theorem is a nonuniqueness theorem because it implies djj,+ =£ 
d[T. It also proves symmetry breaking, by showing that the symmetry 0 «—> 
- 0 of the interaction is not a symmetry of the solution djjf. The corresponding 
real time fields satisfy all Wightman axioms. 

THEOREM 3. The measure dfjr has moments in the translated variable i//* 
= y ± (4X)~1/2 which are C°° as functions of\V2, at X = 0, and the derivatives 
3/3(X1/z) in the Taylor's expansion about X = 0 can be evaluated explicity in terms 
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of Feynman diagrams. The moments are also analytic in a small sector | Im X| < 

e|Re X| < l,e< 1. 

REMARK. Theorem 3 makes precise the sense in which d^r is almost 

Gaussian. 
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