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Let (£2, F, P) be a probability space, N = {1, 2, . . . }, and let (F„)„eN 
be an increasing sequence of a-algebras contained in F. A stopping time is a 
mapping r: £1 —> N U {<*>}, such that (r = « } G F n for all n G N. The collec
tion of bounded stopping times is denoted by T\ under the natural ordering T is 
a directed set 'filtering to the right'. 

Let E be a Banach space and consider a sequence ( I n ) n G N of E-valued 
random variables adapted to (F„), i.e., such that Xn\ £1 —^E is Fw-strongly 
measurable. EX (expectation of X) is the Pettis integral of X\ EAX denotes 
E(lA • X). The sequence (Xn) is called an amart iff each Xn is Pettis integrable 
and lim r E(XT) exists in the strong topology of E. 

The real Riesz decomposition theorem for amarts [4] asserts that an amart 

Xn can be uniquely written as a sum of a martingale Yn, and an amart Zn that 

converges to zero in nearly all possible ways: Zn —• 0 a.e. and in L1 , and ZT —• 

O i n I 1 . 

As a consequence of this result, and of the real amart convergence theorem 
[1]—the first important result involving discrete parameter amarts—we obtain 

THEOREM 1. Let E = R If (Xn, Fn) is an amart, then (and only then) 

for each increasing sequence rn > n in T, E nXr - Xn —>0 a.e. and in L1. 

The Banach-valued Riesz decomposition is the main result of the present 

note. The Pettis norm of a random variable X is \\X\\ = sup E\f(X)\ where the 

supremum is over all ƒ E E' with I ƒ I < 1 [6]. 

A potential is an amart that converges to zero in the Pettis norm. A se

quence of adapted random variables is said to be of class (B) iff sup r E\XT\ < °°. 

We prove 

THEOREM 2 (RIESZ DECOMPOSITION). Let E be a Banach space with the 

Radon-Nikodym property and let (Xn, F„) be an E-valued amart such that 

(1) l i m m f £ | X J < ° o . 

(i) Xn can be uniquely written as the sum of a martingale Yn and a 
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potential Zn. (ZT)TŒT converges to zero in Pettis norm. 
(ii) If E' is separable and (Xn, Vn) is of class (B), then Zn —> 0 a.e. 

weakly. 

SKETCH OF PROOF. (Complete proof will appear elsewhere), (i) For each 

A G F m , lim EAXn - lim{A) exists (cf. [3]). (1) implies that jum has finite 

variation. Ym = d\xmjdP is a martingale and Zm = Xm - Ym satisfies EAZm 

—> 0 V A G F m . Let ef I 0. For each m choose Am G Fm so that 

(2) sup \EAZm\-\E Zm\<em. 

We can find an integer nm > m such that \E c Zn \ < em. Define a stopping 
Am m 

time Tm by Tm = m on ^4m ; rm = nm on ^4^. Then for each ra, | ^ Zm -

EZ'ml = ' ^ Z " m \<em' S Ü 1 C e Z » i S a n a m a r t ' l[mm EZrm = l i m m EZm = ° -

It follows that ^ Zm —> 0; hence, by (2), sup^G F \EAZm \ —> 0 which 

implies that | |ZW | |—>0. 

For each increasing sequence of bounded stopping times rn, (ZT ) w G N is 

an amart with respect to (FT )m(=N [4] • Therefore ||Z_ || —• 0; it follows that 

\imT\\ZT\\ = 0. 
The proof of (ii) uses the vector amart convergence theorem [3]. 
In the discussing of examples relevant to Theorem 2, the following result 

is useful: For any E, any amart, the Riesz decomposition holds if and only if 
d[im\dP exists for each m. 

EXAMPLE 1. The assumption that E has the Radon-Nikodym property can
not be omitted. Let {el

n, n G N, 1 < i < 2n } be the standard basis for the 
Banach space c0 (in any order). Let Al

n n AJ
n = 0 if / + ƒ, and P(Al

n) = 2~n. 

Let 

2 

' ''lA' 
k=l i=l Ak 

*n = Z L e[l 

Let Fw = F, n = 1, 2, (Xn, Tn) is a bounded amart (cf. [3]), but the 
Riesz decomposition fails. 

EXAMPLE 2. Assumption (1) cannot be omitted. Let (ef) be the usual 
basis of E = / for some p, 1 < p < 2. Let Zn be independent real random 
variables with P(Zn = 1) = P(Z„ = - 1) = Vi. Set Xn = 2 £ = 1 afcefcZfc where ak 

are positive constants with 2^ fl[ = ° ° , S ^ < ° ° . Then lim E\Xn\ = °°, and 
one proves that Xn is an amart with respect to the constant sequence of a-algebras 
F, that does not have the Riesz decomposition. 

The first example in [3] (or [4]) shows that a bounded potential in a 
Hubert space need not converge a.e. strongly, or in Ll

E norm; the second example 
shows that an L1 bounded potential not of class (B) need not converge a.e. 
weakly. 
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