THE RIESZ DECOMPOSITION FOR VECTOR-VALUED AMARTS

BY G. A. EDGAR AND L. SUCHESTON¹

Communicated by Alexandra Bellow, April 12, 1976

Let (Ω, F, P) be a probability space, $\mathbf{N} = \{1, 2, ...\}$, and let $(F_n)_{n \in \mathbf{N}}$ be an increasing sequence of σ -algebras contained in F. A stopping time is a mapping $\tau: \Omega \longrightarrow \mathbf{N} \cup \{\infty\}$, such that $\{\tau = n\} \in F_n$ for all $n \in \mathbf{N}$. The collection of bounded stopping times is denoted by T; under the natural ordering T is a directed set 'filtering to the right'.

Let E be a Banach space and consider a sequence $(X_n)_{n \in \mathbb{N}}$ of E-valued random variables *adapted to* (F_n) , i.e., such that $X_n: \Omega \longrightarrow E$ is F_n -strongly measurable. *EX* (expectation of X) is the Pettis integral of X; $E_A X$ denotes $E(1_A \cdot X)$. The sequence (X_n) is called an *amart* iff each X_n is Pettis integrable and $\lim_T E(X_r)$ exists in the strong topology of E.

The *real* Riesz decomposition theorem for amarts [4] asserts that an amart X_n can be uniquely written as a sum of a martingale Y_n , and an amart Z_n that converges to zero in nearly all possible ways: $Z_n \rightarrow 0$ a.e. and in L^1 , and $Z_{\tau} \rightarrow 0$ in L^1 .

As a consequence of this result, and of the real amart convergence theorem [1]—the first important result involving discrete parameter amarts—we obtain

THEOREM 1. Let $\mathbf{E} = \mathbf{R}$ If (X_n, \mathcal{F}_n) is an amart, then (and only then) for each increasing sequence $\tau_n \ge n$ in T, $E^{\mathcal{F}_n} X_{\tau_n} - X_n \longrightarrow 0$ a.e. and in L^1 .

The Banach-valued Riesz decomposition is the main result of the present note. The *Pettis norm* of a random variable X is $||X|| = \sup E|f(X)|$ where the supremum is over all $f \in \mathbf{E}'$ with $|f| \le 1$ [6].

A potential is an amart that converges to zero in the Pettis norm. A sequence of adapted random variables is said to be of class (B) iff $\sup_T E|X_{\tau}| < \infty$. We prove

THEOREM 2 (RIESZ DECOMPOSITION). Let **E** be a Banach space with the Radon-Nikodym property and let (X_n, F_n) be an **E**-valued amart such that

(1)
$$\lim \inf E|X_n| < \infty$$

(i) X_n can be uniquely written as the sum of a martingale Y_n and a

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 60G40, 60G45.

 $^{^{1}}$ Research of this author is in part supported by the National Science Foundation grant MPS 72-04752A03.

potential Z_n . $(Z_{\tau})_{\tau \in T}$ converges to zero in Pettis norm.

(ii) If E' is separable and (X_n, F_n) is of class (B), then $Z_n \to 0$ a.e. weakly.

SKETCH OF PROOF. (Complete proof will appear elsewhere). (i) For each $A \in F_m$, $\lim E_A X_n = \mu_m(A)$ exists (cf. [3]). (1) implies that μ_m has finite variation. $Y_m = d\mu_m/dP$ is a martingale and $Z_m = X_m - Y_m$ satisfies $E_A Z_m \rightarrow 0 \ \forall A \in F_m$. Let $\epsilon_i \downarrow 0$. For each *m* choose $A_m \in F_m$ so that

(2)
$$\sup_{A \in F_m} |E_A Z_m| - |E_A Z_m| < \epsilon_m.$$

We can find an integer $n_m > m$ such that $|E_{A_m^c} Z_{n_m}| < \epsilon_m$. Define a stopping time τ_m by $\tau_m = m$ on A_m ; $\tau_m = n_m$ on A_m^c . Then for each m, $|E_{A_m} Z_m - EZ_{\tau_m}| = |E_{A_m^c} Z_{n_m}| < \epsilon_m$. Since Z_n is an amart, $\lim_m EZ_{\tau_m} = \lim_m EZ_m = 0$. It follows that $E_{A_m} Z_m \to 0$; hence, by (2), $\sup_{A \in F_m} |E_A Z_m| \to 0$ which implies that $||Z_m|| \to 0$.

For each increasing sequence of bounded stopping times τ_n , $(Z_{\tau_n})_{n \in \mathbb{N}}$ is an amart with respect to $(\mathcal{F}_{\tau_m})_{m \in \mathbb{N}}$ [4]. Therefore $||Z_{\tau_m}|| \to 0$; it follows that $\lim_T ||Z_{\tau}|| = 0$.

The proof of (ii) uses the vector amart convergence theorem [3].

In the discussing of examples relevant to Theorem 2, the following result is useful: For any E, any amart, the Riesz decomposition holds if and only if $d\mu_m/dP$ exists for each m.

EXAMPLE 1. The assumption that **E** has the Radon-Nikodym property cannot be omitted. Let $\{e_n^i, n \in \mathbb{N}, 1 \le i \le 2^n\}$ be the standard basis for the Banach space c_0 (in any order). Let $A_n^i \cap A_n^j = \emptyset$ if $i \ne j$, and $P(A_n^i) = 2^{-n}$. Let

$$X_n = \sum_{k=1}^n \sum_{i=1}^{2^k} e_k^i \mathbf{1}_{A_k^i}.$$

Let $F_n = F$, $n = 1, 2, ..., (X_n, F_n)$ is a bounded amart (cf. [3]), but the Riesz decomposition fails.

EXAMPLE 2. Assumption (1) cannot be omitted. Let (e_i) be the usual basis of $\mathbf{E} = l_p$ for some $p, 1 \le p < 2$. Let Z_n be independent real random variables with $P(Z_n = 1) = P(Z_n = -1) = \frac{1}{2}$. Set $X_n = \sum_{k=1}^n a_k e_k Z_k$ where a_k are positive constants with $\sum_k a_k^p = \infty, \sum a_k^2 < \infty$. Then $\lim E|X_n| = \infty$, and one proves that X_n is an amart with respect to the constant sequence of σ -algebras F, that does not have the Riesz decomposition.

The first example in [3] (or [4]) shows that a bounded potential in a Hilbert space need not converge a.e. strongly, or in L_E^1 norm; the second example shows that an L^1 bounded potential not of class (B) need not converge a.e. weakly.

REFERENCES

1. D. G. Austin, G. A. Edgar and A. Ionescu Tulcea, *Pointwise convergence in terms of expectations*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30 (1974), 17-26. MR 50 #11402.

2. A. Bellow, On vector-valued asymptotic martingales, Proc. Nat. Acad. Sci. U.S.A. (to appear).

3. R. V. Chacon and L. Sucheston, On convergence of vector-valued asymptotic martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33 (1975), 55-59.

4. G. A. Edgar and L. Sucheston, *Amarts: A class of asymptotic martingales*, J. Multivariate Analysis (to appear).

5. ———, Les amarts: une classe de martingales asymptotiques, C. R. Acad. Sci. Paris (to appear).

6. B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304.

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210