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Let H, H+ be real Hubert spaces with H+ dense in H and H+ C ƒƒ, alge­

braically and topologically; the inner products on Ht H+ are denoted by < , > and 

< , >+, respectively. As in [1] , let //_ denote the dual of H+ via the inner pro­

duct of H so that ƒƒ_ is the completion of H under the norm 

\(v,w)\ 
sup 

bl l + 

By L(H+, /ƒ_) we denote the space of bounded linear operators from H+ to //_. 
For 0 < t <T, r > 0 a n arbitrary real number, we consider the initial-value 
problem 

(1) *tt ~ N u + J L K 0 " r)n(Tydr = 0, 

& u(0) = f, u,(0) = g, 

where N G L(H+, H_) is symmetric and K(f), Kt(t) G L2((-°°, °°); L(H+,HJ). 
We also assume that 

(3) u(r) = U(r), - ° o < r < o , 

where U(t) E C1 ((-°°, 0); H+) is prescribed and satisfies l im^Q- U(f) = f, 
l i m ^ 0 _ Vt(t) = g, l i m , ^ IIU(0«+ = 0 and £„ \\U(t)\\ + dt < ~ 

In [2] we have proved the following basic result concerning solutions u G 
C2([0, T); H+) for which nt G C^QO, 7); # + ) and utt G C([0, f); #__). Let 

N - ) w G C 2 ( [ 0 , r ) ; / / + ) l sup l l w ( 0 H + < ^ 2 ( 
( [o,r> ) 

for some real number N. Then we have 

THEOREM (BLOOM [2]). Let u G U Z?e awy solution of ( l ) -(3) #rtd de/me 

F(f; ft f0) = Hu(0«2 + 00 + '0)2> 0 < t < Tf 
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where ft t0 are arbitrary nonnegative real numbers. Then provided K(t) satisfies 

(5a) -<!>, K(0)v> > fcbll2 , Vt> E # + 

with 

(5b) K>TJ sup IlK^OU,1 

[O,oo) 

F(t; ft tQ) satisfies 

(6) FF" -F'2>- 2F(2G(0) 4- 0), 0<t<T, 

where 

G(t) = E(0 + kx sup llK(r)ll + k2 sup IIK(0H 
(7) [0 ,oo) [0 ,oo) 

with E(t) = %<uf(0, uf(0> - %<u(0, Nu(0>, tfœ total energy and 

*i = | 7 jTW4 + (W2 + 2llfll+) J_°JIU(r)ll + d r 1 , 

k2 = 77V27 J ^ IU(r)l + rfT. 

The proof of this theorem proceeds via a logarithmic convexity argument 
due to Knops and Payne [2]. As no defîniteness conditions are imposed on N, 
the problem (1)—(3) is, in general, non-well-posed and the existence and unique­
ness results of Dafermos [1] do not apply. 

From (6) there follows a variety of results concerning the stability and 
growth behavior of solutions u E W to (1)—(3); proofs of the sample results given 
below, as well as several others, along with applications to initial-boundary value 
problems arising in the theory of isothermal linear viscoelasticity may be found 
in [2] and [4] ; in a forthcoming work [5] our results will be applied so as to 
study the stability and growth behavior of electric displacement fields in non­
conducting material dielectrics. 

THEOREM I (BLOOM [2]). Let u E U be any solution of ( l ) - (3) for which 

E(0) < ~ *, for some k>0. IfK(t) satisfies (5a), (5b) and 

(8) sup IIK(0U < ykTlikJy + * 2 ) , 
[o,-) 

then 

(9) Ilu(r)ll2 > Hf"2 exp{<2/,^)r/llf2ll}, 0<t<T, 

whenever <f, g> > 0 with f =£ 0. 

7 is the embedding constant, i.e., as H+ C H topologically, Hull < TIIWII+, Vv G H+. 
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THEOREM II (BLOOM [2]). Let u E hl be any solution of (l)-(3) and 
suppose that 

(10) B(0)>-(ife17V + *2) ^P llK^)H 

and 

(11) <f, g> 2V2TT(G(0))1/2 IfI 

with e = #jx<f, g>, for some yt > 0. 77teAi provided K(t) satisfies (5a), (5b), u 

(12) KQP+lT1 >(llf»2 +M_1)(?/?o + !)e exp{8M(f0; e » 

forO<t<T, where f0 s <f, g>/4G(0) and 

5 " ( ' ° ' e ) - 2 j llflP + 1/M } f0 * 

THEOREM HI (BLOOM [4]). Let uE hi be any solution of (1)—(3) where 
K(t) satisfies (5a) and (5b). /ƒ 

f l 3 \ E ( 0 ) < - * sup IIK(0H 

with k> kt + yk2/T, then u satisfies 

0 4 ) llu(0«2 <^[max(llfll2, Hgll2)]2^6) 

forO<t<T, where A > 0 and 8 = t/T. 

THEOREM IV (BLOOM [4]). Let u G N be any solution on (l)-(3) and sup­
pose that E(0) > -fc, for some k> 0. IfK(t) satisfies (5a), (5b) tftó 

(16) 0) sup lKt(t)H>kl(k1TY + k2)9 
[o,-) 

(17) (ii) lim ~ ln{llu(r»ll2 + flT + ;0)2} = 0 

for ft t0 nonnegative constants satisfying jSrJ < IIf II2, tfzefl u satisfies 

(18) llu(0ll2 < *(/0, T\ e)llfII2, 0 < f < r, 

wfcere *(f0, T; e) = 2(r/f0 4- l)2 + e wrt e = G(0)/j8. 
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