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and have non-p-integral invariants. The proof is due to Serre, and it is 
supplemented by the author to include also the case where the curves are 
defined over a function field (of characteristic zero), and their invariants are 
transcendental. Finally, the field of division points of an elliptic curve A over 
an algebraic number field K is studied. Let A0 denote the group of division 
points of A ( = points of finite order), and K(A0) the field generated by their 
coordinates over K. If A has no complex multiplication, it is known from 
Serre's work that the Galois group of K(A0) over K is an open subgroup of the 
product II/? GL2 (Zp) (taken over all primes p). This important theorem is 
proved here under the additional assumption that the invariant of A is 
nonintegral. 

Part Four enters into the multiplicative theory of elliptic (theta) functions, 
and the connection to L-series. After first dealing with the analytic theory, 
exhibiting the classical multiplicative functions and their formulas, the author 
defines the so-called Siegel functions, which are certain integral modular 
functions. Their singular values lie in certain well-defined ray class fields; their 
behavior under Galois automorphisms is deduced from the general reciprocity 
law of Shimura mentioned above. Two Kronecker limit formulas involving 
(multiplicative) elliptic functions are established, as well as their relation to L-
series over imaginary quadratic number fields. In particular, their value at s = 
1 is worked out, which plays an important role in algebraic number theory in 
connection e.g. with class number formulae. 

The attentive reader who has travelled up to this point over the ocean of 
elliptic functions, with this book as his vessel and the author as his guide, will 
certainly be able to sail further on his own to the scenes of great discoveries 
past and present. The tour is to be highly recommended even though the sea 
sometimes may be going rough. 

PETER ROQUETTE 

BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 82, Number 4, July 1976 

Maximal orders, by I. Reiner, Academic Press, London, New York, San 
Francisco, 1975, xii 4- 395 pp., $36.50. 

The theory of orders is a fascinating and difficult subject which occupies 
much of the common ground between algebra and number theory. Since this 
theory is known to relatively few contemporary mathematicians, I will give a 
more than usually thorough survey of the general area, before discussing the 
book itself. 

To facilitate the discussion, we start with the definition and a few examples. 
Let R be a Dedekind domain (that is, R is a Noetherian integral domain in 
which all nonzero prime ideals are maximal, and which is integrally closed in 
its field of fractions K. The last condition means that any element of K which 
is a zero of a monic polynomial with coefficients in R belongs to R. As 
examples, one may take principal ideal domains and the rings of algebraic 
integers of algebraic number fields). An i^-order is intended to be a certain 
type of i^-algebra. Some of the examples which should be included are the ring 
of all n X n matrices over R (for any n > 1), the group ring RG of a finite 
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group whose order is a unit of K, and the integral closure of R in a finite 
separable extension field L of K. In each of these cases, we see that the given 
i^-algebra is a finitely generated torsionfree 7^-module, and the ^-algebra 
obtained from it is quite well behaved. The precise definition abstracts all this, 
starting from the last condition first. As a basic context, we take a finite-
dimensional, separable A'-algebra A, where "separable" means that L ®# A is 
semisimple for all extension fields L of K. An R-order in A is a subring A (with 
1) of A such that A is a finitely generated jR-module which spans A as a K-
vector space. A is a maximal order if it is contained in no larger border in A. 
In the motivating examples above, the ring of n X n matrices is a maximal Zo­
order in the algebra of n X n matrices over K; the integral closure of R in L is 
the unique maximal i^-order in L. (In general, if A is a commutative separable 
AT-algebra, then the integral closure of R therein is the unique maximal Zo­
order in A.) The group ring RG is an R-otder in the group algebra KG, but is 
maximal if and only if the order of G is a unit of R. 

To the best of my knowledge, the term "order" was first used by Dedekind 
in the 1870's. There were at least two distinct problems that motivated him. 
On the one hand, Kummer, in unpublished work, had purported to prove 
Fermat's Last Theorem, by using factorizations in rings of cyclotomic integers. 
Unfortunately, Kummer assumed that such factorizations were unique. That 
this is not true was soon discovered, and Kummer himself attempted to restore 
unique factorization by adjoining "ideal elements". (These are elements of 
extension fields whose adjunction kills off elements of the ideal class group.) 
Dedekind's insight here was to observe that the ideals (in the sense we use the 
term now) of the cyclotomic rings factor uniquely as products of prime ideals. 
This knowledge is sufficient to prove Fermat's Last Theorem for exponents 
which are regular primes. (It is easy to see that in discussing Fermat's Last 
Theorem, one need only consider exponents that are odd primes, once the case 
of exponent four is settled.) Dedekind did not confine his attention here to 
cyclotomic rings. Indeed, he showed that the unique factorization property 
holds for ideals in the rings of algebraic integers of arbitrary algebraic number 
fields. A crucial aspect of the discussion is that one must use the ring of all 
algebraic integers in the number field to achieve uniqueness. Hence, for 
example, one must work in Z[(l + ^/::-3)/2] in order to obtain a satisfactory 
arithmetic in ô(V~~3). Dedekind's predecessors had rejected such quantities 
as (1 + ^f^î)/! as integers, because of the presence of the denominator, as 
well as for technical reasons arising from the theory of integral quadratic 
forms. However, (1 + y /= :3)/2 is acceptably integral because it satisfies the 
monic polynomial equation x2 - x + 1 = 0 , with integer coefficients. Hence, 
we may say that Dedekind recognized the importance of maximal orders in 
the discussion of arithmetic. 

On the other hand, Dedekind also had occasion to discuss nonmaximal 
orders in number fields. In his Disquisitiones arithmeticae, Gauss gave a 
lengthy and beautiful discussion of integral binary quadratic forms (note 
however that he allowed only forms Q(x,y) = Ax2 + Bxy + Cy2 with B even). 
One of the most interesting aspects of the discussion is the notion of 
composition of forms. This notion allows one to work on Diophantine 
equations Q(x9y) = m by working primarily on the case where m is prime (the 
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genus problem). The point is to multiply forms so as to obtain formulas of the 
type 

Q\(x,y)Q2(z9w) = Q3(a, j8), 

where a and /? are integral bilinear functions of x, y, z and w. Such formulae 
generally exist only when Q{ and Q2 have the same discriminant. Dedekind 
observed that equivalence classes of forms of given discriminant correspond 
to classes of invertible ideals of a nonmaximal order in a quadratic number 
field, and that under this correspondence, composition of forms is carried over 
to multiplication of ideals. This observation was cast in very general form by 
Kaplansky in the late 1960's. 

For about forty years after these fundamental papers of Dedekind ap­
peared, work on orders dealt almost exclusively with algebraic number theory, 
i.e., with the theory of maximal orders in global fields. Profound advances 
were made by many mathematicians; among them we mention Dedekind, 
Kronecker, Weber, Hubert, Hensel, Hecke, Landau, and Minkowski. Since 
there are many excellent accounts available of this era, we will skip ahead to 
1916, when Brandt used orders in generalized quaternion algebras to discuss 
composition of quaternary quadratic forms in the same style used by 
Dedekind for the binary case. (We remark that for the quaternary forms, one 
does not use the ordinary norm, which is quartic, but rather the quadratic 
reduced norm.) The introduction of orders in noncommutative algebras 
significantly raises the level of difficulty. The main source of extra complexity 
is that the integral elements of a noncommutative algebra need not form a 
ring. Hence, there is no strict analogue of the ring of all algebraic integers of 
a number field. One can still show that maximal orders exist (in separable 
algebras), but a given algebra may contain many of them. Because of this sort 
of difficulty, it is often convenient to discuss fractional ideals of all maximal 
orders in a given algebra at once. This point of view was emphasized in 
Brandt's work, and led him to the discovery of the Brandt groupoid of an 
algebra. This groupoid is roughly analogous to the group of fractional ideals 
of a Dedekind ring. 

The 1920's and 1930's were a sort of a golden age of the theory of maximal 
orders. The most significant work dealt with multiplicative ideal theory and 
finiteness of class number (in various senses). We mention that Artin, Speiser, 
Dickson, Deuring, Eichler, and Chevalley were among those who made 
important contributions. We single out for special attention a profound and 
beautiful calculation by Hasse of maximal orders in division algebras over 
fields that are complete with respect to discrete valuations. He showed that 
such division algebras behave much like local fields; to wit, the valuation of 
the ground field extends uniquely to a valuation (in a suitable sense) of the 
division algebra. The valuation ring is then the unique maximal order. In case 
the residue field of the original ground domain is finite, one can exhibit the 
skewfield as the crossed product corresponding to a cyclic, unramified 
extension of the ground field. These special features permit the calculation of 
the Brauer groups of the local and global fields of number theory, which in 
turn leads to the central results of classfield theory. The connection with 
classfield theory is explained in Weil's austere but elegant Basic number theory. 
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Activity in the general theory of orders diminished considerably in the 
forties and fifties (although algebraic number theory of course continued to 
flourish). In 1960, the time was ripe for modern homological methods to take 
their place in the theory of orders. The basic work along these lines was done 
by Auslander and Goldman. They gave homological characterizations of 
maximal orders in several different settings. Their work led Strooker to 
discover that an order is maximal if and only if it is hereditary and clean. 
Cleanness can be defined in several equivalent ways; one definition is that the 
reduced special projective class group is finite. 

In recent years, attention has focused on nonmaximal orders, especially 
from a representation-theoretic viewpoint. There have been at least three 
major directions: group rings, hereditary orders, and orders of finite represen­
tation type. The representations of integral group rings have significant 
applications in several branches of mathematics. We mention Wall's homoto-
py and surgery obstructions in topology, the calculation of space groups and 
fundamental groups of the flat manifolds in geometry, and the discussion of 
integral normal bases in algebraic number theory. Further, integral group 
rings provide the vital link between ordinary and modular representations of 
finite groups. The interest in hereditary orders comes from the work of 
Auslander, Goldman, and Strooker mentioned above. Thorough discussions 
have now been given by Harada, Brumer, Jacobinski, and Reiner. An R order 
A has finite representation type if there are but finitely many indecomposable 
finitely generated, i^-torsionfree A-modules. The interest in these orders 
parallels that in Artinian rings of finite representation type, a subject which 
has seen dramatic developments recently. A thorough discussion of these 
orders can be found in Roggenkamp's excellent Springer-Verlag Lecture 
Notes. I would also like to point out that orders play a role in connecting 
algebraic geometry with classfield theory. To each complex elliptic curve 
admitting complex multiplication there corresponds an ideal class in a 
nonmaximal Z-order in an imaginary quadratic field. The order determines the 
isogeny class of the curve; the ideal class determines the isomorphism class. 
The geometric and analytic invariants of the curve in turn lead to an explicit 
description of the Hubert classfield of the quadratic field. In all, we see that 
the theory of orders is an active one which has much to contribute to many 
parts of mathematics. 

One might ask why we need a book on maximal orders, when the above 
discussion indicates that nonmaximal orders dominate the current areas of 
research. The answer is that maximal orders play an indispensable role in the 
general theory of orders. Typically, one embeds a given order A in a maximal 
order A'. The two become equal when localized at almost all primes of the 
ground ring, so results about A' often yield much information about A itself. 
Dedekind used this approach in his earliest work on nonmaximal orders in 
number fields; profound investigations of Jacobinski show that the method is 
equally powerful for noncommutative orders. 

Reiner's book gives by far the most extensive and most readable account 
available of the classical theory of maximal orders. After an introductory 
chapter that recalls necessary background material from ring theory, the 
structure theory for maximal orders is developed in the natural fashion. First, 
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Hasse's work on orders in complete skewfields is presented. An interlude on 
Morita equivalence permits passage to the case of maximal orders in separable 
algebras over local fields. Classical techniques then transfer the information 
thus far derived to the case of maximal orders over arbitrary Dedekind rings. 
At each stage, ideal theory, different, discriminant, and norms are discussed in 
full detail. 

The latter part of the book is devoted to some interesting special topics in 
the theory of orders. The theory of Brauer groups is developed from the point 
of view of crossed products, and, in particular, of cyclic algebras. This 
discussion is very thorough, and would provide all the background necessary 
for the applications to classfield theory. The only important results asserted 
without proof are the Hasse Norm Theorem and the Grundwald-Wang 
Theorem. 

Other topics covered are Eichler's Theorem on reduced norms, hereditary 
orders and some of the recent results of the author, Ullom, Frölich, and others 
on class groups and Picard groups of orders. 

The book has been written with great care, and is a pleasure to read. Unlike 
many books at such an advanced level, it contains many interesting exercises, 
with hints where appropriate; it contains almost no misprints or mistakes. It 
is essential to the library of every working algebraist and number theorist. 

W . H . GUSTAFSON 
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The Stone-Öech compactification, by Russell C. Walker, Ergebnisse der Math-
ematik und ihrer Grenzgebiete, Band 83, Springer-Verlag, New York, 1974, 
x + 332 pp., $30.40. 

Stone and tech published their papers on fiX, the "Stone-tech compactifi­
cation" of X, in 1937. Here X is a completely regular Hausdorff space. The 
space fiX is characterized as the maximal compactification of X: every 
mapping from A" to a compact space K extends to a mapping from fiX to K. 
It is sufficient to state this for K C R: fiX is that compactification of X in 
which X is C*-embedded, i.e., every bounded continuous real-valued function 
on X extends to /SX. 

With the existence and uniqueness of fiX thus established, from one point 
of view the subject is closed. From another point of view it has just been 
opened. What are particular properties of fiX and how do they reflect 
properties of XI tech raised some specific questions, and answered some of 
them, in his original paper. For instance, fiX is connected if and only if X is 
connected; on the other hand, fiX is never metrizable (for noncompact X). 
What about X*, i.e., pX\X ? What does N*, for example, "really look like?" 
What is its cardinal number, for that matter? Pospisil answered this last 
question in a note published side by side with tech's paper: for any infinite 
discrete space D, \jiD\ = exp exp|D| and hence |J9*| = exp exp|Z)|; in par­
ticular, |N* | = 2C. (The year before, Hausdorff had solved the same problem 
but in a form not recognized at the time as equivalent.) 

The next major development was the 1939 paper of Gelfand and Kolmogo-


