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The subject of this book is a mathematical model for the propagation of
sound around obstacles. The basic problem is to describe the behavior of
sound waves which impinge on an infinitely hard object occupying a com-
pact region I'cR?® (the analysis is carried out for '=R"). Roughly, one has
an incoming wave u- which is unaffected by the obstacle. The sound then
reaches I' where it is reflected, diffracted, and is generally subject to
complicated physical processes. Eventually the intensity of sound near I" dies
out indicating that the sound wave has traveled away from I' (the model is
conservative so the only way for sound to disappear in one place is for it to
appear somewhere else). Thus for large time one expects to find a wave u.
which is unaffected by the obstacle.

The mathematical model is the following. The sound wave is described by
a function u:RX(R’\I)—>R where du(t, x)/dt represents the difference
between the pressure at place x and time ¢ and the equilibrium pressure.
With an appropriate choice of units the equation of motion for u is the wave
(or d’Alembert) equation,

(1) Uy — Au = 0
where A=Y, (3/0x:)’. The Neumann boundary condition
(2) n-grad.u=0 on RxaI'

(n=normal to dI") describes the interaction of sound with an infinitely hard
obstacle. Waves in the absence of obstacles satisfy d’Alembert’s equation on
the entire space RxR".

The intuition described above suggests that if u is a solution of (1), (2),
then on any bounded set B<R", u(t)|5—>0 as t— and that there is a
solution, u., of the wave equation on RXR" with u=u. for ¢t large. Similar
assertions hold for t— —oo with an associated free wave u-. From a practical
perspective one often knows the initial free wave u- which then interacts
with T then tends to u. as t—. The map u —> u. is called the scattering
operator.
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The first problems of scattering theory are to show that for any solution,
u, of (1), (2) there is u. with u=u, for t»1 (existence of wave operators)
and that for any free wave u- there is a u satisfying (1), (2) with u=u- for
t«—1 (completeness of wave operators). One then proceeds with a more
detailed analysis of the relations among u. and u. One of the main goals,
which at present has not been reached, is the inverse problem: given the
scattering operator find the obstacle, I'. For example in the echo location of
objects one sends out a free wave, u-, and observes (a part of) the scattered
wave u: and from the information so obtained reconstruction of I' is
attempted. The rudimentary nervous system of a bat is capable of solving
this problem with exceptional skill but man’s theoretical and practical
attempts fall far short of the bat’s achievements.

There are several approaches to the study of scattering and all begin by
casting the equation of motion in the form dU/dt = BU where U is a function
on R with values in a suitable Banach space, the vector U(t) represents the
state of the system at time t. The operator B is always discontinuous. In
the present situation the underlying space is the Hilbert space
H,(R"\I)@® L,(R"\T), U(t) = (u(1), du(t)/dt) and B = ( §) is selfadjoint on the
domain dictated by (2). The time independent approach adopted in this
book proceeds by deriving two spectral representations for the operator B.
In the present case, this boils down to proving eigenfunction expansion
theorems in L>(R"\T) for the selfadjoint operator, A, given by the Laplacian
with Neumann boundary conditions. When I is the empty set this expansion
is the usual L, theory of the Fourier transform with eigenfunctions e™,
£eR". For nonempty I the eigenfunctions are of the form e™+O(1/|x|); in
particular, they are not square integrable. The proof of the expansion
theorem has as its starting point the formula of Stone for the spectral projec-
tions of a selfadjoint operator, A,

(Bs— Eo)f =5 lim Lb[R(x+ie)-—R(x—ie)]fdx

where R(z)=(z—A) " and the points a and b are not eigenvalues of A. The
main effort is in the study of the behavior of R(x=xie)f as ¢—0. Since we
are interested in the case where xe o(A) these limits will not exist in
L>(R"\T'), however, one gets convergence in LY*(R"\T).

Once the eigenfunction expansions are obtained the existence and com-
pleteness of the wave operators is proved and then, in a final chapter, the
implications for the transport of energy are investigated. Specifically, a
formula is obtained for the energy which is scattered into a conical region in
R". This last chapter is a welcome return to the concrete questions which
motivated the theory. Too often big theorems are proved without standing
back afterward to see what has been accomplished.

Wilcox’ book is written with an attention to detail which is unusual in the
literature on partial differential equations. Only a knowledge of integration
and the spectral theorem for unbounded operators is assumed and the text
could be used by second year graduate students with this background. There
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are several well-chosen heuristic arguments to clarify the exposition. Unfor-
tunately, there are some parts of the theory which seem to be hard to
motivate. In particular, the connection between the + in R(x=ie) and the
radiation conditions of Sommerfeld, and, the existence of two special
spectral representations seem to arise mysteriously. Overall the book is easy
to read, has very few typographical errors, and is quite informative. It is, I
think, the best introduction to scattering theory that is available. The reader
should be warned, however, of two weaknesses. First, there are several
places where crucial results are presented with references rather than proofs,
and second, there is a tendency to overwrite some simple proofs. The impact
is to skew the presentation in the direction of verifying details at the expense
of some beautiful and hard analysis. On the other hand a serious reader who
consults the references supplied by the author (or those suggested below)
can obtain a balanced and complete presentation.

The important omissions are the following:

1. To obtain the asymptotic behavior of solutions (pp. 23ff) of the free
wave equation the method of stationary phase is used but not proved. A
clean proof is given in §1.2 of [1].

2. Rellich’s uniqueness theorem is not proved.

3. In the proof of local decay of solutions (p. 81) an abstract result is
quoted with reference giving the misimpression that a difficult result is being
used. The proof requires only a few lines.

4. To show that the functions lim.-.o R(x+ie)f satisfy radiation conditions
(pp. 72-73) one needs to know the asymptotic behavior of the free space
Green’s function. The need for and proof of this information is not indicated
in the text. The appropriate facts can be found on p. 127 of [2].

An example where a simple proof is given in so much detail that the
simplicity is obscured is the density argument on p. 139. A single well-
chosen sentence would suffice as in a similar context on the bottom of
p- 127. A second example is the proof of Lemma 6.3 which could be given
in about one half the space.

One of the author’s innovations is that the theory is carried out without
strong smoothness hypotheses on the obstacle. Only Rellich’s compactness
theorem in R"\I' is needed and not regularity up to the boundary of
solutions to the Neumann problem in R"\T". This depends essentially on the
fact that the Neumann condition can be given a weak or variational
formulation. Though this observation is no news to experts it is good to see
it in print. It is also worth noting that the standard boundary value problems
for Maxwell’s equations can also be cast in variational form [3, pp. 284-285]
and therefore the scattering theory is valid for non-smooth obstacles.

Let me close by saying that reading this book was both pleasurable and
informative and I hope that this experience is shared by many mathemati-
cians.
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Latin squares and their applications, by J. Dénes and A. D. Keedwell,
Academic Press, New York, 1974, 547 pp., $24.50.

A latin square A=[a;] of order n is an nXn array in which the places are
occupied by elements from an n-element set and each element from the set
occurs exactly once in each row and column. They are familiar objects in
algebra as multiplication tables of quasigroups, in geometry as coordinate
systems for nets, and in statistics where, as one of the simplest combinatorial
designs, they are used extensively in the design of experiments.

This is the first book devoted entirely to latin squares. While the statisti-
cal, algebraic and geometric aspects are discussed, the major theme is the
construction of orthogonal sets of latin squares. This is not surprising since
much of the current interest in latin squares was stimulated by the disposal
in the late 1950’s of a famous conjecture of Euler’s. Two nXn latin squares
A=[a;], B=[b;] are orthogonal if, when B is superimposed on A, the n’
ordered pairs (aij, b;) contain each pair exactly once. Euler’s Officers Problem
concerns the existence of a 6x6 array of 36 officers, 6 of each rank, from 6
different regiments, such that there is, in each row and in each column,
exactly one officer of each rank and one officer from each regiment. This is
obviously equivalent to the existence of two orthogonal latin squares of
order six. Euler was able to construct a pair of orthogonal latin squares for
all orders n other than n=2(mod4) and he conjectured that for these
orders no such pair exists. That Euler’s conjecture is true for n=6 was
verified by Tarry in 1900. It was not until 1958-1960 that the combined
efforts of Bose, Shrikhande and Parker showed that Euler was wrong in all
other cases.

At about the same time, another well-known conjecture was disposed of
by Parker. Macneish in 1922 conjectured that if n=pip? - - - pix (p: distinct
primes) then the maximal size of a set of mutually orthogonal latin squares
(m.o.l.s.) is (min pf)—1. This conjecture is based on the construction of a set
of p'—1 m.o.Ls. from a finite field of order p'. By a direct product construc-
tion we can obtain from ¢t m.o.l.s. of order n; and t m.o.l.s. of order n», a set
of t m.o.Ls. of order n;n,. Thus, for n = pip%- - - pix, there is a set of at least
(min pj)—1 m.o.l.s. Macneish conjectured that there were exactly this many.
However, Parker constructed a set of 4 m.o.l.s. of order 21. More recently,
sets of 5 m.o.l.s. of order 12 have been constructed. Since we now know that
there do exist sets of m.o.l.s. for all n>6, interest has shifted to the question
of the maximal size of such sets. We know that the number tends to infinity



