STABILITY PROPERTIES OF THE CLASS OF ASYMPTOTIC MARTINGALES

BY ALEXANDRA BELLOW¹

Communicated by Alexandra Bellow, December 18, 1975

1. Let (Ω, \mathcal{F}, P) be a probability space. Let $N = \{1, 2, 3, \ldots\}$ and let $(\mathcal{F}_n)_{n \in N}$ be an increasing sequence of sub- σ -algebras of \mathcal{F} , i.e. if $n \leq m$ then $\mathcal{F}_n \subset \mathcal{F}_n$. A bounded stopping time (with respect to the sequence $(\mathcal{F}_n)_{n \in N}$) is a mapping $\tau \colon \Omega \longrightarrow N$ such that $\{\tau = n\} \in \mathcal{F}_n$ for all $n \in N$ and τ assumes only finitely many values. Let T be the set of all bounded stopping times. With the definition $\tau \leq \sigma$ if $\tau(\omega) \leq \sigma(\omega)$ for all $\omega \in \Omega$, T is a directed set "filtering to the right" (note that if $\tau \in T$, $\sigma \in T$, then $\tau \vee \sigma \in T$, $\tau \wedge \sigma \in T$). For $\tau \in T$ recall that $\mathcal{F}_{\tau} = \{A \in \mathcal{F} \mid A \cap \{\tau = n\} \in \mathcal{F}_n \text{ for all } n \in N\}$ and that $\tau \leq \sigma$ implies $\mathcal{F}_{\tau} \subset \mathcal{F}_{\sigma}$.

Let E be a Banach space. Let $X_n \colon \Omega \longrightarrow E$ for each $n \in \mathbb{N}$. The sequence $(X_n)_{n \in \mathbb{N}}$ is called adapted if $X_n \colon \Omega \longrightarrow E$ is Bochner F_n -measurable for each $n \in \mathbb{N}$.

The notion of asymptotic martingale has received a great deal of attention in the last few years; it provides a unified and elegant treatment for martingales, submartingales, supermartingales, quasimartingales [1], [2], [5]. We recall its definition:

DEFINITION. An adapted sequence $(X_n)_{n\in\mathbb{N}}$ of E-valued random variables is called an E-valued asymptotic martingale if X_n is Bochner integrable, i.e. $\int ||X_n(\omega)|| dP(\omega) < \infty$ for all $n \in \mathbb{N}$ and $(\int X_\tau)_{\tau \in T}$ converges in the norm topology of E.

We recall the fundamental a.e. convergence theorems for asymptotic martingales:

- (I) Let $(X_n)_{n\in N}$ be a real-valued asymptotic martingale. Suppose that $\sup_{n\in N}\int |X_n|<\infty$. Then $(X_n)_{n\in N}$ converges to a limit a.e. (see [1]).
- (II) Let $(X_n)_{n\in N}$ be an *E*-valued asymptotic martingale. Suppose that $\sup_{\tau\in T}\int \|X_{\tau}\|<\infty$. Then even under the best circumstances (if *E* is Hilbert space l^2) the sequence $(X_n)_{n\in N}$ need not converge in the norm topology of *E*, but only weakly a.e. (see [2]).

Nevertheless the following is true without any restriction on the Banach space E (see also [2], Lemma 2):

AMS (MOS) subject classifications (1970). Primary 60G40, 60G45; Secondary 28A65, 28A20.

¹The main results of this note were announced in a Colloquium lecture given at the Hebrew University of Jerusalem, on November 27, 1975.

THEOREM 1. Let E be a Banach space. Let $(X_n)_{n\in\mathbb{N}}$ be an E-valued asymptotic martingale. For each $\tau\in T$ let $\mu_{\tau}(A)=\int_A X_{\tau}$, for $A\in \mathcal{F}_{\tau}$. Then:

(1) The family $(\mu_{\tau}(A))_{\tau}$ converges to a limit, $\mu(A)$, for each $A \in \mathbb{F}_{\infty} = \bigcup_{\tau \in T} \mathbb{F}_{\tau} = \bigcup_{n \in \mathbb{N}} \mathbb{F}_n$, and the convergence is "uniform" on \mathbb{F}_{∞} , that is for each $\epsilon > 0$ there is $\tau_0 \in T$ such that

$$\sigma \in T$$
, $\sigma \geqslant \tau_0 \Rightarrow \|\mu_{\sigma}(A) - \mu(A)\| \leqslant \epsilon$ for all $A \in \mathcal{F}_{\sigma}$.

- (2) Furthermore if $\sup_{n\in N} \int \|X_n\| < \infty$, then there is M>0 such that $\|\mu_{\tau}(A)\| \leq M$ for each $\tau\in T$ and $A\in \mathbb{F}_{\tau}$.
- 2. In the Lemma that follows we assume that: Ω is a set, A a Boolean algebra of subsets of Ω , T a directed set filtering to the right for " \leq ", and $(A_t)_{t \in T}$ an increasing family of sub-algebras of A, that is: $s \leq t \Rightarrow A_s \subset A_t$.

For any real-valued bounded additive set function v defined on a Boolean algebra of subsets of Ω , we write $v = v^+ - v^-$ for the Jordan decomposition of v (see [4, pp. 98–99]).

The following Lemma may be regarded as a variant of E. H. Moore's double limit lemma (see [4, p. 28]):

LEMMA. For each $t \in T$ let μ_t : $A_t \longrightarrow R$ be an additive set function. We assume that:

- (i) There is M > 0 such that $|\mu_t(A)| \le M$ for each $t \in T$ and $A \in A_t$.
- (ii) The family $(\mu_t(A))_t$ converges to a limit, $\mu(A)$, for each $A \in A_\infty = \bigcup_{t \in T} A_t$, and the convergence is "uniform" on A_∞ , that is for each $\epsilon > 0$ there is $t_0 \in T$ such that

$$s \in T$$
, $s \ge t_0 \Rightarrow |\mu_s(A) - \mu(A)| \le \epsilon$ for all $A \in A_s$.

Then $\lim_{t \in T} \mu_t^+(\Omega)$ and $\lim_{t \in T} \mu_t^-(\Omega)$ exist and equal $\mu^+(\Omega)$ and $\mu^-(\Omega)$, respectively.

With the notation of §1, the following result, first proved in [1] (see also [5]), is an easy consequence of Theorem 1 and the previous Lemma:

COROLLARY. Let $(X_n)_{n\in\mathbb{N}}$ be a real-valued asymptotic martingale and suppose that $\sup_{n\in\mathbb{N}}\int |X_n|<\infty$. Then $(X_n^+)_{n\in\mathbb{N}}, (X_n^-)_{n\in\mathbb{N}}$ are asymptotic martingales.

Before stating the next theorem we note that the class of continuous functions $\Phi: R \longrightarrow R$ for which $\lim_{x \to +\infty} (\Phi(x)/x)$, $\lim_{x \to -\infty} (\Phi(x)/x)$ exist (finite or infinite) is quite large: it includes the piecewise linear functions, the convex functions, the concave function, the subadditive functions.

THEOREM 2. Let $\Phi: R \to R$ be continuous and such that $\lim_{x \to +\infty} (\Phi(x)/x)$ and $\lim_{x \to -\infty} (\Phi(x)/x)$ exist and are finite. Let $(X_n)_{n \in \mathbb{N}}$ be any real-valued asymp-

totic martingale such that $\sup_{n\in N}\int |X_n|<\infty$. Then $(\Phi(X_n))_{n\in N}$ is an asymptotic martingale and $\sup_{n\in N}\int |\Phi(X_n)|<\infty$.

3. For simplicity we assume in this section that $\Omega = [0, 1]$, $F = \text{the } \sigma$ -algebra of Borel sets and P a nonatomic probability measure. When the sequence of σ -algebras is not explicitly mentioned, it is assumed that $(F_n)_{n \in \mathbb{N}}$ is the "minimal", sequence, that is $F_n = \sigma(X_1, X_2, \ldots, X_n)$ for each $n \in \mathbb{N}$.

In a certain sense Theorem 2 is best possible, as the following result shows:

THEOREM 3. Let $\Phi: R \to R$ be continuous and such that $\lim_{x \to +\infty} (\Phi(x)/x) = +\infty$. Then there is a real-valued asymptotic martingale $(X_n)_{n \in \mathbb{N}}$ such that $\sup_{n \in \mathbb{N}} \int |X_n| < \infty$, $\sup_{n \in \mathbb{N}} \int |\Phi(X_n)| < \infty$, but $(\Phi(X_n))_{n \in \mathbb{N}}$ is not an asymptotic martingale.

REMARK. The standard examples of functions $\Phi: R \longrightarrow R$ satisfying $\lim_{x \to +\infty} (\Phi(x)/x) = +\infty$ are $|x| \log^+ |x|$ and $|x|^p$ (p > 1). The classical theorems from martingale theory concerning these functions [3, pp. 295–296] do not not carry over to asymptotic martingales, as Theorem 3 shows.

THEOREM 4. Let S: $\Omega \to \Omega$ be an ergodic measure-preserving transformation. There are then functions $f \in L^1_+$ such that if we set

$$X_n = (f + f \circ S + \cdots + f \circ S^{n-1})/n,$$

for each $n \in \mathbb{N}$, then $(X_n)_{n \in \mathbb{N}}$ is not an asymptotic martingale.

To conclude: the notion of asymptotic martingale is an important and useful concept. Nevertheless it has its limitations, as Theorems 3 and 4 above show.

REFERENCES

- 1. D. G. Austin, G. A. Edgar and A. Ionescu Tulcea, *Pointwise convergence in terms of expectations*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30 (1974), 17-26.
- 2. R. V. Chacon and L. Sucheston, On convergence of vector-valued asymptotic martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33 (1975), 55-59.
- 3. J. L. Doob, Stochastic processes, Wiley, New York; Chapman & Hall, London, 1953. MR 15, 445.
- 4. N. Dunford and J. T. Schwartz, *Linear operators*. I: *General theory*, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 5. G. A. Edgar and L. Sucheston, Amarts, a class of asymptotic martingales (Discrete parameters), J. Multivariate Anal. (to appear).

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60201