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1. Let (£2, F, P) be a probability space. Let N = { 1, 2, 3, . . .}and let 
(F n ) w e / V be an increasing sequence of sub-a-algebras of F, i.e. if n < m then F n 

C F n . A bounded stopping time (with respect to the sequence ( F„)Meiv) i s a maP* 
ping r : £2 —• N such that { r = n} G Vn for all « G TV and r assumes only fi­
nitely many values. Let T be the set of all bounded stopping times. With the 
definition r < o if r(co) < a(co) for all co G £2, T is a directed set "filtering to 
the right" (note that if r G T, a G 7\ then r V a G T, r A a G T). For r G r 
recall that FT = {A G F | 4 n {r = H} G Fw for ail n G TV} and that r < a im­
plies FT C FCT. 

Let E be a Banach space. Let Xw: £2 —>E for each n GN. The sequence 
(Xn)n^N is called adapted if Xw: £2 —•£ is Bochner F „-measurable for each 
nGN 

The notion of asymptotic martingale has received a great deal of attention 
in the last few years; it provides a unified and elegant treatment for martingales, 
submartingales, supermartingales, quasimartingales [1], [2], [5]. We recall its 
definition: 

DEFINITION. An adapted sequence (Xn)n(EN of E-valued random variables 
is called an E-valued asymptotic martingale if Xn is Bochner integrable, i.e. 
ƒ || Xn(aj)\\ dP(co) < °° for all n GN and ( fXT)rGT converges in the norm topol­
ogy ofE. 

We recall the fundamental a.e. convergence theorems for asymptotic martin­

gales: 

(I) Let (Xn)n(EN be a real-valued asymptotic martingale. Suppose that 
suPwejv ƒ l ^ w l < °°- Then (Xn)n<EN converges to a limit a.e. (see [1]). 

(II) Let (Xn)n(EN be an ^-valued asymptotic martingale. Suppose that 
s u p r G r ƒ || XT\\ < °°. Then even under the best circumstances (if E is Hilbert 
space I2) the sequence (Xn)nŒN need not converge in the norm topology of E, 

but only weakly a.e. (see [2]). 
Nevertheless the following is true without any restriction on the Banach 

space E (see also [2], Lemma 2): 
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THEOREM 1. Let E be a Banach space. Let (Xn)nGN be an E-valued asymp­
totic martingale. For each r G T let ixT(A) = fA XT, for A G VT. Then: 

(1) The family (jiT{A))T converges to a limit, JJL(A), for each A GF 0 0 = 
U T er FT

 =
 UWGAT F«> an(^ t^fie convergence is "uniform" on F^, that is for 

each e > 0 there is r0 G T such that 

o G T, o> r0 => \\n0(A) - n(A)\\ < e for alM G F a . 

(2) Furthermore if supMÖV ƒ \\Xn\\ < <», then there is M > 0 such that 
|| Mr(4)ll < M for each TGTandAe?T. 

2. In the Lemma that follows we assume that: £2 is a set, A a Boolean 
algebra of subsets of £2, T a directed set filtering to the right for " < " , and 
(Af)fer an increasing family of sub-algebras of A, that is: s <:t => As C A t . 

For any real-valued bounded additive set function v defined on a Boolean 
algebra of subsets of 12, we write v = v+ — v~ for the Jordan decomposition of 
u(see [4, pp. 98-99]) . 

The following Lemma may be regarded as a variant of E. H. Moore's double 
limit lemma (see [4, p. 28]): 

LEMMA. For each t G 71let iit: At —• R be an additive set function. We 
assume that: 

(i) There isM>0 such that \ixt(A)\ <Mfor each t G T and A G A t . 
(ii) The family {iit(A))t converges to a limit, ji(A),for each A G Aoo = 

U f e r A r and the convergence is "uniform" on A*,, that is for each e > 0 there 
is t0 G T such that 

sGT,s>t0=*\tJis(A)-ix(A)\<e for all A G A,. 

Then l im^j, M*(^0 and l im^^ iÇ(£l) exist and equal M+(^) and M~~(̂ ), 
respectively. 

With the notation of §1 , the following result, first proved in [1] (see also 
[5] ), is an easy consequence of Theorem 1 and the previous Lemma: 

COROLLARY. Let (Xn)nEiN be a real-valued asymptotic martingale and 
suppose that supwGiV ƒ \Xn\< °°. Then (X+)nE:N, (X~)nSN are asymptotic 
martingales. 

Before stating the next theorem we note that the class of continuous func­
tions 3>: R —>R for which timx-++00(®(x)/x), hmx^_QO(^(x)lx) exist (finite or 
infinite) is quite large: it includes the piecewise linear functions, the convex 
functions, the concave function, the subadditive functions. 

THEOREM 2. Let 3>: R —> R be continuous and such that lim^+0O(3>(x)/x) 
and lim^^œ($(*)/*) exist and are finite. Let (Xn)n&N be any real-valued asymp-



340 ALEXANDRA BELLOW 

totic martingale such that supweiV ƒ \Xn\ < °°. Then (^{Xn))n^.N is an asymp­

totic martingale and sup„eAr ƒ \$(Xn)\ < °°. 

3. For simplicity we assume in this section that £1 = [0, 1], F = the a-
algebra of Borel sets and P a nonatomic probability measure. When the sequence 
of a-algebras is not explicitly mentioned, it is assumed that {Vn)nE,N is the 
"minimal", sequence, that is Vn = o(Xx, X2, . . . , Xn) for each n EN. 

In a certain sense Theorem 2 is best possible, as the following result shows: 

THEOREM 3. Let <ï>: R —> R be continuous and such that \imx^+00(<b(x)lx) 

= + °°. Then there is a real-valued asymptotic martingale (Xn)n^N such that 
SUVn<EN S\Xn\< <*>, SUPw€EiV ƒ I <&(Xn)\ < <*>, but ($(Xn\<=N is HOt m a^mV' 
totic martingale. 

REMARK. The standard examples of functions <ï>: JR —> R satisfying 
lim^^ + ̂ ^ x V j c ) = + °° are |x | log+ |x | and \x\p (p > 1). The classical theo­
rems from martingale theory concerning these functions [3, pp. 295—296] do not 
not carry over to asymptotic martingales, as Theorem 3 shows. 

THEOREM 4. Let S: £1 —>£l be an ergodic measure-preserving transforma­

tion. There are then functions f^L\ such that if we set 

Xn= (ƒ + ƒ<> S + - - - +foS"-1)/n, 

for each n EN, then (Xn)n(EN is not an asymptotic martingale. 

To conclude: the notion of asymptotic martingale is an important and 
useful concept. Nevertheless it has its limitations, as Theorems 3 and 4 above 
show. 
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