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1. Introduction. In this paper we give a formula for the Tamagawa num
ber T(G) (see [6] ) of a connected semisimple quasi-split algebraic group G de
fined over an algebraic number field F. The method used is that of R. P. Lang-
lands (see [2]). 

Let A be the adeles of F\ GA the locally compact adele group of G in 
which the group GF of F-rational points is embedded. 

Let B be the Borel subgroup of G defined over F9 and A the maximal torus 
of B defined over F. r{A) is the Tamagawa number of A. LF (resp. LF) denotes 
the lattice of F-rational weights of G (resp. of the simply-connected form of G). 
Let c be the index [LF : Lp]. Then the main formula is 

THEOREM. T(G) = CT(A). 

2. Sketch of the proof. Let P be the orthogonal projection of L2(GF\GA) 

onto the space of constant functions. Langlands [2] observes the simple rela
tion: 

(1) ( l , l ) ( P ^ P O = ( ^ l ) 0 > O 

where y~, i//~ E L2(GF\GA) and ( • , • ) is the inner product on L2(GF\GA). 

As 

the problem reduces to the computation of the remaining three terms in (1). 
Let G^ = Uv^00Gpv where Fv is the completion of F at the place v and 

"u|°°" means that v is infinite. Let K^ be the maximal compact subgroup of 
G^, and KQ = UV<OQGQV where "v < °°" means that v is finite, 0V is the maxi
mal compact subring of Fv and GQ is the compact subgroup of GF consisting 
of elements with coefficients in 0V and whose determinants are units. Put 
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K = K^ • K0. Then there exists a finite set {g( E GA | 1 <i <n} such that 

(3) GA = Ü *A*f*-

Let JV be the unipotent radical of B, pick continuous functions <p, i// defined on 

NABF\GA/K such that we have a Fourier integral expression 

(4) *&) = ƒ,*, x * X ^ ) r f X 

^ |A. |—A.Q 

for a suitable quasi-character X0 of AF\AA and the series 

(5) <P~fe) = Z </<7S) 
7 e a F \ G F 

converges to an element in L2(GF\GA). Similarly, we have 

•/ |A.| — A Q 

The <ï>, ^ are functions in X and g, and there exists a sesquilinear pairing < • , • > 
between these functions such that 

(6) fa 1) = <3>p, 1>, ( 1 , ^ ) = < 1 , ^ > 

where p is the half sum of the positive roots of G. 

To evaluate the remaining terms (P<£, pi//), we introduce an unbounded self-
adjoint operator A on the closed subspace L of L2(GF\GA) generated by the 
functions <p~ with <p of the form indicated above. If E(x) is a right continuous 
spectral resolution of A, then we have 

(7) P = E((P, P ) ) - E((P, P ) - 0), 

( 8 ) ^ ' P * ) = ^ 4 ) ^ i ( , M ) ' 

where w is the element of the Weyl group that sends every positive root to nega
tive root, s is a complex number, L(s, A) is the L-function of A (see [4], [5]) 
and M(w, ps) is a linear map on a vector space of functions on NABF\GA/K. 

There exists a finite set S of places of F such that 

(9) M(w,ps)&S(g)=(llJNF *P\wnv)dnv\{jN <S>p\wnsgs)dn\ 

where £ = (gv) G GA is such that gv = 1 if v $. S, ns G Ns = UvŒSNFx). 

Let TV be the unipotent radical of the Borel subgroup opposite to B. Write 

Nw =w~lNw Pi ÎV. Then we have 

r * - - d e t ( / - | & | a A d / W ) 
(10) f w &(n)dn = - ' ' . * 

J ; v F
 v de t ( J - aAdfl-w) 
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where 3>x(l) = 1 (for notation see [3] , [4]). Formula (10) is proved first for 
all rational rank one quasi-split groups by explicit computation and then for the 
general case by the method of Bhanu-Murti, Gindikin and Karpelevic [1] . From 

(10) we get 

(11) Hm I I L &\wnjdnv = (ltm ft Lv(s, A) V I I volume G 

The remaining integral in (9) is calculated by comparing the decomposition 
of the measure on GA according to the Iwasawa decomposition and the Bruhat 
decomposition. We get 

(12) hm 3>p (wn0gjdn0 =—.= : 
S^JNS S V S n ^ s volume G ^ 

The theorem now follows immediately from (1), (2), (6), (8)—(12). 
It follows from our theorem that Weil's conjecture on Tamagawa is true for 

quasi-split group. 
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