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Projective Hjelmslev planes (PH-planes) are a generalization of projective 
planes in which each point-pair is joined by at least one line and, dually, each 
line-pair has a nontrivial intersection. Multiply joined points (and multiply inter­
secting lines) are called neighbor points (and neighbor lines). By hypothesis, the 
neighbor relations of a PH-plane A are equivalence relations which induce a can­
onical epimorphism from A to a projective plane A If A is finite, there exists 
[4] an integer t such that the inverse image of every point and every line of A 

contains precisely t2 elements. If the order of A is r, we say that A is a (t, r) 

PH-plane. We are concerned with the problem of determining the spectrum S 

of all admissible pairs (t, r). Since the finite projective planes are simply the 
(1, r) PH-planes, our concern is with a generalization of the classical existence 
question for projective planes. 

Prior to this announcement, the only pairs (t, r) known to belong to S 

satisfy the requirements: 
(1) t is a power of r, 

(2) r is a prime power. 
Conversely, all such pairs do belong to S, and all arise as the invariants of the 
Desarguesian-Pappian PH-planes investigated by Klingenberg [5]. A deep theorem 
of Artmann [1] allows one to assert that (t, r) is in S if (1) holds and if r is the 
order of a projective plane. Whether this is any improvement over the previous 
result is, however, still uncertain. 

Nonexistence results to date are also few in number. The celebrated 
Bruck-Ryser Theorem gives infinitely many values of r for which (1, r) $ S. Clearly 
(1, r) $S implies (t, r) fiS for any t. Kleinfield [4] has observed that (f, r) G S 
with t ^ 1 implies t > r. Most recently, Drake [2] has proved that (t, r) G S 
with I ^t ¥=r implies that t = 4 or 8 or that r < t + 1 - y/"(2t 4- 3). 

The current note is written to announce the following two existence re­
sults: 
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THEOREM 1. Let t, r, q, b be positive integers such that (tf r)E S, q is a 
prime power and q + 1 = t(r + 1). Then (t • qb, r) G S. 

THEOREM 2. Let t, q, b be positive integers such that (t, t)€. 5, q is a 
prime power and 2(t + 1) < q 4- 1 < t(t 4- 1). Then (t • qb,t)<ES. 

Details will be given elsewhere of a construction which simultaneously 
yields both theorems and a little more. Theorem 1, for example, allows one to 
conclude that (8 • 23&, 2) E S for arbitrary b. The actual Lenz-Drake construc­
tion applied to the "extremal" (8, 2) PH-planes of Shult and Drake [3] yields 
the additional information that (8 • 19*, 2), (8 • 17&, 2) G S. 

We remark that Theorem 1 may be applied either recursively or in tandem 
with Theorem 2. For example, since (2, 2) G S, Theorem 1 (or 2) yields 
(2 • 5b, 2) G S. A second application of Theorem 1 then yields (2 • 5 • 29d , 2), 
(2 • 25 • 149*, 2) G S. 

The construction is largely elementary. We mention several of the basic 
ideas, presenting them in generality sufficient for the proof of Theorem 1. If 
M - [mtj] is an incidence matrix for a (t, r) PH-plane A, then every row and 
every column of M contains precisely t(r + 1) one's. Thus König's Lemma im­
plies that M is a sum of permutation matrices; consequently, it is possible to ob­
tain a matrix N = [ntA of the same size as M such that n^ = 0 precisely when 
mt- — 0 and so that every integer from 1 to t(r +1) appears in each row and 
each column of TV. Next one seeks a suitable set of t(r + 1) square matrices Bx, 

B2, . . . of order s2 where s = qb. One then obtains a matrix G from N by 
substituting Bi for / when / > 1 and replacing each 0 by the square zero matrix 
of order s2. For G to represent the desired (t • s, r) PH-plane, it suffices to de­
mand that the matrices Bt satisfy : 

(3) Bt • (Bj)T = (Bjf • Bt = J when i ± j 

and 

(4) EV(V. £(V-B,>2/; 

here / denotes the matrix of all one's, and one writes [x^] > [ytj] to mean that 
xij > y a f o r a11 '*> /• 

The Bi can be obtained from an (s, q) PH-plane A' of the type investigated 
by Klingenberg and mentioned above. One obtains an incidence matrix D = 
[DjA for A' so written that every D.- is square of order s2 and successive sets of 
s2 columns (rows) represent neighbor classes of lines (points). Let Ev E2, . . . 
be the nonzero matrices among theDlx;Fx, F 2 , . . . be the nonzero matrices a 
among the Dxl. Then there exist permutation matrices P., Qi such that EiPi — 
QiFi = Bt for all /, and these Bi satisfy conditions (3) and (4). 
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